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Abstract 

In this paper, a new denoising technique for images corrupted 
with additive salt and pepper noise and white Gaussian noise is 
proposed. The technique used here is to combine the anisotropic 
diffusion (PM) model and total variation (TV) model. The new 
technique utilizes both advantages of PM model and TV model, 
while avoiding the disadvantages of both of them. To evaluate 
our algorithm several experiments have been conducted. The 
experimental results affirm the high performance of our model. 
Keywords: PM model, TV model, Image features, Partial 
Differential Equation (PDE). 

1. Introduction 

Since the noise is related to high frequencies, it is difficult 
to remove the noise, while preserving the important 
features [7]. The most efficient algorithm is the one that 
has the ability to solve this problem. Image de-noising has 
many applications that push people to look for better 
algorithms to overcome the drawbacks of the existing 
ones. There are many algorithms of image de-noising, for 
instance, multi-resolution geometry analysis, which is 
based on wavelet theory [15]-[17], has attracted a lot of 
attention. Recently, partial differential equation (PDE) 
becomes an important approach of image de-noising, such 
as total variation (TV) [18], anisotropic diffusion (PM), 
and so on [1]. In 1990 Perona and Malik (PM) [4] 
proposed the anisotropic diffusion model, which is useful 
tool for multi-scale description of images, image 
segmentation, edge detection and image enhancement [8]. 
The basic idea of PM is to evolve a family of smoothed 
image ),( yxu  from the initial image ),(0 yxu , using 
the following partial differential equation: 

,)())(( uguuguugdiv
t
u



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where )( ug  is designed to preferably smooth pixels 

inside a region rather than pixels near the boundary. 
However, the disadvantage of the PM model is tending to 
impair textures and details of image so that de-noising is 
not sufficient in the whole process. Another traditional 
approach to partial differential equation based image 
processing techniques was proposed by Rudin, Osher, and 
Fatemi (ROF) [5]. The authors proposed to minimize the 
total variation of the noisy image subject to constrains 
involving the statistics of the noise. Total variation (TV) 
minimization is a successful approach to recover images 
with sharp edges. Nevertheless, TV model can cause 
Gibbs-type artifacts. These Gibbs-type artifacts cannot be 
acceptable for applications like image feature, object 
detection. In order to reduce the Gibbs-type artifacts 
produced by PM, and TV models, we can use  

2u as a 

measure of image smoothness. This can reduce the Gibbs-
type artifacts, but unfortunately penalizes too much the 
gradients corresponding to edges [9]. In order to 
simultaneously reduce the Gibbs-type artifacts without 
causing any damage in the image, we use a weighted 
function combining the PM model and TV model to get 
our new model. 

The rest of this paper is organized as follows:  In Section 
2, we briefly describe the anisotropic diffusion and total 
variation models. The proposed method is described in 
Section 3. In Section 4, we present our experimental 
results that confirm the efficiency of proposed model. 
Some concluding remarks are presented in Section 5. 

2. PM Model and TV Model 

2.1 PM model 

For the images of anisotropic diffusion, let us consider the 
energy functional of the image as follows:  
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Therefore the corresponding Euler-Lagrange equation to 
(1) is: 
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where ( )g s  is the diffusion function defined as: 

2

1( )
1 ( )

g s s
k




. 

The authors in [4] considered the diffusion process: 
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with the given noisy signal 0u  as the initial condition 

),(),,( 0 yxutyxu  . Here the time acts as a scale 

parameter for filtering. Typically, )(sg  is a non-negative 
decreasing function, such that )(sg tends to zero as s  
approaches infinity. One of the serious problems in the 
diffusion model is that it is very sensitive to noise. To 
obtain reconstruction u  of a degraded image 0u , 
Nordström et al.[2] has suggested the energy functions as 
follows: 
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  is gradient operator,   is the 

domain of the image and   is the Lagrange multiplier.  

The corresponding Euler-Lagrange equations to this 
energy function are given by: 
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Joachim Weickert [3] regarded the energy function as 
follows: 
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and the corresponding Euler Lagrange equation is:  
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A general expression of the anisotropic diffusion equation 
first proposed by Perona and Malik [4] can be written as:   
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here )( 0uu   is additional bias term. 

PM model is an ill-posed problem, and the results will fall 
into the local optimal solution. When the noise intensity is 
large, the gradient of the noise and the gradient of the 
edge are similar, so the equation (11) cannot be used for 
de-noising. This is the reason why the PM model causes 
Gibbs-type artifacts. 

 

2.2 TV model 

A classical way to overcome ill-posed minimization 
problems is to add a regularization term to the energy. 
This idea was introduced in 1977 by Tikhonov and 
Arsenin [14]. The authors proposed to consider the 
following minimization problem:  
 

2 2
0( ) ( ( ) ) ,E u u u u d xd y


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where the first term of (12) is the smoothing term. The 
pL  norm with 2p  of the gradient allows us to remove 

the noise but unfortunately penalizes to much the gradient 
corresponding to edges [9]. Rudin, Osher and Fatemi 
(ROF) [5] in 1992 proposed to use the 1L  norm of the 
gradient of u , instead of the 2L norm, that is, 
minimizing the total variations: 
 


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Here the additive noise ),( yxn  is of zero mean and has 

known variance 2 .  
 
For the images of total variation, let us consider the 
energy functional of the image as follows: 
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The corresponding Euler-Lagrange equation to (16) is: 
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By introducing Lagrange multiplier  , the energy 
functional of the image can be redefined as: 
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To obtain the minimum, the energy functional needs to 
satisfy: 
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By the gradient descent method, we get the TV de-noising 
model as follows: 
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the TV model preserves the edges better than anisotropic 

diffusion (PM) model. But the disadvantage of TV model 
is that the block effect is produced when dealing with the 
flat areas, and consequently the local details 
characteristics of the original image are lost [10,11]. The 
weighted method proposed in this paper, which is 
different from those in [12,13], establishes the energy 
functional model by weighting the anisotropic diffusion 
(PM) model and the total variation (TV) model, reducing 
the noise by optimizing the energy functional. The new 
model avoids the edge blurring and eliminates the block 
effect as de-noising. 
 Recently the authors in [6] multiplied TV model, and PM 

model by 
1

| |ue h

  , and 2(1 )    respectively 

and summed the two terms to get an new model, for more 
details see [6].  

3. New Model 

In image processing, removal of noise without blurring 
the image edges is a difficult problem. Typically noise is 
characterized by high spatial frequencies in an image, and 
the details of the image, such as edge and texture, 
principally appear in the high frequency region. The task 
of image filtering is to remove the noise and preserve the 
details simultaneously, namely, to have possibly least 
diffusion in the regions which contain more image 
features, and possibly most diffusion in the regions which 
contain less image features. In this paper we use a 
weighted function complying the TV model and PM 
model to get a new de-noising model. Considering the 
characteristics of the anisotropic diffusion de-noising 
model and the total variation model, we use a weighted 
function combining the two models to get a new de-
noising model, which provides a new approach for 
solving the contradiction in the image restoration. Now 
we restore the original image u  by the degraded image 

0u , taking the energy functional of the image as follows: 
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where the weight function  1,0 .  
From (10), (21) the corresponding Euler-Lagrange 
equation is: 
 0)(2))(()1()( 0 




 uuuug
u
u

  .             (24)   

By using the gradient descent method, the new model can 
be expressed as: 
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From the above new model we can expect that: 
1- In the region which contains more image features 

(such as edges, etc.), the new model will play good 
role to preserve the edges of the image, namely this 
model will highlight the total variation (TV) model, 
therefore   should be close to one. 

2- In the flat areas of image, which contains less image 
features, the new model will highlight the role of the 
anisotropic diffusion (PM) model, therefore   should 
be close to zero. 

For our model we select the following weight function: 
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Here  is a threshold setting by the specific circumstances. 
To solve problem (25) by using the finite difference 
method, we let 
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the initial value, n  is the number of iterations. Replacing 
the first order derivatives by central divided differences 
and the second order derivatives by forward divided 
differences, we can rewrite the new model as the discrete 
form as follows: 
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where, ,.....,2,1,0n is the time level.  
Introduce the space discrete sign: 
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4. Experimental Results and Analysis 

In this section we compare the proposed approach with 
other methods in terms of the visual quality of de-noising 
images, Mean Square Error (MSE) according to (36), and 
Peak Signal to Noise Ratio (PSNR) according to (37).  
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Where xN and yN  are the number of pixels horizontally 

and vertically respectively, and   ),( jiIde , ),( jiIor  are 
the de-noised image and original image, respectively. 255 
is the peak signal with an 8-bit resolution.  
We take the commonly used 256 256  bit standard 
Lena, Cameraman and Boat images processed by the 
different de-noising methods as examples. The 
experimental results are shown in Figures 1 and 2. In 
these two cases we select the parameters as follows: 
the time step size 0.1t  , the grid step size 1h , 

01.0 , 0.2  , 300 k  and the number of 

iteration 50n .  
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In Figure 1 the image is corrupted with additive salt and 
pepper noise of different variances and the different de-
noising methods are applied. In Figure 2 the image is 
corrupted with additive Gaussian noise with standard 
deviation 20  .  Figures 1 and 2 show that the new 
model has a very obvious de-noising effect; it not only 
maintains the advantages of the PM model and TV model, 
but also overcomes the disadvantage of the two models. 
The quantitative results are presented in Tables 1, 2, 3. It 
can be seen from Tables 1 and 2 that the PSNR of the new 
model is the maximum, and from Table 3 we can see that 
the MSE of our model is the minimum, that means the de-
noising effect of the proposed model is the best. From 
Table 2 we find that increasing the variance of the noise 
will decrease the PSNRs of the four algorithms, which 
means that the de-noising effect is worse. However the 
PSNR of the new model is the largest among the four 
algorithms for the same variance, which means the de-
noising effect of the new algorithm, is the best in terms of 
PSNR. From Table 3 we find that MSEs of the four 
models increase as the variance of the noise increases, 
which means that the de-nosing effect is worse. 
Nevertheless the MSE of the proposed model is the lowest 
among the four models for same variance, this means the 
de-noising effect of the new model, is the best in terms of 
MSE. From Figure 3, we can see that, the histograms of 
TV, PM, and Ref. [6] models indicate poor contrast, 
unlike the new model that indicates a good one. From 
Figure 4 we can see that the proposed method in all noise 
power has the highest PSNR. From Figure 5 we can see 
that the proposed method in all noise power has the 
lowest MSE. 
  
 Table 1: PSNRs of TV, PM, Ref. [6] and the proposed algorithms. Input 
images are polluted by white Gaussian noise with standard deviation 

20  
Images TV 

model 
PM 
model 

Ref.[6] 
model 

New 
model 

Lena 26.1118 21.1110 26.3169 26.8563 
Cameraman 25.9651 20.9268 26.1402 26.5882 
Boat 26.2158 21.1099 26.4259 26.9844 

 
Table 2: The PSNRs of different algorithms with different variances of salt 
and pepper noise. 
Variance 0.02 0.03 0.04 0.05 0.06 0.07 
TV 28.5527 26.5138 25.6617 23.9651 22.7291 21.9510 

PM 24.5940 23.4454 22.6831 21.4331 20.2884 19.5865 

Ref.[6] 28.5065 26.6232 25.8379 24.1758 22.8750 22.1054 

New 28.7249 26.9657 26.1118 24.4722 23.1470 22.4304 

 
 
 
 
 
 
 

Table 3: The MSEs of different algorithms with different variances of salt 
and pepper noise. 
Variance 0.02 0.03 0.04 0.05 0.06 0.07 
TV 9.9297 11.7124 13.6880 15.6827 18.2597 20.3861 

PM 15.2512 17.0483 19.0745 21.1954 24.4319 26.6479 

Ref.[6] 9.9659 11.5849 13.3847 15.3942 17.9597 20.0574 

New 9.6443 11.2226 12.8299 14.9440 17.3382 19.2486 

 

   
(1)                                     (2)                    

                            
 (3)                              (4) 

  Figure 1: Results of de-noising obtained with Lena image (variance of the 
salt and pepper noise=0.02 ), (1) Result of TV algorithm, (2) Result of PM 
algorithm, (3) Result of reference [6] algorithm, (4) Result of the new 
algorithm. 
 

   
(1)         (2) 

   
(3)                        (4) 

  Figure 2: Results of de-noising obtained with cameraman image (standard 
deviation of the noise is  =20 ), (1) Result of TV algorithm, (2) Result of 
PM algorithm, (3) Result of reference [6] algorithm, (4) Result of the new 
algorithm. 
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Figure 3:  Histograms of Fig.2: (1) Histogram of image (1),  
(2) Histogram of image (2), (3) Histogram of image (3),  
and (4) Histogram of image (4). 
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Figure 4：PSNR(dB) graph of the TV, PM, Ref. [6] and new 

algorithms for various salt and pepper noise levels for Lena image. 
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Figure 5：MSE graph of the TV, PM, Ref. [6] and new algorithms 

for various salt and pepper noise levels for Lena image. 
 

5. Conclusions 

In this paper we propose a new approach for image de-
noising based on the combination of PM model and TV 
model. In our model we reduced the noise by optimizing 
the energy functional. From the performance of the 
simulations, our model has more de-noising ability in 
terms of MSE, PSNR, and visual quality compared with 
the anisotropic diffusion (PM) model, the total variation 
(TV) model and reference [6] model. To evaluate the 
proposed algorithm, several experiments were presented. 
Experimental results confirmed the high performance of 
the proposed algorithm compared with some well-known 
algorithms. The proposed algorithm can also be extended 
to other types of noises. If other methods for solving the 
partial differential equations are applied to new model, 
the convergence speed may be improved. In future 
research we will focus on constructing better algorithms 
in smoothing images and preserving image features. 
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