

A Stoppable clock based Approach for Low Power Network
Interface Design in a Network on Chip

Brahim Attia1, Wissem Chouchenne 1 , Abdelkrim Zitouni1 , and Rached Tourki1

 1 Electronics and Microelectronics Laboratory, Monastir University, Faculty of Sciences,
5019, Tunisia

Abstract

A low-power design is an essential and important issue for
portable or mobile systems. Network on chip (NoC) will become
the main communication platform for this kind of Systems. To
address the problem of an energy efficient design of NoC, we
must decrease the power consumption of NoC components. To
reduce NoC consumption, we must reduce the power of NoC
components such as Network Interface (NI) components. The
architecture of NIs component must be modular to allow
intellectual propriety (IP) module and interconnections to be
designed independently from each other and its power must be
kept as low as possible. In this paper, we present new modular
NI architectures between IPs and router with low power
constraints. The modular design is obtained through two
separations between data flows and IP side and the network side.
The low power is obtained by the implementation of a
mechanism based on stoppable clock technique for power saving.
The stoppable clock technique allows us to shut down each sub
module when it is not running. Experimental results show that
the Modularity and the stoppable clock technique aspects
integrated in the proposed NI allow a significant reduction in
terms of power between stoppable and baseline architectures
while increasing at same time the area and decreasing the speed
of NIs.
Keywords: Network on Chip, Network interface, Low power,
Low latency, stoppable clock.

1. Introduction

A big challenge of current and future chip design is
how to integrate components with millions of
transistors and make them operate efficiently. System-
on-chip (SoC) designs provide such an integrated
solution to various complex applications. One of the
key issues of SoC designs is the communication
architecture between components. Most of the
communication architectures in current SoCs are based
on buses. However, the bus architecture has its inherent
limitations [1], [2], [3]. For nowadays and the next-
generation SoC design, the wiring delay, noise, power
dissipation, and synchronization are far more serious
than ever. A network which delivers packets between
communicating components has been proposed as a

solution for SoC design. The network-on-chip (NoC)
provides a high performance communication
infrastructure. NoC is a new paradigm for integrating a
large number of IPs cores to implement a SoC [4-5]. A
router-based network is used for packet switched
communication among on chip cores. NoCs are
composed of routers, which transport the data from one
node to another and the links between routers and
Network Interfaces (NI) implement the interface to the
IP modules. One of the key components for on-chip
networks is the wrapper for different IP cores in the
tiles [6]. Since different reusable IP cores may not be
developed based on the on-chip network, a wrapper is
required as the interface between the IP core and its
associated router. This is a key ingredient in achieving
the decoupling between computation and
communication [7, 8], which allows IP modules and
interconnects to be designed independently from each
other. Many socket specifications exist to this end, such
as OCP (Open Core Protocol) [9], VCI (Virtual
component Interface) [10], AMBA AHB [11], and
AMBA AXI (Advanced extensible Interface) [12].
Since most NoCs are message passing by nature, a NI is
needed. NOCs have to adhere to standardized protocols
so that they can plug and play with IP blocks that were
also designed to interface with the same standard. Such
standardized protocols define the rules for all signaling
between the IP blocks and the communication fabric,
while permitting the configuration of specific instances.
Our NoC offers a shared-memory abstraction to the IP
modules. Communication is performed using a
transaction-based protocol, where the master modules
issue request messages that are executed by the
addressed slave modules, which may respond with a
response message. The purpose of NI is the
synchronization between IP protocol and NoC timings,
the packaging of IP transactions into NoC flits and vice
versa, the computation of routing information, and the
buffering of flits to improve performance in terms of
latency and throughput. There is a number of works
published on the design of novel network architectures
[13], but few publications have addressed particular

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 70

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

issues to the design of a NI module. Bhojwani and
Mahapatra [14] compared three schemes of paketization
strategy such as software library, on-core and off-core
implementation, and related costs in terms of latency
and area are projected, showing tradeoffs in these
schemes. In [15] a NI ASIC implementing standard
sockets was presented for the Athereal NoC. Seung [16]
presents a generic architecture of network interface and
associated wrappers for a networked processor array. In
[17] a NI implementing VCI standard interface was
presented for the SPIN NoC. In [18], an FPGA
implementation of Network interface for an AHB
standard was presented for mesh NoC. The NI however,
has Low latency in forward and backward direction. In
[19] an OCP compliant NI for the Xpipes NoC was
touched upon. The NI has a low area but it supports
only a single outstanding read transaction. In [20] an
OCP compliant NIs for the mesh NoC was designed.
These NIs have a low area and a low latency and they
support only a burst precise mode outstanding read and
write transaction. In [21] a generic architecture is
presented to provide any mode of NIs compliant OCP
for the mesh NoC and it can be used for other
topologies. In [22] a NI design for Asynchrony NoC
was presented. In [23] Network Interface Sharing
Techniques is used for Area Optimized NoC
Architectures. In [24], an FPGA implementation of a
shared Network Interface architecture is proposed to
reduce area and power by sharing the buffering
resources. In [25], the authors present a low latency and
power ASIC design of Modular network interface for
network on chip with pipelined fashion.
A low-power design is an essential and important issue for
portable or mobile systems. Network on chip will become
the main communication platform for this kind of
Systems. To address the problem of energy efficient
design of NoC, we must decrease the power consumption
of NoC components. To reduce NoC consumption, we
must reduce the power of NoC components such as NI
components. The modularity of the architecture is another
important issue to allow the IPs core and NOC to be
designed indepdently from each other. In this paper we
present a generic architecture model OCP compliant for
low power network interface for the mesh 2D NoC. Our
contributions include identifying key issues of NI design
and developing an efficient and Modular NI architecture
with low power constraint. We propose a new architecture
of low power network interface that uses the stoppable
clock technique. In our knowledge, it is the first time that
the stoppable clock technique is used to reduce the power
of NI. We evaluate the area, power and performance
overheads of implementing NI tasks for NoCs that use
credit based or handshake flow control with and without

stoppable clock technique using different mode of OCP
IP. The paper is organized as follows: Section 2 presents
the related works. Section 3 gives an overview of NoC.
Section 4 describes and details the two architectures of the
proposed NIs. Section 5 presents the experimental results.
Section 6 presents a comparison with other works. Finally
in section 7 we conclude the paper.

2. Services and functionality provided by
proposed NoC

The current SoCs predominantly use buses as the one
chip interconnects; these standard interfaces have bus
based semantics where all nodes connected to the
communication medium are defined as masters or
slaves, and communicate via transactions. In order to
interface the NoC with the tile we utilize a NI, which
has the responsibility of packetizing and depacketizing
the cores requests and responses. The NI has the
responsibility of (i) receiving the contents from the IP
core, preparing the packets and dispatching them to the
network logic of the tile and (ii) receiving the packets
from the networking logic and presenting the contents
to the IP core. We have designed a NoC which is based
on the mesh 2D topology. We have adopted a
synchronous router with five input/output ports (North,
East, Local, South and West), having each a bi-
directional exchange bus suitable for 2D mesh NoC
architecture. The NoC includes 16 nodes and the
switching technique used is packet switching. The data
flow through the network is a wormhole routing. The
NoC uses credit based flow control strategies and we
have adopted a determinist routing algorithm called
source routing. The Source routing algorithm is
executed to connect the input port data to the correct
output port. In this routing, the header of packet opens
the path between the source and destination units, while
the successive data spread along the path and nodes.
When the end-of-packet information is received, the
packet path is closed and this frees the communication
resource for following packets.

A network packet is composed of successive flits. A
multi-flit packet is inserted through a header flit, which
may be followed by one or more data flits (payload).
The first flit of packet includes header information for
our case. Each flit is composed of 32 bits data and two
control bits, where the 34th bit encodes the beginning
of-packet (BOP) and the 33rd bit encodes the end-of-
packet (EOP). The header is composed of special fields
for the network and special fields for NI and IP. The
header of request packet is composed by many fields
such as:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Path to target: specifies the packet routing path from
one source unit to a destination unit.
MCmd: presents the type of command (read, write).
MBlength: presents the burst length.
BSeq: presents the burst sequence (incremental,
wrapping, and streaming).
MBprecise: presents the mode used by the IP (precise,
imprecise,SRMD).
MBsingreq: indicates if the Single Request Multiple
Data mode is used or not.
Destination address: defines the ‘local address in slave
IP.
Source address: defines the global address of the
source router in NOC.

3. Proposed Network Interface

There are two fundamental separations in the NI
architecture that enable this modularity: a horizontal
one which distinguishes the injection path from the
extraction path, and a vertical one which distinguishes
between the network and the IP core. These two parts
are referred to as shell and kernel, as proposed in the
design of Phillips AEthereal NI [15]. The separation
between injection and extraction functions allows an
easy reuse of dual components in both master and slave
NIs, since injection corresponds to packet composition
and transmission, while ejection corresponds to packet
reception and decoding. Shell and kernel separation
through relatively well-defined interfaces is really
important for minimizing the effort of supporting
different sockets, while keeping a fixed kernel structure
and changing only the shell part. Shell supports flow
control to external bus protocols, while kernel handles
NoC flow control at hop-by-hop and end to- end level.
We have designed two types of master Network
Interface (MNI) for OCP IPs based cores for our
network-on-chip, named Baseline MNI and Stoppable
clock MNI both attached to a master IP. The two
proposed MNIs are additionally split in two sub
modules, one for the request and the other for the
response data flow or channel (injection and extraction
path).

OCP Protocol functions according to various modes.
Among these modes, we note the burst precise (BP),
Burst imprecise (BI) mode or SRMD. The advantage
gained by using burst transfers is that the bandwidth is
used more effectively, since it is only necessary to send
the starting address together with some information
about the burst. The longer the burst is the better ratio
between data and overhead it has. Another advantage is
that the jitter between data flits decreases when adding

a burst header to the package, since many flits of data
can be sent in a sequence.
To take advantage of burst transactions the NI needs to
package a burst in a package to transmit over the
network. However, if a very long burst is packaged into
one package, the burst can block a slave core from
receiving requests from others cores.

In OCP there are three different burst models:
(i) Precise burst: in this model, the burst length is

known when the burst is sent. Each data-word is
transferred as a normal single transfer, where the
address and command are given for each data-word,
which has been written or read.

(ii) Imprecise burst: in this model, the burst-length
can change within the transaction. The MBurstLength
shows estimation on the remaining data-words that will
be transferred. Each data-word is transferred as in the
precise burst model, with the command and address
sent for every data-word.

(iii) Single request multiple data burst: In this
model, the command and address fields are only sent
once. That is in the beginning of the transaction. This
means that the destination core must be able to
reconstruct the whole address sequence based on the
first address and the MBurstSeq signal.

3.1 Baseline MNI architecture

The master network interface (MNI) transforms an OCP
request to a request packet OCP/NoC and a response
packet NoC/OCP to an OCP response. The tasks of the
MNI are to receive requests from the master core,
encapsulate the request into a package, transmit
packages to the network, receive responses from the
network, decapsulate responses and transmit responses
to the master IP cores. Figure 1 illustrates the internal
architecture diagram of the MNI. The physical division
of the interface is distributed in two parts: Shell (IP
master side) and Kernel (NoC router side). The Shell
part communicates with master IP respecting the OCP
protocol and it is divided into two parts: (Shell Input
and Shell Output). The Shell Input Part is composed of
three modules called respectively: Routing table,
Header builder and Controller FIFO. This part handles
the receipt and encapsulation of the request in one
package. The Shell output Part manages the issue of
response to the master IP. The shell presents dependent
parts of the resource that is, the dependent parts of the
IP master. The kernel part is divided into two parts
called Kernel Input and Kernel Output. The kernel
output part manages the issuance of requests and the
communication with the local port on the router by

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

using specific flow control. The kernel input part
manages the receipt and decapsulation of responses
packets. The kernels present the independent part of the
resource that is, the dependent part of the network.
Clearly, the proposed architecture of the master
network interface is built on two data-flows. One data-
flow is the request data flow, where the core is the
source and the network is the destination. The second
data flow is the response data-flow where the network
is the source and the core is the destination.

Fig.1 Baseline Master Network interface architecture.

The request data flow called also injection path
performs the transformation of the OCP request into a
request packet for our NoC. The response data flow
called also extraction path performs the transformation
of the response packet provided by our NoC into a
response for the OCP IP master.

1) Injection path
We split the design of injection path into the following

parts: the shell input, the kernel output, and payload
memory. In this part we will present all the modules
that perform the services provided by the injection path
to allow the transmission of the request packet flits to
the network. We have designed for each mode of the
burst, a specific implementation of header builder and
control FIFO but we use the same implementation for
the two types of flow control. For the request data flow
using credit-based control flow, the kernel output
implementation is the same for the three burst modes.
Also for the request data flow using handshake control

flow, the kernel output implementation is the same for
the three burst modes.
Routing table: it is a local memory in the MNI. It
stores the route paths to other slave cores in the NoC.
This route path is needed as part of the packet header,
since all packets are source-base routed. This means
that all the routing information is stored in the path to
target field which shows the routing nodes where to
route the packet at each hop. The Routing table is not
globally memory mapped and cannot be addressed by
other cores. The table is configured and the entries are
set at NI instantiation time.
Header builder: It takes in entry some essential OCP
signals during the transfer and the field provided from a
routing table which shows the path to the target. It
encapsulates this information for building two header
flits. If the command in the request is a write command,
a payload should be added to the package. After the
creation of the two header flits, the header builder
module sends these flits to the kernel output Module
using a simple module protocol.
Control FIFO: This module is responsible for the
management of FIFO writing. It can also put an end or
suspend the writing if it receives a high state on the
signal full of FIFO. When a data is well written in the
FIFO and FIFO is not full, then the controller is ready
to accept any request, so it asserts SCmdAccept signal.
Or gate: This component takes in entry two signals.
The first comes from the controls FIFO module (in the
case of a write request) and the second is that of the
header builder (in the case of a read request).
Payload memory: It is designed for the temporary
storage of the data flits. The writing command in the
payload memory is performed by the controller FIFO
module. The reading commands from payload memory
are performed by the kernel output.
Kernel output: It is the synchronizer between the NI
and the network. It receives package flits from the
Header builder or from the payload memory and sends
it out from the NI to the network. Then it transmits the
flits to the network using the four handshake phases or
credit based flow control. It makes a packet transfer to
the destination router. A network packet is composed of
successive flits. A packet is always composed of header
flits, which may be followed by one or more data flits.
Whenever the header builder has two flits ready by the
activation of validate signal, the kernel output module
receives the header flits and informs the source router
that the flit is ready on the data bus by asserting the Req
signal, it puts the same signal BOP to a high level
indicating the start of sending a new package with
header as first flit. The module then waits for the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 73

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

issuance acknowledgment signal (Ack or Credit) from
the router to start sending data flits. Sending the last
data flit (tail) will be joined by the set of EOP signal
indicating the end of the transfer package.

2) Extraction path
The extraction path is divided into three stages. The

first stage is where the data are received by the kernel
input Module from the network via the NI. The second
stage is the FIFO response where the data are
temporary stored. The third stage is where the data are
transmitted to the master core by the Shell output
Module. Within the extraction path presented in Figure
2, several communications between modules proceed;
the modules constituting this entity are described as
follows:

Kernel input: it is the synchronizer between the NI
and the network. It receives flits from the network using
the four phase handshake or credit based protocol, and
writes the response flits to a FIFO. At the time of the
reception of the data on the bus Data, this module starts
to make a temporary storage of these flits in the FIFO
response to be read by the Shell output Module. The
writing of the data is controlled by two signals write
and Full. If the FIFO is full then this module does not
assert the Ack signal from low to high for the router
(Credit must be put at a low level for credit based). For
the writing of the last data in the FIFO, the signal Last
Data emitted towards the Shell output Module is put at
a high level so that this latter knows the number of data
remaining in the FIFO.

Shell output: its task is to transmit the response back
to the master core. This module handles the response
phase of the IP protocol. This module reads the data
from FIFO, and then transmits it to the master IP. The
Shell output module implementation is the same for the
three burst modes and for the two implementations
using handshake and credit based flow control.

3.2. Stoppable MNI architecture

The difference between baseline and stoppable
architecture is the insertion of a stoppable clock module
in the injection and the extraction path. In the injection
path, the stoppable clock module can transfer or stop
the local input clock to the two sub modules control
FIFO and header builder as described in Figure 2. This
module’s role is to distinguish the type of command
issued by the IP for a given transaction. Then, it allows
the transfer of the input clock to the output clock (clk
header, clk controller FIFO) respectively for the two
sub modules header builder and control FIFO. Indeed,
through OCP signal (Mcmd, Mdatalast) and signal

generated by the Kernel output (validate) the formalism
of local Stoppable clock is achieved:

Fig. 2 stoppable clock Master Network interface architecture.

a) The Mcmd signal (Idle coded 000, Write coded 001,
Read coded 010) can identify the type of request.
b) Mdatalast signal indicates whether the current write
data transfer is the last in a burst.
c) validate is a signal that is provided by the kernel
output to indicate the reception of the header by the
local router port .

The sequences of phases of transfer or the stopping
of the clock for a reading or writing operation are:

i) The first phase represents the beginning of transfer
and the building of header flits for a read or write
request. For a write transaction, the activation of control
FIFO module is necessary to allow writing data in the
FIFO.

ii) Once the header flits are received by the NI,
validate will be activated until the two flits header will
be transmitted to the local port of the router.

iii) Once done, a read transaction is completed by
disabling the validate signal. In this phase, Clk header
will be stopped for a read or a write transaction. On the
other hand for a write transaction, control FIFO module
continues its execution while Mdatalast is not asserted.

iiii) The desertion of OCP signal Mdatalast leads to
the deactivation of clk header and clk controller FIFO.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 74

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In the extraction path, the Stoppable clock module
detects the presence of response packet when BOP=1. It
activates the kernel input module by transferring the
clock of transmitter router if the used flow control is
credit based. On the other side if the used flow control
is handshake, it transfers the clock of the OCP IP. For
the activation of the Shell output module, it transfers
the clock of the OCP IP. (Handshake or credit based)
when the presence of the first data placing in the FIFO.
Upon detection the end of the transaction through
SrespLast signal (SrespLast=1), it stops clocks of the
Kernel input and Shell output modules if there is not a
new response packet.

4. Experimental results

In this section the synthesis results will be
presented, and a cost analysis of area and power
consumption will be made based on the synthesis
results. The MNI’s performance and SNI’s performance
will be evaluated in terms of speed, latency, and
throughput. We will present a comparative study of
different implementations for NI. On the IP side the
three implementations use OCP IP protocol. The first
implementation of NI uses a handshake 4 phases flow
control and the second uses the credit based. Master
and slave network interfaces with 32 bit OCP data
fields and 32 bit network ports have been modeled with
VHDL language on RTL level for baseline and
stoppable MNI architectures. They were simulated and
synthesized respectively by using the ModelSim tool
and ISE tool from Xilinx. The synthesis result of the
MNIs was done with FIFO data and FIFO response
having a depth of 4 words of 32 bits. Each used FIFO
has an adjustable depth and width. For master network
interfaces, the Finite States Machine of kernel output
and kernel input sub module for each type of control
flows is different. The other used sub modules are the
same for the two NI versions. Table 1, Table 2 and
Table 3 show the area of baseline and stoppable MNIs
using different flow control and OCP modes. The
power consumption results are shown in Table 4. The
maximum operating frequency obtained for these NIs
implementations are shown in Table 5. The result of
latency measurement by the simulation of MNIs is
presented in Table 6. Table 7 shows the measurement
of throughput obtained by the simulation of the two
versions of the NIs.

4.1. Area of Network Interfaces

As a Master NI should be instantiated for each IP
core connected to the network, it is desired that the area
is smaller than the IP cores. An exploration of the
area/frequency trade off was performed for three NI
implementations with 32 bit OCP data fields and 32 bit
network ports using respectively credit based and
handshake flow control. Tables 1, 2, and 3 present the
area produced by the synthesis of baseline and
stoppable MNI architectures for the three modes used
by the OCP IPs using Handshake and Credit-Based
flow control and showing the FPGA resources used.
NSR presents the number of slice registers and
NSLUTs present the number of slice LUTs. Table 1
presents MNI that uses the PB mode for Baseline and
stoppable clock architecture using Handshake and
Credit-Based flow control.

Table 1: BP area results and overhead
BP Baseline Stoppable Overhea

d
Handshake

NSR 601 743 -23.6%

NSLUTs 336 398 -18.4%
Credit
Based

NSR 590 602 -2%
NSLUTs 395 382 +3.3%

We show from these results that the resource used
for Baseline MNI using handshake and Credit-Based
are approximately equal. The resource used for
stoppable architecture using Handshake mode is greater
than Credit-Based architecture. Experimental results
show that the overhead in terms of NSR and NSLUTs
between Baseline and stoppable architecture is
important between handshake implementations and
poor between Credit-Based implementations. Table 2
and table 3 present MNI that uses the BI and SRMD
modes for Baseline and stoppable clock architecture
using Handshake and Credit-Based flow control.

Table 2: BI area results and overhead
BI Baseline Stoppable Overhead

Handshake

NSR 692 661 +4.4%
NSLUTs 399 378 +5.5%

Credit
Based

NSR 697 707 -1.4%
NSLUTs 432 416 +3.7%

The use of stoppable clock technique allows a
little gain in area saving compared to Baseline
architecture. This reduction is obtained because the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 75

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

synchronization between the kernel and shell part is
performed by the stoppable clock module which
reduces the complexity of kernel and shell parts.

Table 3: SRMD area results and overhead
SRMD Baseline Stoppable Overhead

Handshake

NSR 566 575 -1.6%
NSLUTs 300 305 -1.6%

Credit-
Based

NSR 587 596 -1.5%
NSLUTs 338 327 +3.2%

We conclude that the use of the stoppable clock
introduces an important overhead in BP mode and a
little overhead in SRMD mode. For BI mode, the use of
the stoppable clock architecture introduces a little gain
in terms of area or resource used.

4.2. Power estimation of Network Interfaces

In power consumption there are two main
components; dynamic and static. The following
equation shows the dynamic power component:

 Pd= α CL Vdd
2 f (1)

The first term denotes the dynamic power, α is the
activity of the circuit, CL is the parasitic capacitance,
Vdd is the power supply and f is the operating
frequency. By reducing Vdd one can drastically reduce
the dynamic component, but unfortunately this is at the
expense of speed degradation. The power consumption
results are from ISE tool from Xilinx (XPower) and are
based on an estimate where the clock frequency is set to
200MHz and the switching activity estimation is done
by using vcd file simulation. The first exploration was
performed for three NI implementations with 32 bits
OCP data fields and 32 bits network ports using
respectively credit based, handshake 4 phases with
Baseline architecture. The second exploration was
performed for three NI implementations with 32 bits
OCP data fields and 32 bits network ports using
respectively credit based, handshake 4 phases with
stoppable clock based architecture. We display in table
4 the power estimation of baseline and stoppable MNI
architectures for the three modes used by the OCP IPs
using Handshake and Credit-Based flow control. When
using the Handshake flow control for Base line and
stoppable architectures, the BI mode is the lowest while
the BP mode is the greatest. When using the Credit-
Based flow control for Baseline architecture, the
SRMD mode is the lowest while the BP mode is the

greatest. When using the Credit-Based flow control for
stoppable architecture, the SRMD mode is the lowest
while the BP and BI mode is the greatest and are equal.
The results show also that the power of handshake
implementations is lower than the Credit-Based
implementations for the modes of OCP IPs and for
Baseline and stoppable architectures.

Table 4: power estimation of baseline and stoppable MNI architectures
Power (mW) Baseline Stoppage Gain

BP Handshake 35 26 25.7%
Credit-Based 95 40 57.8%

BI Handshake 12 7 41.6%
Credit-Based 81 40 50.6%

SRMD Handshake 25 11 56%
Credit-Based 36 32 11.1%

 Experimental results show that the power
consumed by the stoppable architecture is lower than
base line architecture. For the Handshake
implementations, the gain obtained between the MNI
Baseline architecture and the MNI stoppable
architecture are 25%, 41%, and 56% respectively for
BP, BI, and SRMD modes. For the Credit-Based
implementations, the gain obtained between the MNI
Baseline architecture and the MNI stoppable
architecture are 57%, 50%, and 11% respectively for
BP, BI, and SRMD modes. These results show that the
use of the stoppable clock technique was benefic for
designing a low power network interface. The use of
gated clock technique reduces the activity of the MNI
(α parameter) which reduces the dynamic power of this
latter.

4.3. Speed of Network Interfaces

The speed results are obtained from the ISE tool
from Xilinx and prototyped with Xilinx Virtex5 FPGA
device XCVLX30. We present in table 5 the speed
results of the Baseline and the stoppable clock based
architectures for the three modes used by the OCP IPs
using Handshake and Credit-Based control flow. We
show that for any mode used by OCP IPs, the
Handshake implementation is faster than Credit-Based
implementation. This is true for Baseline and stoppable
implementations. For Baseline or stoppable clock
architectures, the BI implementation is faster than other
implementations using Handshake or Credit-Based flow
control. For Baseline and stoppable architectures, we
see also that BP and SRMD speeds are the same.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 76

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 5: Speed results and degradation between baseline and stoppable
MNI

Speed (MHz) Baseline Stoppage degradation
BP Handshake 444 372 16.2%

Credit-Based 328 264 19.5%
BI Handshake 459 407 11.3%

Credit-Based 377 277 26.5%
SRMD Handshake 444 372 16.2%

Credit-Based 328 264 19.5%

For Baseline architecture, the maximum operating
frequency obtained for these MNI implementations is
about 459MHz in BI mode using the Handshake flow
control. The stoppable clock architectures are slower
than the Baseline architectures. For BP and SRMD
modes, the speed degradation between Baseline and the
stoppable clock architecture in Handshake and Credit-
Based flow control are respectively 16% and 19%. For
BI mode, the speed degradation between Baseline and
the stoppable clock architecture in Handshake and
Credit-Based flow control are respectively 11% and
26%. This study shows that the use of the stoppable
clock technique reduces the maximum operating
frequency of the Design.

4.4. Latency of Network Interfaces

For Master Network Interface, the latency for a
write or a read request transaction is defined as the
number of cycles needed by the injection path when the
request is presented at the OCP interface to the time
when the first flit of the packet leaves the NI. The
latency for a read response transaction is defined as the
number of cycles needed by the extraction path when
the response packet is presented at the local port of the
router to the time when the first response appears at the
OCP interface.

Table 6: Latency results
Latency (cycles) BP BI SRMD
Handshake Write request 3 3 3

Read request 3 5 3
Read response 7 7 7

Credit-Based Write request 3 3 3
Read request 3 5 3

Read response 3 3 3

The MNI designs are tested and verified in two
phases. In the first phase, the communication from the
IP to the router was tested. In the second phase, the

communication from the router to the IP was tested.
The number of clocks to transfer a flit from an OCP IP
to the router is calculated at different stages and the
results are presented in table 6. Therefore, the time to
transfer a complete packet from IP to the router and
vice versa is:

Packet Delay = FD + M(N-1) clocks / packet (2)
FD: flit delay indicated in table 6.
M: time in cycle to forward a new flit.
N: packet length.
For 4ph handshake flow control M is equal to 4 and for
credit based M is equal to 1.

For example, for write request of MNI with the
packet length is equal to 8.

Packet Delay (cb) =3+1(8-1) clocks/packet
 = 10 clocks/packet

4.5. Throughput of Network Interfaces

The NI is a bridge between the IP and the NoC.
Therefore, the throughput for the NI can be in two
directions: the forward direction, from the core to the
NoC, and the reverse direction, from the NoC to the
core. It depends on the Latency and the maximal clock
frequency of each design. The throughput for NI in
forward direction or reverse direction is defined as the
total number of flits processed by NI per second.

Throughput = 1 / latency (Flits / Clock) (3)
Throughput = 1 / FD (1 / Fmax))) (4)

Where FD presents the flit delay or latency
indicated in table 6 and Fmax presents the maximal
operating frequency.

Example: The flit throughput for Baseline MNI in
forward direction using Handshake flow control and BI
mode can be calculated as follows:

Throughput = 1 / (3*(1/(459*106)))
 = 153 MFlits / Second
 =4,896 Gbits / Second

Table 7 shows the throughput in forward and
reverse direction with maximal clock frequency for
Baseline MNI and stoppable MNI for the three modes
used by the OCP IPs using Handshake and Credit-
Based control flow. The experimental results show that
the throughput of stoppable clock MNI is lower than
the throughput of the Baseline MNI.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 77

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 7: minimal throughput results
Throughput(Gbit/s) Direction BP or SRMD BI
Baseline Handshake Forward 4.736 4.896

Reverse 2.029 2.098
Credit
Based

Forward 3.498 4.021
Reverse 3.498 4.021

Stoppable Handshake Forward 3.968 4.341
Reverse 1.7 1.860

Credit
Based

Forward 2.816 2.954
Reverse 2.816 2.954

This is due mainly to the fact that the maximal
speed of Baseline MNI is greater than Stoppable MNI
and the latency or flit delay is the same for the two
types of architectures.

5. Conclusion

In order to reduce power dissipation in a NoC, we
have presented VLSI architecture of a new network
interface. This architecture is based on a stoppable
clock technique that allows shutting down each sub
module when it is not running. The advantage of the
proposed architecture relatively to the baseline
architecture is that the power reduction is performed
with the same latency and the speed degradation is
between 11.3% and 16.2% using handshake and
between 19.5% and 26.5% using credit based mode.
The stoppable clock architecture allows 41.6% and
50.6% of gain in terms of power reduction for MNI
respectively in Handshake and Credit-Based compared
to baseline architectures.

References

[1] J. Liang, S. Swaminathan, and R. Tessier, "A SoC: a scalable,

single-chip communication architecture", in international
conference on Parallel architecture and compilation
techniques, 2000, pp. 37-46.

[2] A. Mello, L. Tedesco, N. Calazans, F. Moraes, " Virtual
Channels in Networks on Chip: Implementation and
Evaluation on Hermes NoC", in SBCCI, 2005, pp. 178-18.

[3] L. Benini and G. De Micheli, "Network on Chips: A New
SoC Paradigm", IEEE Computer, Vol. 35, No. 1, 2002, pp.
70-78.

[4] S. Kumar, A. Jantsch. J. P. Soininen, M. Forsell, M.
Millberg, J. Oberg, K. Tiensyrja, A. Hemani, "A Network on
Chip Architecture and Design Methodology", in VLSI
Symposium, 2002, pp. 117-124.

[5] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A.
Jeraya, "A Generic Wrapper Architecture for Multi-Processor
SoC Cosimulation and Design", In CODES, 2001, pp. 195-
200.

[6] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. S.
Vincentelli, "System-level design: Orthogonalization of
concerns and platform-based design", IEEE Trans. on CAD of
Integrated Circuits and Systems, Vol. 19, No. 12, 2000, pp.
1523-1543.

[7] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J.
Rabaey, and A. S. Vincentelli, "Addressing the system-on-a-
chip interconnect woes through communication-based
design", In. DAC, 2001, pp. 667-672.

[8] Open Core Protocol Specification, Release 2.0, 2003,
www.ocpip.org, OCP-IP Association.

[9] Virtual component interface standard - draft specification, v.
2.2.0, 1997, http://www.vsia.com; August 1997.

[10] ARM, AMBA AHB Protocol Specification, version
2.0,1999, www.arm.com, ARM.

[11] ARM, AMBA AXI Protocol Specification, version 1.0,
2004, www.arm.com, ARM.

[12] E. Salminen et al. "Survey of Network on Chip proposal".
White paper, OCP IP, Mars 2008.

[13] P. Bhojwani, and R. Mahapatra, "Interfacing cores with on
chip packet switched networks", In VLSID, 2003, pp. 382-
387.

[14] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and
P. Wielage, "An efficient on-chip network interface offering
guaranteed services, shared-memory abstraction, and flexible
network configuration", in DATE, 2004, pp. 878-883.

[15] E. L. Seung, H.B. Jun , S. Y. Yoon , and N. Bagherzadeh,
"A Generic Network Interface Architecture for a Networked
Processor Array (NePA) ", in ARCS, 2008, pp. 247–260.

[16] A. Adriahantenaina, H. Charlery, A. Greiner, and L.
Mortiez, "SPIN: A scalable, packet switched, on-chip micro
network", in DATE, 2003, pp. 70-73.

[17] B. Attia, W. Chouchene, A. Zitouni, N. Abid, and R.
Tourki, R., “Design and implementation of low latency
network interface for Network on Chip”, in IEEE
International Design & Test Workshop, 2010, pp. 37-42.

[18] S. Stergiou, and al, "Xpipes Lite: a Synthesis Oriented
Design Library for Networks on Chips", in DAC, 2005, pp.
559-564.

[19] B. Attia, A. Zitouni, and R. Tourki, “Design and
implementation of network interface compatible OCP for
packet based NoC”, in IEEE International Conference on
Design and Technology of Integrated Systems on Nanosacale
Era, 2010, pp. 1-8.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 78

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[20] B. Attia, A. Zitouni, N. Abid, and R. Tourki, “A Modular
network interface adapter design for OCP compatibles NoCs,”
International Journal of Computer and Network Security
(IJCNS), Vol. 1, No 2,pp 101-109.

[21] T. Bjerregaard, S. Mahadevan, R. Olsen, and J. Sparso, "An
OCP compliant network adapter for GALS-based SoC design
using the MANGO network-on-chip", In ISSOC,2005,
pp.171-174.

[22] A. Ferrante, S. Medardoni, and D. Bertozzi, "Network
Interface Sharing Techniques for Area Optimized NoC
Architectures", in DSD, 2008, pp. 10-17.

[23] B. Attia, W. Chouchene, A. Zitouni, and R. Tourki,
“Network interface Sharing for SoCs based NoC”, in
International Conference on Communications, Computing and
Control Applications, 2011, pp. 1-6.

[24] B. Attia, A. Zitouni, K. Torki and R. Tourki, "A low
Latency and Power ASIC Design of Modular Network
Interfaces for Network on Chip", in IJCSES, vol. 5, no 4,
pp.257-270.

Brahim Attia received the MSc degree in analysis and processing
of electronics systems from Faculty of Sciences of Tunisia, Tunisia
in 2006. Since 2007 he is a Ph.D student in the Faculty of
Sciences of Monastir. From 2007 to 2012 he has joined the Institut
Supérieur des Sciences Appliquées et de Technologie de Sousse
at Université of Sousse, as Assistant Professor in the department
of Computer Science. He has published several papers in
international scientific journals and conferences proceedings. He
obtains the best paper award in 23th International conference in
microelectronics. He is member of the Electronics and
microelectronics Laboratory at FSM and is an associated
researcher in Communication synthesis team. His researches
interests include the network on chip design flow and automatic
synthesis of Network interface for SoC based NoC with various
constraints, Image and Video Compression, and low power design.

Wissem Chouchenne was born in Sousse, Tunisia on August 27
1984. He received the Master degree in Physics (Electronics
option) from Faculty of Sciences of Monastir, Tunisia in 2011.His is
a PhD student in ENIM Monastir, tunisia and lifl lille, France. His
researches interests are communication synthesis for SoC and
reconfigurable 3D Network on Chip.

Abdelkrim Zitouni was born in Gabès, Tunisia on October 06
1970. He received the D.E.A and the Ph.D. degree in Physics
(Electronics option) from Faculty of Sciences of Monastir, Tunisia
in 1996 and 2001 respectively. Since 2009 he has been recruited
as Professor in Electronics and Microelectronics with the Physics
department in the Faculty of Sciences of Monastir. His researches
interests are communication synthesis for SoC and asynchronous
system design.

Rached Tourki was born in Tunis, on May 13 1948. He received
the B.S. degree in Physics (Electronics option) from Tunis
University, in 1970; the M.S. and the Ph.D. in Electronics from
Orsay Electronic Institute, Paris-south University in 1971 and 1973
respectively. From 1973 to 1974 he served as Microelectronics
Engineer in Thomson-CSF. He received the Doctorat d’etat in
Physics from Nice University in 1979. Since this date he has been
Professor in Microelectronics and Microprocessors with the

Physics department in the Faculty des of Sciences of Monastir. His
researches interests are digital signal processing and Hardware–
software codesign for rapid prototyping in telecommunications.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 79

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

