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Abstract 
The digital signature verification has become an 

interesting domain, which is widely needed. The usage 

of online and offline digital signatures has been 

spreaded worldwide due to the increase of use of bank 

transactions and user authentication and other similar 

activities. This requires the creation and the 

diversification of new online and offline signature 

verification methods.  The signature verification 

methods contain both online (or dynamic) and offline 

(or static) signature verification methods. In this paper, 

an offline digital signature verification technique is 

proposed, that depends on extracting several features 

from the signatures to be used during simulation. Some 

signatures were used for training and others were used 

for testing only. Different methods such as, vectors 

manipulation, ensemble classification using boosted 

trees, and bagged trees, were used in this paper during 

simulation to obtain results.  

Keywords: Signature Verification, Offline Digital 

Signature, Features Extraction, Vectors Manipulation, 

Ensemble Classification, Bagged  Trees. 

 

1. Introduction 
 

The growth in today's online and offline 

transactions that includes banking transactions 

has posed the question of how to make secure 

online and offline signature verification 

techniques, to eliminate the possibility of 

personal information theft. There are a different 

number of personnel characteristics that can be 

used to identify each person, such as, voice, lip 

movements, hand geometry, face, iris, retina, 

fingerprint, and others. These characteristics are 

called biometrics, and these biometrics can be 

used to distinguish between one person and 

another. But the most commonly used biometric 

nowadays in e-commerce and banking activities 

is the signature recognition.  

The signature can be defined as follows; "the 

name of a person written with his or her own 

hand; or the act of signing one's name", according 

to the American Heritage Dictionary. There is a 

second definition of signature, which is related to 

the whole process of signing, it means, that the  

way the signature is made and the characteristics 

of the signature, including velocity, pen pressure, 

stroke, and others are unique to every person. 

 

The first definition, is close to the definition of 

offline signature, which treats the signature as a 

two-dimensional image with static characteristics, 

that does not contain any time-related 

information. The second definition, is close to the 

definition of online signature, and is based on 

dynamic characteristics of the process of signing, 

such as velocity, pen pressure and others. 

The signature verification is a typical pattern 

recognition task. But both types of signatures; 

online or offline; use different techniques to 

verify signatures based on either static or 

dynamic characteristics. 

The task of signature verification includes 

extracting some characteristics from the recorded 

information of the signature, and further, 

comparing them with the characteristics of the 

reference signature. Let us make a brief survey on 

different signature recognition and verification 

techniques used.  

Various methods have been implemented for 

creating features from the signature image, which 

can be grouped into two main categories: direct 

methods and transform methods. Direct methods 

allow generating features directly from image 

pixels such as grid-based information, pixel 

density, gray-level intensity, texture… etc. In 

contrast, transform methods need a 

transformation of the image into another domain 

in which features could be created. Fourier, 

Wavelet, Radon transforms are the most popular 

methods for creating features [1][5]. Hence, 

another transform has been proposed namely the 

contourlet transform (CT) [6]. 

The main advantage of the CT is the ability to 

capture significant information about an object.  

Furthermore, it offers a flexible multiresolution, 

local and directional image expansion. These 

properties are interesting to exploit more 

specifically for the handwritten signature 

verification since the signature contains often 

special characters and flourishes [7]. 

In [2], this paper describes a method for 

verification of signatures after extraction of 

features based on clustering techniques. 

Clustering involves dividing a set of data points 

into non-overlapping groups, or clusters, of 
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points, where points in a cluster are ―more 

similar‖ to one another than to points in other 

clusters. In [3], this paper, two methods are 

proposed to track the variations in signatures. 

Given the set of training signature samples, the 

1rst method measures the positional variations of 

the one-dimensional projection profiles of the 

signature patterns; and the second method 

determines the variations in relative stroke 

positions in the two-dimension signature patterns. 

In [4], this paper evaluates the performance of an 

Error Back Propagation (EBP) Artificial Neural 

Network (ANN) for authenticating the signatures. 

The work done has provided encouraging results 

and has re-confirmed the ability of Artificial 

Neural Networks to recognize patterns and in this 

case their skill to generalize. An efficient Static 

Signature Verification (SSV) system that consists 

of rigorous preprocessing and feature extraction 

followed by a classifier is used.  

In [8], a paper presents a method for verifying 

handwritten signatures by using NN architecture. 

Various static (e.g., area covered, number of 

elements, height, slant, etc.) and dynamic (e.g., 

velocity, pen tip pressure, etc.) signature features 

are extracted and used to train the NN. In [9], a 

paper is primarily focused on skilled forgery 

detection. It emphasizes on the extraction of the 

critical regions which are more prone to mistakes 

and matches them following a modular graph 

matching approach. 

 In section 2, we described the features extracted 

to be used for signature recognition. In section 3, 

the signature recognition classification techniques 

were described. In sections 4, the simulation 

results were discussed and analyzed. In section 5, 

the conclusion is presented. And finally, the 

references are cited. 

 

 

2. Features Extraction for signature 

recognition 
 

The features needed to be extracted to identify 

signature are [10]: 

 

1 - The new curve of the signature after rotating 

the original curve of the signature points around 

the center x and y coordinates of the original 

signature curve  based on making the original 

signature curve rotate around its center  x and y 

coordinates, to make the new signature curve that 

will be used in pattern recognition.   

2 - The number of pixels in the signature based 

on calculating the total number of pixels of the 

signature.      

3 - The occupancy Ratio of the signature to the 

whole  image which is described as :  

Occupancy ratio = total number of pixels of the 

signature/total number of pixels of the signature 

image * 100 

4 - The minimum Eigen value of the signature 

curve 

 Where the eigen values of a matrix A are 

obtained from the solution of the characteristic 

equation:    

                             ( 1 ) 

where det is the determinant of the matrix ( A - λI ) 

and I is the n×n identity matrix, λ is the eigen 

value  

5 - The maximum height of the signature  is 

based on the following: 

Maximum height of the signature = maximum x 

coordinate of signature – minimum x coordinate 

of signature 

6  - The maximum width of the signature is based 

on the following  

Maximum width of the signature = maximum y 

coordinate of signature – minimum y coordinate 

of the signature 

7 - The Euclidean distance between every two 

consecutive points in the signature curve 

8 - The angle between every two consecutive 

points in the signature curve 

9 - The height to width ratio of the signature 

 

 

3. Assessment of Signature Recognition 

classification techniques 

 
Three different signature recognition 

classification techniques were used to recognize 

signatures. These techniques were:  

1) Vectors manipulation 

2) Ensemble  classification using boosted 

trees 

3) Tree Classification using bagged trees.  
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Assessment of these techniques is based on 

simulation in which we used 500 signatures for 

100 persons, each person has 5 signatures. We 

used 60% of the signatures for training, and the 

other 40% were used for testing. We used 

MATLAB 2011 during simulation. 

 

 

3.1 Vectors Manipulation Technique  
 

Vectors manipulation is based on finding the 

differences between each vector to be tested and 

each pattern vector used to identify one signature.  

Each tested vector is compared with the 300 

reference patterns representing the 100 persons, 

the smallest difference between any tested vector 

and reference pattern vector, means that the tested 

vector belongs to the N person having this 

reference pattern vector.  

 

For each vector the following rules applies, 

 

 

For i=1:vector length 

  For j=1:300 

         Dixj = abs ( VPixj – VTi ) 

End 

End 

 

Where,   VP is the vector reference pattern  

              VT is the tested pattern 

 

We calculate the sum of each vector in the 

difference matrix 

 

 

Sj = sum(Dixj)  

 

Where, i represent rows from 1 to vector length 

and j represent columns from 1 to 300 

 

 

Sj is a vector containing the sum of each column 

  

Then, 

 

   Find min(Sj )  

  

Where, j represents the column of the person y for 

example 

 

 

By this way, we classify all the 500 patterns, 

either being only test patterns or patterns used as 

references by finding the least difference between 

any test pattern and any reference pattern.  

Figure (1) shows the proposed simulation for 

assessment of vector manipulation technique.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig.1  Simulation chart of vector  manipulation  technique 

 

3.2 Ensemble classification using boosted 

trees 

 

(A) Common types of ensembles 

1. Bayes optimal classifier 

The Bayes Optimal Classifier is an optimal 

classification technique. It is an ensemble of all 

the hypotheses in the hypothesis space. On 

average, no other ensemble can outperform it, so 

it is the ideal ensemble. Each hypothesis is given 

a vote proportional to the likelihood that the 

training dataset would be sampled from a system 

Vector Reference Pattern 

Consider test vector 

Compute difference between test 

vector and all reference patterns 

Find the vector with smallest 

difference 

Put this vector to the N person 

having this reference pattern 

 

More test vector 

Terminate Recognition process 

No 

Yes 
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if that hypothesis were true. To facilitate training 

data of finite size, the vote of each hypothesis is 

also multiplied by the prior probability of that 

hypothesis. The Bayes Optimal Classifier can be 

expressed with following equation [11]: 

-- -  

(2) 

                                                                                                      

where is the predicted class, is the set of all 

possible classes, is the hypothesis space, 

refers to a probability, and is the training data. 

As an ensemble, the Bayes Optimal Classifier 

represents a hypothesis that is not necessarily in 

. The hypothesis represented by the Bayes 

Optimal Classifier, however, is the optimal 

hypothesis in ensemble space (the space of all 

possible ensembles consisting only of hypotheses 

in ). 

2. Bootstrap aggregating (bagging) 

Bootstrap aggregating, often abbreviated as 

bagging, involves having each model in the 

ensemble vote with equal weight. In order to 

promote model variance, bagging trains each 

model in the ensemble using a randomly drawn 

subset of the training set. As an example, the 

random forest algorithm combines random 

decision trees with bagging to achieve very high 

classification accuracy. 

3. Boosting 

Boosting involves incrementally building an 

ensemble by training each new model instance to 

emphasize the training instances that previous 

models mis-classified. In some cases, boosting 

has been shown to yield better accuracy than 

bagging, but it also tends to be more likely to 

over-fit the training data. By far, the most 

common implementation of Boosting is Adaboost, 

although some newer algorithms are reported to 

achieve better results. 

4. Bucket of models 

A "bucket of models" is an ensemble in which a 

model selection algorithm is used to choose the 

best model for each problem. When tested with 

only one problem, a bucket of models can 

produce no better results than the best model in 

the set, but when evaluated across many problems, 

it will typically produce much better results, on 

average, than any model in the set. 

The most common approach used for model-

selection is cross-validation selection. It is 

described with the following pseudo-code [11]: 

For each model m in the bucket: 

  Do c times: (where 'c' is some constant) 

 Randomly divide the training dataset into two   

datasets: A, and B. 

    Train m with A 

    Test m with B 

Select the model that obtains the highest average 

score 

Cross-Validation Selection can be summed up as: 

"try them all with the training set, and pick the 

one that works best". 

5.  Stacking 

The crucial prior belief underlying the scientific 

method is that one can judge among a set of 

models by comparing them on data that was not 

used to create any of them. This same prior belief 

underlies the use in machine learning of bake-off 

contests to judge which of a set of competitor 

learning algorithms is actually the best fit in 

selected domains. 

This prior belief can also be used by a single 

practitioner, to choose among a set of models 

based on a single data set. This is done by 

partitioning the data set into a held-in data set and 

a held-out data set; training the models on the 

held-in data; and then choosing whichever of 

those trained models performs best on the held-

out data. This is the cross-validation technique, 

mentioned above. 

Stacking (sometimes called stacked 

generalization) exploits this prior belief further. It 

does this by using performance on the held-out 

data to combine the models rather than choose 

among them, thereby typically getting 

performance better than any single one of the 

trained models. It has been successfully used on 

both supervised learning tasks (regression) and 

unsupervised learning (density estimation). It has 

also been used to estimate Bagging's error rate. 

Because the prior belief concerning held-out data 

is so powerful, stacking often out-performs 

Bayesian model-averaging. Indeed, renamed 

blending, stacking was extensively used in the 

two top performers in the recent Netflix 

competition. 
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(B) Simulation of  Ensemble Classification 

Technique 

 

MATLAB 2011 is used to simulate the ensemble 

technique for which figure (2) shows the  

information necessary to create an ensemble [12]. 

 

Fig. 2  Elements of the simulation technique 

 

For all classification or nonlinear regression 

problems, follow these steps to create an 

ensemble [12]: 

1. Put Predictor Data in a Matrix 

2. Prepare the Response Data 

3. Choose an Applicable Ensemble Method 

4. Set the Number of Ensemble Members 

5. Prepare the Weak Learners 

6. Call fitensemble 

 

Ensemble Algorithms 

 AdaBoostM1 

 AdaBoostM2 

 Bag 

 GentleBoost 

 LogitBoost 

 LPBoost 

 LSBoost 

 RobustBoost 

 RUSBoost 

 Subspace 

 TotalBoost 

 AdaBoostM1 

Where, LSBoost is the used algorithm, and is 

described as follows: 

LSBoost (least squares boosting) fits regression 

ensembles. At every step, the ensemble fits a new 

learner to the difference between the observed 

response and the aggregated prediction of all 

learners grown previously. The ensemble fits to 

minimize mean-squared error. 

You can use LSBoost with shrinkage by passing 

in the LearnRate parameter. By default this 

parameter is set to 1, and the ensemble learns at 

the maximal speed. If you set LearnRate to a 

value from 0 to 1, the ensemble fits every new 

learner to yn – ηf(xn), where 

yn is the observed response. 

f(xn) is the aggregated prediction from all weak 

learners grown so far for observation xn. 

η is the learning rate. Figure (3) shows the 

proposed simulation for Ensemble classification 

technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Simulation chart for ensemble classification technique 

 

Create  predictor data matrix 

Prepare response data 

Choose  applicable ensemble method 

Set the number of ensemble  members 

Prepare the weak learners 

Call  fitensemble 
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3.3 Tree classification using bagged trees 
 

Classification trees and regression trees [14] 

predict responses to data. To predict a response, 

follow the decisions in the tree from the root 

(beginning) node down to a leaf node. The leaf 

node contains the response. Classification trees 

give responses that are nominal, such as 'true' or 

'false'. Regression trees give numeric responses. 

Each step in a prediction involves checking the 

value of one predictor (variable). Figure (4)  is a 

simple classification tree: 

 

 

 

Fig. 4  Classification tree 

 

This tree predicts classifications based on two 

predictors, x1 and x2. To predict, start at the top 

node, represented by a triangle (Δ).The first 

decision is whether x1 is smaller than 0.5. If so, 

follow the left branch, and see that the tree 

classifies the data as type 0. 

If, however, x1 exceeds 0.5, then follow the right 

branch to the lower-right triangle node. Here the 

tree asks if x2 is smaller than 0.5. If so, then 

follow the left branch to see that the tree 

classifies the data as type 0. If not, then follow 

the right branch to see that the tree classifies the 

data as type 1. 

The classification tree and the regression tree 

methods perform the following steps to create 

decision trees: 

1. Start with all input data, and examine all 

possible binary splits on every predictor. 

2. Select a split with best optimization criterion. 

3. If the split leads to a child node having too 

few observations (less than the minimum 

leaf parameter), select a split with the best 

optimization criterion subject to the 

minimum leaf constraint. 

 Impose the split. 

 Repeat recursively for the two child 

nodes. 

The explanation requires two more items: 

description of the optimization criterion, and 

stopping rule. 

Stopping rule: Stop splitting when any of the 

following hold: 

 The node is pure. 

o For classification, a node is 

pure if it contains only 

observations of one class. 

o For regression, a node is pure if 

the mean squared error (MSE) 

for the observed response in 

this node drops below the MSE 

for the observed response in the 

entire data multiplied by the 

tolerance on quadratic error per 

node (qetoler parameter). 

 There are fewer than minimum parent 

observations in this node. 

 Any split imposed on this node would 

produce children with fewer than 

minimum leaf observations. 

 

Optimization criterion: 

 Regression: mean-squared error (MSE). 

Choose a split to minimize the MSE of 

predictions compared to the training data. 

 Classification: One of three measures, 

depending on the setting of the split criterion 

name-value pair provided in MATLAB 2011: 

o 'gdi' (Gini's diversity index, the 

default) 

o 'twoing' 

o 'deviance' 

For a continuous predictor, a tree can split 

halfway between any two adjacent unique values 

found for this predictor. For a categorical 

predictor with L levels, a classification tree needs 

to consider 2L
–1

–1 splits. To obtain this formula, 

observe that you can assign L distinct values to 

the left and right nodes in 2L ways. Two out of 

these 2L configurations would leave either left or 

right node empty, and therefore should be 

discarded. Now divide by 2 because left and right 

can be swapped. A classification tree can thus 

process only categorical predictors with a 

moderate number of levels. A regression tree 

employs a computational shortcut: it sorts the 

levels by the observed mean response, and 

considers only the L–1 splits between the sorted 

levels. 

The classification tree splits nodes based on 

either impurity or node error. Impurity means one 

of several things, depending on your choice of the 

split criterion name-value pair in MATLAB 2011: 
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 Gini's Diversity Index (gdi) —The Gini index 

of a node is [14] 

                                           (3) 

 

where the sum is over the classes i at the node, 

and p(i) is the observed fraction of classes 

with class i that reach the node. A node with 

just one class (a pure node) has Gini index 0; 

otherwise the Gini index is positive. So the 

Gini index is a measure of node impurity. 

 Deviance ('deviance') —With p(i) defined as 

for the Gini index, the deviance of a node is 

[14] 

                                   (4) 

 

A pure node has deviance 0; otherwise, the 

deviance is positive. 

 Twoing rule ('twoing') —Twoing is not a 

purity measure of a node, but is a different 

measure for deciding how to split a node. Let 

L(i) denote the fraction of members of class i 

in the left child node after a split, and R(i) 

denote the fraction of members of class i in 

the right child node after a split. Choose the 

split criterion to maximize 

             (5) 

 

where P(L) and P(R) are the fractions of 

observations that split to the left and right 

respectively. If the expression is large, the 

split made each child node purer. Similarly, if 

the expression is small, the split made each 

child node similar to each other, and hence 

similar to the parent node, and so the split did 

not increase node purity. 

 Node error — The node error is the fraction of 

misclassified classes at a node. If j is the class 

with largest number of training samples at a 

node, the node error is 

1 – p(j).                                               (6)                                                                                        

 

Figure (5) shows the proposed simulation for 

tree classification technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Simulation chart for tree classification technique 

 

Bagged Decision Trees  

 

Bagging [13], which stands for "bootstrap 

aggregation," is a type of ensemble learning. To 

bag a weak learner such as a decision tree on a 

dataset, generate many bootstrap replicas of this 

dataset and grow decision trees on these replicas. 

Obtain each bootstrap replica by randomly 

selecting N observations 

out of N with replacement, where N is the dataset 

size. To find the predicted response of a trained 

ensemble, take an average over predictions from 

individual trees. 

Bagging works by training learners on resampled 

versions of the data. This resampling is usually 

done by bootstrapping observations, that is, 

selecting N out of N observations with 

replacement for every new learner. In addition, 

every tree in the ensemble can randomly select 

predictors for decision splits—a technique known 

to improve the accuracy of bagged trees. 

 

 

Input data 

Select a split with best optimization 

criterion 

Stop splitting 

Create the decision trees 

Identify  the signature 

Examine all possible binary splits on 

every predictor 
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By default, the minimal leaf sizes for bagged 

trees are set to 1 for classification and 5 for 

regression. Trees grown with the default leaf size 

are usually very deep. These settings are close to 

optimal for the predictive power of an ensemble. 

Often you can grow trees with larger leaves 

without losing predictive power. Doing so 

reduces training and prediction time, as well as 

memory usage for the trained ensemble. 

Another important parameter is the number of 

predictors selected at random for every decision 

split. This random selection is made for every 

split, and every deep tree involves many splits. 

By default, this parameter is set to a square root 

of the number of predictors for classification, and 

one third of predictors for regression. 

Several features of bagged decision trees make 

them a unique algorithm. Drawing N out of N 

observations with replacement omits on average 

37% of observations for each decision tree. These 

are "out-of-bag" observations. You can use them 

to estimate the predictive power and feature 

importance. For each observation, you can 

estimate the out-of-bag prediction by averaging 

over predictions from all trees in the ensemble for 

which this observation is out of bag. You can 

then compare the computed prediction against the 

observed response for this observation. By 

comparing the out-of-bag predicted responses 

against the observed responses for all 

observations used for training, you can estimate 

the average out-of-bag error. This out-of-bag 

average is an unbiased estimator of the true 

ensemble error. You can also obtain out-of-bag 

estimates of feature importance by randomly 

permuting out-of-bag data across one variable or 

column at a time and estimating the increase in 

the out-of-bag error due to this permutation. The 

larger the increase, the more important the feature. 

Thus, you need not supply test data for bagged 

ensembles because you obtain reliable estimates 

of the predictive power and feature importance in 

the process of training, which is an attractive 

feature of bagging. 

Another attractive feature of bagged decision 

trees is the proximity matrix. Every time two 

observations land on the same leaf of a tree, their 

proximity increases by 1. For normalization, sum 

these proximities over all trees in the ensemble 

and divide by the number of trees. The resulting 

matrix is symmetric with diagonal elements equal 

to 1 and off-diagonal elements ranging from 0 to 

1. You can use this matrix for finding outlier 

observations and discovering clusters in the data 

through multidimensional scaling. 

 

 

4. Simulation Results 

 
500 patterns were used for simulation, 

representing 500 signatures for 100 persons, each 

person having  5 signatures. We used 60% of the 

patterns for training and the rest 40% for testing. 

We tested all the 500 patterns, which are all 

vectors of the same size. Each vector representing 

a signature. The results obtained are summarized  

in table (1). 
 

Table 1: Simulation results 

 

Simulation 

environment 

 

Percentage of 

correctly classified 

signatures 

Vectors 

Manipulation 

77.4% 

Ensemble 

classification using 

boosted trees 

61.2% 

Tree classification 

using Bagged trees 

79.8% 

 

Figure (6) shows the percentage of correctly 

classified signature for the three techniques. From 

table (1) and figure (6), we noticed that the 

percentage of correctly classified signatures using 

the ensemble classification using boosted trees is 

61.2%, which represents the lowest percentage of 

correctly classified patterns among the three 

simulation environments. Using the bagged trees 

classification, 79.8% of the signatures were 

correctly classified, which represents the highest 

percentage of correctly classified patterns among 

the three simulation environments. Using the 

vectors manipulation, the percentage of the 

correctly classified patterns was 77.4%, which is 

closest to the percentage of the bagged trees 

classification. 

 

 
 

Fig. 6  Percentage of correctly classified signature 
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5. Conclusions  
 

From the implemented simulation, the tree 

classification using bagged trees showed the best 

performance with signature recognition ratio of 

79.8%, then, the vectors manipulation technique 

follows it with a signature recognition ratio of 

77.4%, then, comes the ensemble classification 

using boosted trees with a signature recognition 

ratio of 61.2%, which is the least recognition  

ratio among the three simulation environments.  
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