

A Framework for an Automatic Generation of Neural

Networks

Belal Al-Khateeb1, and Maha Mahmood2

 1 College of Computer, Al-Anbar University, Iraq

Ramadi.

2 College of Computer, Al-Anbar University, Iraq

Ramadi.

Abstract

The automatic generation of neural network architecture is a

useful concept as in many applications while the optimal

architecture is not a priori known. Often trial and error is done

before a satisfactory architecture is found. Construction

deconstruction algorithms can be used as an approach but they

have several drawbacks. Sometimes an evolutionary computation

and evolutionary algorithms are used but the idea in this paper is

reserved for a special kind of evolutionary algorithms. So in this

paper we proposed framework for neural networks which try to

get best solution for problems by automatic generation technique.

The obtained results are promising, suggesting many other

research directions..

Keywords: neural network, evolutionary algorithms, genetic

programming, genetic algorithms.

1. Introduction

Neural network performance is depending on its

architecture and on a given task, includes properties like

learning speed and generalization capability. On our world

most of the application of evolutionary computation in the

generations of neural network architecture has a significant

influence on the performance of the network. It is the usual

practice to use trial and error to find suitable neural

network architecture for a given problem. This method is

not only time consuming but may not generate an optimal

network. Therefore, the use of evolutionary computation is

a step towards automation in neural network architecture

generation. This paper seek preferable solution for any

problem by random operations on the neural network

architecture, those operations are add layer, add node,

delete layer, delete node, keep the architecture with no

change and update weights [1].

2. Background

Work on artificial neural networks, commonly

referred to as neural networks, has been motivated right

from its inception by the recognition that the brain

computes in an entirely different way from the

conventional digital computer. In the human brain, many

neurons are arranged together as a complex network. A

single neuron acts as valve to change the flow of

information propagating through the NN. Neurons will

strengthen some signals and limit others in order to

produce the final resulting output. In a brain, neurons

collect inputs like water flowing into a dam. When the

water attains a certain predefined level, it empties

everything into its outputs and starts over again [2][3].

There may be many different Neural Networks (NN) for

solving every particular problem and network designers

usually face questions such as “How could we find the size

of a NN?”, “Is the selected architecture an appropriate

one?”, “How could one design an optimal network?”.

These questions usually lead the designer to optimization

methods to find the desired network. In order to avoid the

local minima encountered in most of the optimization

methods, scientists tend to use random search methods

such as evolutionary algorithms (EA) and Genetic

algorithms (GA) to find an optimal network [7]. In 1997,

Vonk et. al. [1] used automatic generation of a neural

network architecture using evolutionary computation. Koza

and Rice [3] used genetic generation of both the weights

and architecture for a neural network shows how to find

both the weights and architecture for a neural network

(including the number of layers, the number of processing

elements per layer, and the connectivity between

processing elements).In 2007 Fiszelew [5] used automatic

generation of neural networks based on genetic algorithms

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 59

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:belal@computer-college.org
mailto:Maha_882010@yahoo.com

for finding optimal neural network architectures to learn

particular problems. In 2009 Nadi [7] used evolution of

neural network architecture and weights using mutation

based genetic algorithm. In this paper we present a new

approach for evolving optimized neural network

architecture for a three to five layer feedforward neural

network with a mutation based genetic algorithm.

3. Neural networks and Evolutionary

Algorithms

Neural networks are widely used in applications such

as pattern recognition, classification, clustering, prediction,

and so on. These networks are trained using the application

data. The generalization capability in these networks

directly depends on the training, architecture, the number

of layers and the number of neurons in each layer. If the

number of neurons in the network is increased, the network

attracts to over fit the training set, and thus the

interpolation capability will be decreased. On the other

hand if the number of neurons is less than the necessary

number, the network cannot learn all the data. Therefore,

for every application, there are a particular number of

neurons which keep the best interpolation generalization

balance. The designer needs some method for finding the

appropriate choice for keeping this balance [4]. EAs are

some kind of random search algorithms which use natural

evolution to solve optimization problems. EAs include

different categories such as genetic algorithm, evolutionary

strategy, evolutionary programming, and genetic programming.

Although there are some differences between these methods, but

they have a lot of common traits. An EA is applied to a

population which is a presentation of the optimization problem.

The representation of problem could be as simple as a series of

0‟s and 1‟s or as complicated as a computer program. The initial

population could be defined completely random or based on

prior knowledge. This algorithm will evaluate the population

based on a goal function and specify how much each agent is

close to the goal of problem. The goal function is different for

each individual problem and should be defined by the user. There

are several methods to produce the next generation of the

solutions from current population. In one formal method, agents

with better fitness will be selected as the parents for the next

generation. There are several operators which are applied to

chromosomes to produce the next generation. They are called

Genetic operators. The most important operators are mutation,

crossover and combination. The new population is produced and

its fitness will be computed. This loop continues until a desired

answer or the maximum epoch assigned is reached [1][4].

4. The Proposed Framework

The network in the framework has an input layer with

any number of neurons that can be specified by the user,

one to three number of hidden layers with three neurons as

minimum and twenty neurons as maximum, finally the

network has an output layer with one neuron. The input

layer receives a vector values (x1…….xp) and distributes

those values to each of the neurons in the hidden layer,

also there special neuron called the bias that is used to

control the network and if fed to each of the hidden layers,

the basis is multiplied by a weight and added to the sum

going into the neuron. To get the output for the neurons in

the hidden layer, the value from each input neuron is

multiplied by a weight (wij), and the resulting weighted

values are added together producing a combined value uj.

The weighted sum (uj) is fed into transfer function which

outputs a value hj, the outputs from the hidden layer are

distributed to the next layer. Also to get the output of the

neurons in the output layer, the value from each hidden

layer neuron is multiplied by the weight (wki), and the

resulting weighted values are added together producing a

combined value vi that is fed into a transfer function,

which outputs value (y) that is the value of output layer of

the network.The following algorithm is proposed to get the

neural network architecture automatically:

1. A population of a given number (n) of neural networks

was initialized at random. All of the weights and

biases of each network were initialized uniformly over

[-0.5, 0.5].

2. Each strategy has an associated self-

adaptive parameter vector si, i=1,…,n initialized to

0.05.

3. For each network do the following:-

- With 1/3 probability choose the add operation

then go to step 4.

- With 1/3 probability choose the delete operation

then go to step 5.

- With 1/3 probability keep the architecture as it

is.

4. - With 1/2 probability choose a hidden layer to be

added to the neural network at a random position,

such that the total number of the hidden layers is not

greater than the maximum number of hidden layers in

the network. If this is not the case then do not add the

new hidden layer. Then go to step 6.

- With 1/2 probability randomly choose the hidden

layer in order to add a number of nodes to it,

such that the total number of the nodes is not

greater than the maximum number of nodes in

the hidden layer. If this is not the case then add

the number of nodes that makes the total number

of nodes equal the max number of nodes in the

hidden layer. Then go to step 6.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 60

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

5. - With 1/2 probability choose a hidden layer to be

deleted from the neural network at a random position,

such that the total number of the hidden layers is not

less than the minimum number of hidden layers in the

network. If this is not the case then do not delete the

hidden layer.

- With 1/2 probability randomly choose the hidden

layer in order to delete a number of nodes from

it, such that the total number of the nodes is not

less than the minimum number of nodes in the

hidden layer. If this is not the case then delete

the number of nodes that makes the total number

of nodes equal the min number of nodes in the

hidden layer.

6. Calculate the output (fitness) of each network.

7. Select the best n/2 networks that have

the highest scores as parents and retained for the next

generation. Those parents are then mutated to create

another n/2 offspring using the following equations:

si(j) = si(j)exp(tNj (0,1)), j = 1, ..., Nw

wi(j) = wi(j) + si(j)Nj(0,1), j = 1, ..., Nw

where Nw is the number of weights and biases in

the neural network,

wN
t




2

1
, and Nj(0,1)

is a standard Gaussian random variable resembled

for every j.

8. Repeat steps 3 to 7 for k generations.

5. Results

In this section we present the initial results of our

proposed framework that is used to select the best

architecture of the multi-layer perceptron neural network.

Tables 1 through 3 show sample results of the algorithm.

Table 1: Add operation (add new nodes and hidden layer)

Table 2: No change operation

Table 3: Delete operation (layer and nodes) and adding new

hidden layer

The results in the above tables show all the proposed

cases for the addition and deletion operations, in all the

tables one can easily notice that the output values are

enhanced over the old output, which can be considered as a

success for the proposed framework.

Initialization …………….

Input Nodes = : 15

Input Value = { 0 , 1 , 0 , 1 , 0

, 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0

, }

 ------------ : ------------

 Layers Count= 1 :

 Layer = : 1

 Nodes = : 6

 weights = : 15

 ------------ : ------------

 Procedure : Add New Nodes

18 : Nodes have been added ..

 Output = :

0.598036690303204

 Old Output = : 0

 ------------ : ------------

 Layers Count= 1 :

 Layer = : 1

 Nodes = : 24

 weights = : 15

 ------------ : ------------

 Procedure : Add New

Hidden Layer in position 0

 Layers after adding = : 2

 Output = :

0.638789646760108

 Old Output = :

0.598036690303204

Layers Count= 2 :

 Layer = : 1

 Nodes = : 3

 weights = : 15

 Layer = : 2

 Nodes = : 24

 weights = : 3

 ------------ : ------------

 Procedure: No Change..

 Output = :

0.76474504467588

 Old Output = :

0.638789646760108

Layers Count= 2 :

 Layer = : 1

 Nodes = : 3

 weights = : 15

 Layer = : 2

 Nodes = : 24

 weights = : 3

 ------------ : ------------

 Procedure : Delete Layer

R = 0

 Layers after deleting = : 1

 Output = :

0.84588784258043

 Old Output = :

0.76474504467588

 ------------ : ------------

 Layers Count= 1 :

 Layer = : 1

 Nodes = : 24

 weights = : 15

 ------------ : ------------

 Procedure : Add New

Hidden Layer in position 0

 Layers after adding = : 2

 Output = :

0.860533295142764

Old Output = :

0.84588784258043

 ------------ : ------------

 Layers Count= 2 :

 Layer = : 1

 Nodes = : 7

 weights = : 15

 Layer = : 2

 Nodes = : 24

 weights = : 7

 ------------ : ------------

 Procedure : Delete Nodes

3: Nodes have been

deleted...

 R = 0 : R + 1 = 1

 R = 0 : R + 1 = 1

 R = 0 : R + 1 = 1

 Output = :

0.957570492384686

 Old Output = :

0.860533295142764

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 61

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

6. Conclusions and future work

This paper have shown the designing of an automatic

generation of neural networks that performs random

operation within hidden layers (generating layer,

generating nodes and connections; deleting layer, deleting

nodes and connections) in order to get best possible

architecture for finding the best solutions. Although the

obtained results are initial but they were promising as

shown in tables 1 through 3 as the tables showed all the

applied cases for the addition and deletion operations with

an output enhancing. The work needs some additional

tests therefore the following can be done as a future work:

applying the framework to a real problems such as

computer games (like tic–tac-toe, checkers and chess) and

pattern recognitions.

References

[1] E. Vonk, L.C. Jain, L.P.J. Veelenturf and R. Johnson‟‟

Automatic Generation of a Neural Network Architecture

Using Evolutionary Computation‟‟ 1997.

[2] Koza, John R., Genetic Programming, On the Programming

of Computers by Means of Natural Selection, MIT Press,

Cambridge, 1992.

[3] Koza J. R. and Rice, J. P I “Genetic Generation of both the

Weights and Archilecture for a Neural Network“, IEEE

lnrernnrional Joinr Conference on Neural NerrtorXs, 1991.

[4] Freeman J.A., Skapura D.M.: Neural networks - Algorithms,

applications, and programming techniques, Addison-

Wesley, Reading, MA 1991

[5] Fiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernández,

E., García-Martínez, R. „‟ Finding Optimal Neural

Network Architecture Using Genetic Algorithms‟‟

Research in Computing Science, 2007.

[7] A. Nadi, S. S. Tayarani-Bathaie and R. Safabakhsh

„‟Evolution of Neural Network Architecture and Weights

Using Mutation Based Genetic Algorithm‟‟ Proceedings of

the 14th International CSI Computer Conference

(CSICC'09), 2009.

[8] Alejandro Correa, Banco Colpatria, used Genetic Algorithm

Optimizatin for Selecting the Best Architecture of a Multi-

Layer Perceptron Neural Network, 149-2011.

 First Author Belal Al-Khateeb received the B.Sc. (honors) (first
class) degree in computer science from Al-Nahrain Universi-ty,
Baghdad, IRAQ, in 2000, and the M.Sc. degree in com-puter
science from Al-Nahrain University, Baghdad, IRAQ, in 2003, and
the Ph.D. degree from the School of Computer Science, University
of Nottingham, Nottingham, U.K., in 2011. He is currently a
lecturer at the College of Computer, Al-Anbar University. He has
published over 15 refereed journal and conference papers. His
current research interests include evolutionary and adaptive

learning particularly in computer games, expert systems, and
heuristics and me-ta/hyper-heuristics. He has a particular interest
in computer games programming. Dr. Al-Khateeb is a reviewer of
two international journals (including one IEEE Transaction) and
four conferences .

 Second Author Maha Mahmood received the B.Sc. (first
class) degree in computer science from Al-Anbar Universi-
ty, Ramadi, IRAQ.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 62

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

