
Assessment of offline Digital Signature

Recognition Classification Techniques

Dina Darwish

Assistant Professor, International Academy for Engineering and Media Science – Egypt

6th October city, Egypt

E-mail: dina.g.darwish@gmail.com

Abstract
The digital signature verification has become an

interesting domain, which is widely needed. The usage

of online and offline digital signatures has been

spreaded worldwide due to the increase of use of bank

transactions and user authentication and other similar

activities. This requires the creation and the

diversification of new online and offline signature

verification methods. The signature verification

methods contain both online (or dynamic) and offline

(or static) signature verification methods. In this paper,

an offline digital signature verification technique is

proposed, that depends on extracting several features

from the signatures to be used during simulation. Some

signatures were used for training and others were used

for testing only. Different methods such as, vectors

manipulation, ensemble classification using boosted

trees, and bagged trees, were used in this paper during

simulation to obtain results.

Keywords: Signature Verification, Offline Digital

Signature, Features Extraction, Vectors Manipulation,

Ensemble Classification, Bagged Trees.

1. Introduction

The growth in today's online and offline

transactions that includes banking transactions

has posed the question of how to make secure

online and offline signature verification

techniques, to eliminate the possibility of

personal information theft. There are a different

number of personnel characteristics that can be

used to identify each person, such as, voice, lip

movements, hand geometry, face, iris, retina,

fingerprint, and others. These characteristics are

called biometrics, and these biometrics can be

used to distinguish between one person and

another. But the most commonly used biometric

nowadays in e-commerce and banking activities

is the signature recognition.

The signature can be defined as follows; "the

name of a person written with his or her own

hand; or the act of signing one's name", according

to the American Heritage Dictionary. There is a

second definition of signature, which is related to

the whole process of signing, it means, that the

way the signature is made and the characteristics

of the signature, including velocity, pen pressure,

stroke, and others are unique to every person.

The first definition, is close to the definition of

offline signature, which treats the signature as a

two-dimensional image with static characteristics,

that does not contain any time-related

information. The second definition, is close to the

definition of online signature, and is based on

dynamic characteristics of the process of signing,

such as velocity, pen pressure and others.

The signature verification is a typical pattern

recognition task. But both types of signatures;

online or offline; use different techniques to

verify signatures based on either static or

dynamic characteristics.

The task of signature verification includes

extracting some characteristics from the recorded

information of the signature, and further,

comparing them with the characteristics of the

reference signature. Let us make a brief survey on

different signature recognition and verification

techniques used.

Various methods have been implemented for

creating features from the signature image, which

can be grouped into two main categories: direct

methods and transform methods. Direct methods

allow generating features directly from image

pixels such as grid-based information, pixel

density, gray-level intensity, texture… etc. In

contrast, transform methods need a

transformation of the image into another domain

in which features could be created. Fourier,

Wavelet, Radon transforms are the most popular

methods for creating features [1][5]. Hence,

another transform has been proposed namely the

contourlet transform (CT) [6].

The main advantage of the CT is the ability to

capture significant information about an object.

Furthermore, it offers a flexible multiresolution,

local and directional image expansion. These

properties are interesting to exploit more

specifically for the handwritten signature

verification since the signature contains often

special characters and flourishes [7].

In [2], this paper describes a method for

verification of signatures after extraction of

features based on clustering techniques.

Clustering involves dividing a set of data points

into non-overlapping groups, or clusters, of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 103

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:dina.g.darwish@gmail.com

points, where points in a cluster are ―more

similar‖ to one another than to points in other

clusters. In [3], this paper, two methods are

proposed to track the variations in signatures.

Given the set of training signature samples, the

1rst method measures the positional variations of

the one-dimensional projection profiles of the

signature patterns; and the second method

determines the variations in relative stroke

positions in the two-dimension signature patterns.

In [4], this paper evaluates the performance of an

Error Back Propagation (EBP) Artificial Neural

Network (ANN) for authenticating the signatures.

The work done has provided encouraging results

and has re-confirmed the ability of Artificial

Neural Networks to recognize patterns and in this

case their skill to generalize. An efficient Static

Signature Verification (SSV) system that consists

of rigorous preprocessing and feature extraction

followed by a classifier is used.

In [8], a paper presents a method for verifying

handwritten signatures by using NN architecture.

Various static (e.g., area covered, number of

elements, height, slant, etc.) and dynamic (e.g.,

velocity, pen tip pressure, etc.) signature features

are extracted and used to train the NN. In [9], a

paper is primarily focused on skilled forgery

detection. It emphasizes on the extraction of the

critical regions which are more prone to mistakes

and matches them following a modular graph

matching approach.

 In section 2, we described the features extracted

to be used for signature recognition. In section 3,

the signature recognition classification techniques

were described. In sections 4, the simulation

results were discussed and analyzed. In section 5,

the conclusion is presented. And finally, the

references are cited.

2. Features Extraction for signature

recognition

The features needed to be extracted to identify

signature are [10]:

1 - The new curve of the signature after rotating

the original curve of the signature points around

the center x and y coordinates of the original

signature curve based on making the original

signature curve rotate around its center x and y

coordinates, to make the new signature curve that

will be used in pattern recognition.

2 - The number of pixels in the signature based

on calculating the total number of pixels of the

signature.

3 - The occupancy Ratio of the signature to the

whole image which is described as :

Occupancy ratio = total number of pixels of the

signature/total number of pixels of the signature

image * 100

4 - The minimum Eigen value of the signature

curve

 Where the eigen values of a matrix A are

obtained from the solution of the characteristic

equation:

 (1)

where det is the determinant of the matrix (A - λI)

and I is the n×n identity matrix, λ is the eigen

value

5 - The maximum height of the signature is

based on the following:

Maximum height of the signature = maximum x

coordinate of signature – minimum x coordinate

of signature

6 - The maximum width of the signature is based

on the following

Maximum width of the signature = maximum y

coordinate of signature – minimum y coordinate

of the signature

7 - The Euclidean distance between every two

consecutive points in the signature curve

8 - The angle between every two consecutive

points in the signature curve

9 - The height to width ratio of the signature

3. Assessment of Signature Recognition

classification techniques

Three different signature recognition

classification techniques were used to recognize

signatures. These techniques were:

1) Vectors manipulation

2) Ensemble classification using boosted

trees

3) Tree Classification using bagged trees.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 104

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Identity_matrix

Assessment of these techniques is based on

simulation in which we used 500 signatures for

100 persons, each person has 5 signatures. We

used 60% of the signatures for training, and the

other 40% were used for testing. We used

MATLAB 2011 during simulation.

3.1 Vectors Manipulation Technique

Vectors manipulation is based on finding the

differences between each vector to be tested and

each pattern vector used to identify one signature.

Each tested vector is compared with the 300

reference patterns representing the 100 persons,

the smallest difference between any tested vector

and reference pattern vector, means that the tested

vector belongs to the N person having this

reference pattern vector.

For each vector the following rules applies,

For i=1:vector length

 For j=1:300

 Dixj = abs (VPixj – VTi)

End

End

Where, VP is the vector reference pattern

 VT is the tested pattern

We calculate the sum of each vector in the

difference matrix

Sj = sum(Dixj)

Where, i represent rows from 1 to vector length

and j represent columns from 1 to 300

Sj is a vector containing the sum of each column

Then,

 Find min(Sj)

Where, j represents the column of the person y for

example

By this way, we classify all the 500 patterns,

either being only test patterns or patterns used as

references by finding the least difference between

any test pattern and any reference pattern.

Figure (1) shows the proposed simulation for

assessment of vector manipulation technique.

 Fig.1 Simulation chart of vector manipulation technique

3.2 Ensemble classification using boosted

trees

(A) Common types of ensembles

1. Bayes optimal classifier

The Bayes Optimal Classifier is an optimal

classification technique. It is an ensemble of all

the hypotheses in the hypothesis space. On

average, no other ensemble can outperform it, so

it is the ideal ensemble. Each hypothesis is given

a vote proportional to the likelihood that the

training dataset would be sampled from a system

Vector Reference Pattern

Consider test vector

Compute difference between test

vector and all reference patterns

Find the vector with smallest

difference

Put this vector to the N person

having this reference pattern

More test vector

Terminate Recognition process

No

Yes

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 105

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/w/index.php?title=Bayes_Optimal_Classifier&action=edit&redlink=1

if that hypothesis were true. To facilitate training

data of finite size, the vote of each hypothesis is

also multiplied by the prior probability of that

hypothesis. The Bayes Optimal Classifier can be

expressed with following equation [11]:

-- -

(2)

where is the predicted class, is the set of all

possible classes, is the hypothesis space,

refers to a probability, and is the training data.

As an ensemble, the Bayes Optimal Classifier

represents a hypothesis that is not necessarily in

. The hypothesis represented by the Bayes

Optimal Classifier, however, is the optimal

hypothesis in ensemble space (the space of all

possible ensembles consisting only of hypotheses

in).

2. Bootstrap aggregating (bagging)

Bootstrap aggregating, often abbreviated as

bagging, involves having each model in the

ensemble vote with equal weight. In order to

promote model variance, bagging trains each

model in the ensemble using a randomly drawn

subset of the training set. As an example, the

random forest algorithm combines random

decision trees with bagging to achieve very high

classification accuracy.

3. Boosting

Boosting involves incrementally building an

ensemble by training each new model instance to

emphasize the training instances that previous

models mis-classified. In some cases, boosting

has been shown to yield better accuracy than

bagging, but it also tends to be more likely to

over-fit the training data. By far, the most

common implementation of Boosting is Adaboost,

although some newer algorithms are reported to

achieve better results.

4. Bucket of models

A "bucket of models" is an ensemble in which a

model selection algorithm is used to choose the

best model for each problem. When tested with

only one problem, a bucket of models can

produce no better results than the best model in

the set, but when evaluated across many problems,

it will typically produce much better results, on

average, than any model in the set.

The most common approach used for model-

selection is cross-validation selection. It is

described with the following pseudo-code [11]:

For each model m in the bucket:

 Do c times: (where 'c' is some constant)

 Randomly divide the training dataset into two

datasets: A, and B.

 Train m with A

 Test m with B

Select the model that obtains the highest average

score

Cross-Validation Selection can be summed up as:

"try them all with the training set, and pick the

one that works best".

5. Stacking

The crucial prior belief underlying the scientific

method is that one can judge among a set of

models by comparing them on data that was not

used to create any of them. This same prior belief

underlies the use in machine learning of bake-off

contests to judge which of a set of competitor

learning algorithms is actually the best fit in

selected domains.

This prior belief can also be used by a single

practitioner, to choose among a set of models

based on a single data set. This is done by

partitioning the data set into a held-in data set and

a held-out data set; training the models on the

held-in data; and then choosing whichever of

those trained models performs best on the held-

out data. This is the cross-validation technique,

mentioned above.

Stacking (sometimes called stacked

generalization) exploits this prior belief further. It

does this by using performance on the held-out

data to combine the models rather than choose

among them, thereby typically getting

performance better than any single one of the

trained models. It has been successfully used on

both supervised learning tasks (regression) and

unsupervised learning (density estimation). It has

also been used to estimate Bagging's error rate.

Because the prior belief concerning held-out data

is so powerful, stacking often out-performs

Bayesian model-averaging. Indeed, renamed

blending, stacking was extensively used in the

two top performers in the recent Netflix

competition.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 106

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Random_forest
http://en.wikipedia.org/wiki/Adaboost
http://en.wikipedia.org/wiki/Cross-validation_(statistics)

(B) Simulation of Ensemble Classification

Technique

MATLAB 2011 is used to simulate the ensemble

technique for which figure (2) shows the

information necessary to create an ensemble [12].

Fig. 2 Elements of the simulation technique

For all classification or nonlinear regression

problems, follow these steps to create an

ensemble [12]:

1. Put Predictor Data in a Matrix

2. Prepare the Response Data

3. Choose an Applicable Ensemble Method

4. Set the Number of Ensemble Members

5. Prepare the Weak Learners

6. Call fitensemble

Ensemble Algorithms

 AdaBoostM1

 AdaBoostM2

 Bag

 GentleBoost

 LogitBoost

 LPBoost

 LSBoost

 RobustBoost

 RUSBoost

 Subspace

 TotalBoost

 AdaBoostM1

Where, LSBoost is the used algorithm, and is

described as follows:

LSBoost (least squares boosting) fits regression

ensembles. At every step, the ensemble fits a new

learner to the difference between the observed

response and the aggregated prediction of all

learners grown previously. The ensemble fits to

minimize mean-squared error.

You can use LSBoost with shrinkage by passing

in the LearnRate parameter. By default this

parameter is set to 1, and the ensemble learns at

the maximal speed. If you set LearnRate to a

value from 0 to 1, the ensemble fits every new

learner to yn – ηf(xn), where

yn is the observed response.

f(xn) is the aggregated prediction from all weak

learners grown so far for observation xn.

η is the learning rate. Figure (3) shows the

proposed simulation for Ensemble classification

technique.

Fig. 3 Simulation chart for ensemble classification technique

Create predictor data matrix

Prepare response data

Choose applicable ensemble method

Set the number of ensemble members

Prepare the weak learners

Call fitensemble

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 107

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.mathworks.com/help/stats/ensemble-methods.html#bsvjyz_
http://www.mathworks.com/help/stats/ensemble-methods.html#bsvjy1f
http://www.mathworks.com/help/stats/ensemble-methods.html#bsvjy12
http://www.mathworks.com/help/stats/ensemble-methods.html#bsvjy2m
http://www.mathworks.com/help/stats/ensemble-methods.html#bsvjy3e
http://www.mathworks.com/help/stats/ensemble-methods.html#bsvjy4k
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8aue
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8auq
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8at7
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8avb
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8au3
http://www.mathworks.com/help/stats/ensemble-methods.html#btfwpep
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8av_
http://www.mathworks.com/help/stats/ensemble-methods.html#bsw8avy
http://www.mathworks.com/help/stats/ensemble-methods.html#btfwpd3
http://www.mathworks.com/help/stats/ensemble-methods.html#btbbds9
http://www.mathworks.com/help/stats/ensemble-methods.html#btfwpey

3.3 Tree classification using bagged trees

Classification trees and regression trees [14]

predict responses to data. To predict a response,

follow the decisions in the tree from the root

(beginning) node down to a leaf node. The leaf

node contains the response. Classification trees

give responses that are nominal, such as 'true' or

'false'. Regression trees give numeric responses.

Each step in a prediction involves checking the

value of one predictor (variable). Figure (4) is a

simple classification tree:

Fig. 4 Classification tree

This tree predicts classifications based on two

predictors, x1 and x2. To predict, start at the top

node, represented by a triangle (Δ).The first

decision is whether x1 is smaller than 0.5. If so,

follow the left branch, and see that the tree

classifies the data as type 0.

If, however, x1 exceeds 0.5, then follow the right

branch to the lower-right triangle node. Here the

tree asks if x2 is smaller than 0.5. If so, then

follow the left branch to see that the tree

classifies the data as type 0. If not, then follow

the right branch to see that the tree classifies the

data as type 1.

The classification tree and the regression tree

methods perform the following steps to create

decision trees:

1. Start with all input data, and examine all

possible binary splits on every predictor.

2. Select a split with best optimization criterion.

3. If the split leads to a child node having too

few observations (less than the minimum

leaf parameter), select a split with the best

optimization criterion subject to the

minimum leaf constraint.

 Impose the split.

 Repeat recursively for the two child

nodes.

The explanation requires two more items:

description of the optimization criterion, and

stopping rule.

Stopping rule: Stop splitting when any of the

following hold:

 The node is pure.

o For classification, a node is

pure if it contains only

observations of one class.

o For regression, a node is pure if

the mean squared error (MSE)

for the observed response in

this node drops below the MSE

for the observed response in the

entire data multiplied by the

tolerance on quadratic error per

node (qetoler parameter).

 There are fewer than minimum parent

observations in this node.

 Any split imposed on this node would

produce children with fewer than

minimum leaf observations.

Optimization criterion:

 Regression: mean-squared error (MSE).

Choose a split to minimize the MSE of

predictions compared to the training data.

 Classification: One of three measures,

depending on the setting of the split criterion

name-value pair provided in MATLAB 2011:

o 'gdi' (Gini's diversity index, the

default)

o 'twoing'

o 'deviance'

For a continuous predictor, a tree can split

halfway between any two adjacent unique values

found for this predictor. For a categorical

predictor with L levels, a classification tree needs

to consider 2L
–1

–1 splits. To obtain this formula,

observe that you can assign L distinct values to

the left and right nodes in 2L ways. Two out of

these 2L configurations would leave either left or

right node empty, and therefore should be

discarded. Now divide by 2 because left and right

can be swapped. A classification tree can thus

process only categorical predictors with a

moderate number of levels. A regression tree

employs a computational shortcut: it sorts the

levels by the observed mean response, and

considers only the L–1 splits between the sorted

levels.

The classification tree splits nodes based on

either impurity or node error. Impurity means one

of several things, depending on your choice of the

split criterion name-value pair in MATLAB 2011:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 108

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.mathworks.com/help/stats/classificationtree.fit.html
http://www.mathworks.com/help/stats/regressiontree.fit.html

 Gini's Diversity Index (gdi) —The Gini index

of a node is [14]

 (3)

where the sum is over the classes i at the node,

and p(i) is the observed fraction of classes

with class i that reach the node. A node with

just one class (a pure node) has Gini index 0;

otherwise the Gini index is positive. So the

Gini index is a measure of node impurity.

 Deviance ('deviance') —With p(i) defined as

for the Gini index, the deviance of a node is

[14]

 (4)

A pure node has deviance 0; otherwise, the

deviance is positive.

 Twoing rule ('twoing') —Twoing is not a

purity measure of a node, but is a different

measure for deciding how to split a node. Let

L(i) denote the fraction of members of class i

in the left child node after a split, and R(i)

denote the fraction of members of class i in

the right child node after a split. Choose the

split criterion to maximize

 (5)

where P(L) and P(R) are the fractions of

observations that split to the left and right

respectively. If the expression is large, the

split made each child node purer. Similarly, if

the expression is small, the split made each

child node similar to each other, and hence

similar to the parent node, and so the split did

not increase node purity.

 Node error — The node error is the fraction of

misclassified classes at a node. If j is the class

with largest number of training samples at a

node, the node error is

1 – p(j). (6)

Figure (5) shows the proposed simulation for

tree classification technique.

Fig. 5 Simulation chart for tree classification technique

Bagged Decision Trees

Bagging [13], which stands for "bootstrap

aggregation," is a type of ensemble learning. To

bag a weak learner such as a decision tree on a

dataset, generate many bootstrap replicas of this

dataset and grow decision trees on these replicas.

Obtain each bootstrap replica by randomly

selecting N observations

out of N with replacement, where N is the dataset

size. To find the predicted response of a trained

ensemble, take an average over predictions from

individual trees.

Bagging works by training learners on resampled

versions of the data. This resampling is usually

done by bootstrapping observations, that is,

selecting N out of N observations with

replacement for every new learner. In addition,

every tree in the ensemble can randomly select

predictors for decision splits—a technique known

to improve the accuracy of bagged trees.

Input data

Select a split with best optimization

criterion

Stop splitting

Create the decision trees

Identify the signature

Examine all possible binary splits on

every predictor

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 109

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

By default, the minimal leaf sizes for bagged

trees are set to 1 for classification and 5 for

regression. Trees grown with the default leaf size

are usually very deep. These settings are close to

optimal for the predictive power of an ensemble.

Often you can grow trees with larger leaves

without losing predictive power. Doing so

reduces training and prediction time, as well as

memory usage for the trained ensemble.

Another important parameter is the number of

predictors selected at random for every decision

split. This random selection is made for every

split, and every deep tree involves many splits.

By default, this parameter is set to a square root

of the number of predictors for classification, and

one third of predictors for regression.

Several features of bagged decision trees make

them a unique algorithm. Drawing N out of N

observations with replacement omits on average

37% of observations for each decision tree. These

are "out-of-bag" observations. You can use them

to estimate the predictive power and feature

importance. For each observation, you can

estimate the out-of-bag prediction by averaging

over predictions from all trees in the ensemble for

which this observation is out of bag. You can

then compare the computed prediction against the

observed response for this observation. By

comparing the out-of-bag predicted responses

against the observed responses for all

observations used for training, you can estimate

the average out-of-bag error. This out-of-bag

average is an unbiased estimator of the true

ensemble error. You can also obtain out-of-bag

estimates of feature importance by randomly

permuting out-of-bag data across one variable or

column at a time and estimating the increase in

the out-of-bag error due to this permutation. The

larger the increase, the more important the feature.

Thus, you need not supply test data for bagged

ensembles because you obtain reliable estimates

of the predictive power and feature importance in

the process of training, which is an attractive

feature of bagging.

Another attractive feature of bagged decision

trees is the proximity matrix. Every time two

observations land on the same leaf of a tree, their

proximity increases by 1. For normalization, sum

these proximities over all trees in the ensemble

and divide by the number of trees. The resulting

matrix is symmetric with diagonal elements equal

to 1 and off-diagonal elements ranging from 0 to

1. You can use this matrix for finding outlier

observations and discovering clusters in the data

through multidimensional scaling.

4. Simulation Results

500 patterns were used for simulation,

representing 500 signatures for 100 persons, each

person having 5 signatures. We used 60% of the

patterns for training and the rest 40% for testing.

We tested all the 500 patterns, which are all

vectors of the same size. Each vector representing

a signature. The results obtained are summarized

in table (1).

Table 1: Simulation results

Simulation

environment

Percentage of

correctly classified

signatures

Vectors

Manipulation

77.4%

Ensemble

classification using

boosted trees

61.2%

Tree classification

using Bagged trees

79.8%

Figure (6) shows the percentage of correctly

classified signature for the three techniques. From

table (1) and figure (6), we noticed that the

percentage of correctly classified signatures using

the ensemble classification using boosted trees is

61.2%, which represents the lowest percentage of

correctly classified patterns among the three

simulation environments. Using the bagged trees

classification, 79.8% of the signatures were

correctly classified, which represents the highest

percentage of correctly classified patterns among

the three simulation environments. Using the

vectors manipulation, the percentage of the

correctly classified patterns was 77.4%, which is

closest to the percentage of the bagged trees

classification.

Fig. 6 Percentage of correctly classified signature

0%

20%

40%

60%

80%

Percentage of correctly classified

signatures

Simulation EnvironmentP
e
r
c
e
n

ta
g

e
 o

f
c
o

r
r
e
c
tl

y
 c

la
ss

if
ie

d
 s

ig
n

a
tu

r
e
s

Vectors Manipulation

Ensemble classification

Tree classification

using Bagged Trees

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 110

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusions

From the implemented simulation, the tree

classification using bagged trees showed the best

performance with signature recognition ratio of

79.8%, then, the vectors manipulation technique

follows it with a signature recognition ratio of

77.4%, then, comes the ensemble classification

using boosted trees with a signature recognition

ratio of 61.2%, which is the least recognition

ratio among the three simulation environments.

References

[1] D. Impedovo and G. Pirlo, "Automatic Signature

Verification: The State of the Art‖, IEEE

Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, Vol. 38, 2008,

pp. 609–635.

[2] S. Biswas, T.Kim and D. Bhattacharyya, "Features

Extraction and Verification of Signature Image

using Clustering Technique", International Journal

of Smart Home, Vol. 4, 2010.

[3] B. Fangaet al.,"Off-line signature verification by

the tracking of feature and stroke positions",

Pattern Recognition, Vol. 36, 2003, pp. 91 – 101.

[4] K.Dial and S. Mahesh, "Off-line Handwritten

Signature Verification using Artificial Neural

Network Classifier", International Journal of

Recent Trends in Engineering, Vol. 2, 2009.

[5] H. Nemmour and Y. Chibani, "Handwritten Arabic

word recognition based on Ridgelet transform and

support vector machines", in International

Conference on High Performance Computing and

Simulation (HPCS), Istanbul, July 2011, pp. 357–

361.

[9] A.Gupta, G.Khandelwal and S.Chakraverty,

"Offline Signature Verification Using Critical

Region Matching", Journal of Signal Processing,

Image Processing and Pattern, Vol. 2, 2009.

 [10] Dina Darwish, "Simulation and evaluation of

Signature Recognition Techniques", Egyptian

Computer Journal, Vol.37, 2013.

 [11] http://en.wikipedia.org/wiki/Ensemble_learning

b

 [12] http://www.mathworks.com/help/stats/ensemble-

methods.html

 [13] C.Sutton, Classification and Regression Trees,

Bagging, and Boosting, Handbook of Statistics,

Elsevier B.V., 2005.

 [14] http://www.mathworks.com/help/stats/classifica-

tion-trees-and-regression-trees.html

Dina Darwish received the B.Sc. in 2004 and the
M.Sc. in 2006 with honors degree from Arab Academy
for Science and Technology, Egypt. She received the
Ph.D. degree from Cairo University, Egypt, 2009. Her
main interests include communications systems,
computer networks, internet technology, and
multimedia systems. She is assistant professor of
communications and computer networks, International
Academy for Engineering and Media Science
(IAEMS), Egypt, since September 2009.

[11] [14] http

of Statistics, Vol. 24, ISSN: 0169-7161, 2005 Elsevier B.V.

[14]

http://www.mathworks.com/help/stats/classificatio

n-

and-regression-trees.html

[6] M. N. Do and M. Vetterli, "The Contourlet

Transform: An Efficient Directional Multi

resolution Image Representation", Image

Processing, Vol. 14, 2005, pp. 2091-2106.

[7] M. R. Pourshahabi, M. H. Sigari and H. R.

Pourreza, "Offline Handwritten Signature

Identification and Verification Using Contourlet

Transform", in International Conference of Soft

Computing and Pattern Recognition, Malacca,

December 2009, pp. 670–673.

 [8] S. Dewangan, (2011) "Neural Network-based

Offline Handwritten Signature Verification System

using Hu’s Moment Invariant Analysis",

International Journal of Engineering and Advanced

Technology (IJEAT), Vol. 1, 2011.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 111

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Ensemble_learning

