

 “OpenMP” automatic parallelization tools: An Empirical
comparative evaluation

Emna KALLEL, Yassine AOUDNI and Mohamed ABID

Sfax University, National school of Engineers of Sfax,
3038,Tunisia,

Abstract

Today, multi-core design has become the trend of
enhancing the processor’s performance, and most
industries have been considering multi-core as the
future of development. Thus, a programmer or a
compiler explicitly parallelizes the software, which is
the key to enhance the performance on multi-core
design. Nevertheless, currently, needs an in-depth
knowledge of both software and hardware design to
develop parallel applications. Automatic
parallelization is one of the approaches aiming at a
better and easier use of parallel computers. In recent
years, several research auto-parallelization tools
appeared. However, the automatic parallelization is
yet to become a widely adopted industrial practice.
This paper presents an empirical comparison
between three research tools, namely CETUS, PLUTO
and GASPARD. Indeed, we discuss the success of these
tools to automatically generate OpenMP parallel
codes from serial C codes and compare them using
known benchmark C workloads and some evaluation
metrics.

Keywords: Multi-core, automatic parallelization, OpenMP,
metrics, parallel benchmarks.

1. Introduction

While classical parallel machines serve a relatively
small user community, multi-cores aim to capture a
mass market, which targets user-oriented, high-
productivity programming tools. Furthermore, multi-
cores are replacing complex superscalar processors,
the parallelism of which was unquestionably exploited
by the compiler and underlying architecture [6].
However, while developing a parallel application,
multiple challenges, ranging from the extraction of the

application parallelism to the management of the
communications between processors, are to be
overcome. Dating back to more than 15 years, the
automatic parallelization approaches have appeared as
one of solutions that aimed at a better and easier use of
parallel computers. It consists in taking a program
written for a sequential computer (which has only one
processor) and to adapt it to a parallel computer. The
condition for executing loop iterations in parallel is that
the variable usage in the loop does not result in loop-
carried dependences. So, the auto-parallelizing
compilers try to analyze codes and eliminate these
dependences to automatically generate parallel codes.
Building an auto-parallelizing compiler has proven to
be a very difficult task when producing efficient code in
all cases for a wide variety of applications.
Multiple research auto-parallelization projects have
been developed to address some of these problems. For
example, ROSE [9] is an open source compiler. It builds
source-to-source program transformation and analysis
tools for large-scale FORTRAN, C, C++, and OpenMP.
CETUS [6] is a source-to-source C compiler written in
Java and maintained at Purdue University. CETUS
provides automatic parallelization, and many other
applications have emerged. CETUS 1.2.1 release
provides OpenMP to-CUDA package. PAR4ALL [10] is
an open-source environment to do source-to-source
transformations on C and FORTRAN programs for
parallelizing, optimizing, reverse engineering, etc. on
various targets, from multicore system-on-chip with
some accelerators up to high performance computers
and GPU. Also, there are other compilers which can
automatically transform serial C/C++ codes to parallel
C/C++ codes or to parallel programs by using OpenMP
directives [15] or CUDA [5]. In recent years, several
commercial compilers that parallelize sequential code
also appeared (eg. Intel’s[19], IBM’s[20] compilers).
Despite all those efforts, the automatic parallelization is
yet to become a widely adopted industrial practice. The

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 267

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

most important reason is the quality of the generated
parallel code, resulting in inefficient hardware
utilization and low performance gain.
This paper studies the above outlined problems
through an empirical comparison between three
available research tools, namely CETUS, PLUTO and
GASPARD. The objective of our work is to have an
experiment on some auto-parallelization tools, to let us
know if these tools are really available, or if they are
actually effective when they are used to enhance the
performance. Some parallel benchmarks are used
through these compilers. To compare their
performance some parallel program performance
metrics are adopted.
The rest of this paper is organized as follows. Section 2
presents automatic parallelization techniques and
some related work. Section 3 describes the analysis
model proposed for the experimentation, while section
4 presents the obtained results. Finally conclusions and
future work are presented in section 5.

2. Automatic parallelization techniques

Several works in parallel programming area aim to
automatically parallelize a sequential code through
many analyses programmes. On an academic scale, we
find several auto-parallelization tools. In this section,
we separated these auto-parallel tools into two types,
one is source to source and the other is model to source
parallelizer.

2.1 Source-to-Source auto-parallelizer

Many compute-intensive applications often spend most
of their execution time in nested loops. The Polyhedral
Model provides a powerful abstraction to reason about
transformations on such loop nests by viewing a
dynamic instance of each statement as an integer point
in a well-defined space called the statement’s
polyhedron [7]. Also, the polyhedral model allows
representing easily regular calculations. He allows
specifying, examining, analyzing, transforming, and
parallelizing affine equations and so generating regular
parallel architecture. It can treat programs with static
control structure and affine references/loop-bounds.
Also, codes with non-affine array access functions or
code with dynamic control can be handled, but only
with conservative hypothesis on some dependences.
Automatic parallelization efforts in the polyhedral
model broadly fall into two classes: (1)
scheduling/allocation-based, and (2) partitioning
based. Griebl [18] (to some extent) fall into the former

class, while Lim/Liao’s approach [14] falls into the
second class. Griebl [18] presents an integrated
framework for optimizing locality and parallelism with
space and time tiling, by treating tiling as a post-
processing step after a schedule is found. Lim and Liao
[14] proposed a framework that identifies outer
parallel loops (communication-free space partitions)
and permutable loops (time partitions) to maximize the
degree of parallelism and minimize the order of
synchronization. They employ the same machinery for
blocking. Several solutions equivalent in terms of the
criterion they optimize for result from their algorithm,
and these significantly differ in performance.
No metric is provided to differentiate between these
solutions as maximally independent solutions are
sought, without using any cost function. As shown
through this work, without a cost function, solutions
obtained even for simple input may be unsatisfactory
with respect to communication cost, locality, and target
code complexity. The proposed approach in [7] is closer
to the latter class of partitioning-based approaches.
However, it is the first to explicitly model tiling in a
polyhedral transformation framework, thereby
enabling the effective extraction of coarse-grained
parallelism along with data locality optimization. At the
same time, codes which cannot be tiled or only partially
tiled are all handled, and traditional transformations
are captured. In fact, it presents an automatic
polyhedral source-to-source transformation
framework PLUTO that can optimize regular programs
for parallelism and locality simultaneously. This
framework has been implemented into a tool to
automatically generate OpenMP parallel code from C
program sections.
However, the front end used in PLUTO accepts only a
very little nested loops set. An important limitation of
polyhedral parallelizer compilers: there isn’t enough
information during the compilation to generate a
parallel code. For example when the parallelism of the
application depends on input data, the compiler is not
able to parallelise the program. This problem can be
resolved by the taking advantage of the compilation
directives which can indicate to the compiler how to
decompose the parts of a sequential program for its
parallel executing. Automatic parallelization by
directives insertion is the set of code transformations at
the code source level where the parallelism is
expressed by directives given to the compiler. These
directives allow the programmer a separation of the
preoccupations correction and efficiency [1]: they are a
good means to optimize the programmes without
questioning the correctness of them. Directives of
compilation are used to facilitate the extraction of the
parallelism as well as to help in the placement of the
calculations and the data on processors. This

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 268

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

methodology is used for example in HPF [4]. In this
work, the programmer supplies the directives of
partitioning and placement to obtain the placement of
the calculations on processors. More than the directives
of placement, we distinguish another directive type: the
directives of scheduling for shared memory
architectures (such as the parallel directive of OpenMP
[15]). For example, the CETUS tool [6] provides an
infrastructure for research on multicore compiler
optimizations that emphasizes automatic
parallelization. The CETUS compiler translates OpenMP
directives into text strings and stores them in the
Intermediate Representation (IR). Then, the OpenMP
parser analyzes these text strings to convert them into
Annotation, which is a CETUS’ map data structure that
contains processed OpenMP directive information. For
example, “#pragma omp parallel private(a, b)” in the
input OpenMP program is transformed into a single text
string, which is converted into Annotation map data
structure whose (key, values) mappings are (parallel,
true) and (private, {a, b}). Compiler analysis passes can
easily look up this Annotation map data structure to
query the necessary OpenMP information, which is also
stored in the CETUS IR. The compiler infrastructure,
which targets C programs, supports source-to-source
transformations, is user oriented and easy to handle,
and provides the most important parallelization passes.
HiCUDA [8], a high-level directive-based language for
CUDA programming. It allows programmers to perform
these tedious tasks in a simpler manner, and directly to
the sequential code. Nonetheless, it supports the same
programming paradigm already familiar to CUDA
programmers. Han [8] prototyped a source-to-source
compiler that translates a hiCUDA program to a CUDA
program. HiCUDA presents the programmer with a
computation model and a data model. The computation
model allows the programmer to identify code regions
that are intended to be executed on the GPU and to
specify how they are to be executed in parallel. The
data model allows programmers to allocate and de-
allocate memory on the GPU and to move data back and
forth between the host memory and the GPU memory.
The hiCUDA directives are specified using the pragma
mechanism provided by the C and C++ standards. The
hiCUDA compiler, despite its flexibility, demand to
programmer to write correct and optimal programme
to obtain preferment results. Lin and Chen [3]
introduce a novel compiler based approach for GPGPU
programming by providing a high degree of data
parallelism. Compiler directives are used to label code
fragments that are to be executed on the GPU. The
proposed GPGPU compiler, Guru, converts the labelled
code fragments into ISO-compliant C code that contains
appropriate OpenGL and Cg APIs. A native C compiler
can then be used to compile it into the executable code

for GPU. Guru is implemented based on the Open64
compiler infrastructure.
However, for these parallelizer compilers by directives
insertion, the process of parallel programming remains
ineffective because of absence of the inevitable specific
details of programming. The model-based automatic
parallelization environments reduce a lot the
complexity of development of the parallel programs by
their graphic parallel programs modelling in a high
level abstraction.

2.2 Model-to-Source auto-parallelizer

The usage of models for the design of multi-processor
systems is on its own a great improvement over current
practice because it provides a higher abstraction level
that especially helps for component reuse and parallel
coding. The graphical representation also facilitates the
global vision of complex systems and of interactions
between the parts of the system. One methodology for
the extraction of the parallelism is to partition the
original program to diverse independents tasks. It can
be realized by using tasks graphs as in ParDT [17].
ParDT is a graphical model-driven development tool
suite which supports not only modelling of parallel
programs on high abstraction level but the translation
of the constructed models into source code skeletons
according to the specific runtime environments and
libraries. The process of translation, which involves the
parsing of graphical models and the generation of
source code skeletons aimed at different parallel
platforms, are explained in detail. ParDT is
implemented based on Eclipse and compatible with its
plug-in architecture. The tool suite manages to help
programmers relieve the burden of building parallel
applications. One important challenge that arises in
multicore systems is the ability to dynamically adapt a
running application to target architecture in the face of
changes in resource availability (e.g., number of cores,
available memory or bandwidth). In GASPARD [2], the
compilation is a sequence of small and maintainable
transformations that allows passing gradually from a
high-level description into models closer in abstraction
to the final model, which is then converted into code.
The specification of the system is done exclusively via
UML MARTE [11] models. From the MPSoC model
GASPARD provides several transformation chains. As
output of a transformation chain, the user expects
compilable code which can be used in already available
tools. The GASPARD environment permits to select a
target into which the SoC should be transformed. The
most obvious target is a synthesizable hardware
description and application code compilable for this
particular hardware. Each chain is a sequence of
several model transformations separated by

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 269

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

metamodels and finished by a code generation. It is
notable that the majority of auto-parallelization
frameworks, like CETUS, use the sequential C code as
input and openMP as output. But, despite they have the
same objective, they use different transformation
techniques. In this paper, we propose an experiment
model to evaluate three research auto-parallelization
tools, namely PLUTO, CETUS and GASPARD. These tools
have the same main goal: automatically generating
parallel code with openMP.

3. Measurement model

Experimental Software evaluation is important to
discover how some techniques perform, discover its
limitations and understand how to improve them [12].
Indeed, in evaluating a system, we need to identify a set
of performance metrics that provide adequate
information to understand the behavior of the system.
Metrics which capture the processor characteristics in
terms of the clock speed (MHz), the instruction
execution speed (MIPS), the floating point performance
(MFLOPS), and the execution time for standard
benchmarks (SPEC) have been widely used in modeling
uniprocessor performance. A nice property of a
uniprocessor system is that given the hardware
specifications it is fairly straightforward to predict the
performance for any application to be run on the
system. However, in a parallel system the hardware
specification (which quantifies the available compute
power) may never be a true indicator of the
performance delivered by the system. This is due to the
growth of overheads in the parallel system either
because of the application characteristics or certain
architectural limitations. So, metrics for parallel system
performance evaluation should quantify this gap
between available and delivered compute power.
When we wish to evaluate some techniques or process,
it is necessary to follow some measurement models
that provide the mechanisms to conduct this
evaluation. Some mechanisms for defining measurable
goals have appeared in the literature like the
Goal/Question/Metric Paradigm (GQM) [13] that we
choose for defining our measurement model. The GQM
paradigm is a mechanism for defining and evaluating a
set of operational goals using measurements [13]. A
measurement model is defined into three levels:
conceptual (goal), operational (question), and
quantitative (metric).

In this work, we use the Goal Question Metric (GQM)
paradigm for defining our measurement model.
Goal: Evaluate the auto-parallelization tools: CETUS,
PLUTO and GASPARD.

Questions:
• What is the parallelization effort of auto-
parallelization tools?
• How much performance gain is achieved by
parallelizing a given application over a sequential
implementation?
•What is its ability to increase performance as number
of processors increases?
Metrics to be considered in order to find out answers
to these questions are defined as follow:

3.1 Cost/Effort

Cost C reflects the sum of the time that each PE
(processor element) spends solving the problem:

 C= Parallel runtime x the no. of PEs used (1)

If p=1: The cost of solving a problem on a single PE is
the execution time of the fastest known sequential
algorithm.

3.2 Speedup

Speedup is a widely used metric for quantifying
improvements in parallel system performance as the
number of processors is increased. Speedup is defined
as the ratio of the time taken by an application of fixed
size to execute on one processor to the time taken for
executing the same on processors. However, ideal
behavior is not achieved because while executing a
parallel algorithm, the processors cannot devote 100%
of their time to the computations of the algorithm. For
Example, part of the time required by the processors to
compute the sum of n numbers is spent idling (and
communicating in real systems). Speedup, S, is the
ratio of the time taken to solve a problem on a single
PE to the time required to solve the same problem on a
parallel computer with p identical PEs.

S=Ts/Tp (2)

3.3 Efficiency

So, Efficiency is a measure of the fraction of time for
which a processor is usefully employed.
Efficiency E is the ratio of Speedup S to the number of
PEs (p):

E=S/p (3)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 270

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In an ideal parallel system efficiency is equal to one.
This means that all processor resources are spent on
the task. But, rarely the case because of the overhead
associated with coordinating processes. Also some
parts of a program (such as I/O) might not parallelized.
So, in practice, efficiency is between zero and one.

4. Performance evaluation

The experiments were run on a quad-core Intel Core 2
Quad Q6600 CPU clocked at 2.4 GHz (1066 MHz FSB),
with a 32 KB L1 D cache, 8MB of L2 cache (4MB shared
per core pair), and 2 GB of DDR2-667 RAM, running
Linux kernel version 2.6.22 (x86-64). The used
compiler is ICC10.0 [16], which was also used to
compile the C codes transformed by the three systems.

Table 1. Benchmarks list for evaluating CETUS, PLUTO
and GASPARD systems.

Benchmark Description

MM (Matrix
Multiply) Computes the product of two matrices.

FT (Fast
Fourier
Transform:
NAS parallel
benchmarks)

FT contains the computational kernel of
a 3-D fast Fourier Transform (FFT)-
based spectral method.

LU (Lower-
Upper
symmetric
Gauss-Seidel:
NAS parallel
benchmarks)

Solve a synthetic system using three
different algorithms involving block
tridiagonal, scalar pentadiagonal and
symmetric successive over-relaxation
(SSOR) solver kernels

MVT (Matrix
Vector
Transpose)

The MVT kernel is a sequence of two
matrix vector transposes. It is found
within an outer convergence loop with
the Biconjugate gradient algorithm.

The NAS Parallel Benchmark (NPB) suite [23] consists
of five kernel benchmarks and three pseudo-
applications from the field of computational fluid
dynamics. The NPB presents an excellent resource for
this study, in that it provides multiple language
implementations of each benchmark. Table 1 lists the
four used parallel benchmarks code for performance
evaluation.

- Runtime and memory usage
One aspect of evaluating a compiler infrastructure is its
efficiency in terms of runtime and memory usage when
dealing with realistic applications. Runtime consists
mainly of parallelization time, of which the dependence
analyzer consumes a major portion. Experiments (table
2) show that PLUTO has the best performance than
GASPARD and CETUS for the benchmarks running on
the same system. Indeed, CETUS and GASPARD are
written in Java which is slower and requires more
memory than C or C++. Also, memory usage is driven
primarily by the complexity of loops analyzed for
dependence testing, in terms of their nesting levels and
the total number of array accesses they contain. These
factors contributed to CETUS and GASPARD taking a
noticeably longer time to process its input than, for
instance, the PLUTO compiler.

Table 2. Statistics on loops parallelization with PLUTO,
CETUS and GASPARD

 Runtime
(sec)

Memory usage
(Mbytes)

PLUTO 10 70
CETUS 18 110
GASPARD 25 140

- parallelization quality

The performance evaluation of auto-parallelization
infrastructure is based on several criteria like the
ability to achieve auto-parallelization and to detect
parallel and nested loops in the sequential code. In this
work, the GASPARD system is tested with only the
Matrix Multiply benchmark due to many problems.
First, only the Multiply Matrix example is available.
Second, in the available GASPARD version, it is not
permuted to model our proper parallel application.
These preliminary obstacles show the difficulty
founded in using a graphical system. But these systems
offer an efficient solution to solve the automatic
parallelisation problems. They reduce a lot the
complexity of development of the parallel programs by
their graphic parallel programs modelling in a high
level abstraction. Effectively, as shown in Figure 1
GASPARD performs close to or better than PLUTO on
MM benchmark, and better than PLUTO in terms of
achieve automatic parallelization. Figure 2 show that
GASPARD performance can attain to 80% in terms of
parallel loops and Nested loop detection, and to 70% in
terms of analysis dependence.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 271

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Triangular_matrix#Forward_and_back_substitution�
http://en.wikipedia.org/wiki/Triangular_matrix#Forward_and_back_substitution�
http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method�
http://en.wikipedia.org/wiki/Block_matrix#Block_tridiagonal_matrices�
http://en.wikipedia.org/wiki/Block_matrix#Block_tridiagonal_matrices�
http://en.wikipedia.org/wiki/Block_matrix#Block_tridiagonal_matrices�
http://en.wikipedia.org/wiki/Pentadiagonal_matrix�
http://en.wikipedia.org/wiki/Successive_over-relaxation�

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

MM LU FT MVT

benchmarks

P
e
rc

e
n

ta
g

e
 o

f
c
o

v
e
ra

g
e

Pluto
Cetus
Gaspard

Fig 1. Performance comparison in terms of ability to
achieve automatic parallelisation between the different
systems

In the case of FT and MVT, CETUS performs poorly than
PLUTO. In fact, CETUS is not able to achieve an
automatic parallelization. In fact, the codes generated
by CETUS need a manual correction to optimally obtain
parallel codes. On the other hand, in the LU’s case,
CETUS performs close to or better than PLUTO. Thus,
PLUTO successfully performs the majority of
benchmarks by using “–tile” option in the framework
execution. In fact, the PLUTO compiler uses the tiling
technique which is a key transformation in optimizing
for parallelism and data locality.

0%

20%

40%

60%

80%

100%

120%

parallel loops Detection Analysis dependence Nested Loops Detection

Characteristics

P
e
rc

e
n

ta
g

e
 o

f
c
o

v
e
ra

g
e

PLUTO
CETUS
GASPARD

 Fig 2. Performance comparison between
PLUTO, CETUS and GASPARD systems

As shown in figure 2, PLUTO has a high ability to detect
nested loops in the contrary of CETUS which poorly
detect such loops. On the other hand, the tests show
that CETUS detect parallel loops with 100 percent.
Thus, CETUS is powerful in terms of parallel loops
detection. But, PLUTO and GASPARD have the same
efficiency to detect parallel loops. Moreover, GASPARD
and CETUS are better than PLUTO in the terms of
dependence analysis. In fact, CETUS enables automatic
parallelization by using dependence analysis with the
dated Banerjee-Wolfe inequalities, array and scalar
privatization, reduction-variable recognition, and
induction-variable replacement. These are the

techniques found to be most important for
automatically parallelizing compilers.
In GASPARD’ case, the designer creates a model of the
application with all the information needed for the
implementation, that is: without ambiguity and with all
the details concerning the realization of a parallel
application. This is the main advantage of the model-
based systems.

Error!
Bookmark not defined.

- Cost, speedup and efficiency

This section presents a quantitative comparison
between the three selected tools to better evaluate their
performance and parallelization quality. Indeed, the
performance of a compiler is usually measured in terms
of the execution efficiency of compiled code [21]. The
results presented in this section are based on metrics
described in section 3. The experiments are performed
using OpenMP standard functions that calculate the
wallclock time between two points in the program. For
example, OMP GET WTIME(OpenMP) function is
intrusive in the code to evaluate the speedup. CPU time
does not include the overhead for parallelization.

 Fig 3. Execution time for parallel Matrix Multiplication

Figure 3 shows the execution time for parallel Matrix
Multiplication (size from 256 to 2048) generated by the
three tools. We notice that, comparing to PLUTO,
CETUS and GASPARD has the higher execution time in
all matrix size except in n=1024. Indeed, when we
execute the codes transformed by GASPARD and CETUS,
we got a run-time error. But, we could only transform
successfully by using PLUTO. This is can be explained
by insufficient of memory. Indeed, a computer can run out
of memory when it is running multiple programs at once
or even when running just one or two memory-intensive
programs. Running out of available memory causes
an error because the computer cannot
continue running all of the programs until free memory is
available. Execution time is not a serious issue for
modestly-sized programs, but it can be a problem for

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 272

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

large benchmarks like LU. Figure 4 shows that when
increasing the number of cores (multiplying by 2), the
Cost C decrease executing the LU application in the case
of both CETUS and PLUTO. So, a super-speedup is
achieved.

Fig 4. Cost/Effort C running LU application by varying
the cores number

Table 3 summarizes the performance of transformed
codes using the three tools. The results show a good
speedup attained by different cores numbers. Indeed, in
the case of MM (n=1024), the three tools have a
comparable speedup on dual core design. But, on multi-
core design (4 cores), PLUTO has a higher speedup than
CETUS and GASPARD. In the case of FT application,
PLUTO and CETUS have a comparable speedup on both
dual and multi core designs. While, in the case of MVT
and LU applications, PLUTO is better than CETUS on
both dual and multi core designs.
Figure 5 shows the efficiency of the code generated by
the selected tools in the case of multi-core design (4
cores). We notice, firstly, that CETUS performs close to
or better than PLUTO on FT application. Secondly,
comparing to CETUS and GASPARD, a very high
efficiency percentage is attained (97,5%) using PLUTO
in the case of MM application. Also, PLUTO is more
efficient than CETUS executing LU and MVT application.
The final comparison list is presented in table 4.

Fig 5. Efficiency percentage

Table 3: speedup comparison

Table 4: comparison list (the smaller is better)

 PLUTO CETUS GASPARD

Runtime 1 2 3

Memory usage 1 2 3
Dependency
analysis 2 1 1

Parallel loops
Detection 2 1 3

Nested loops
Detection 1 2 3

Cost/effort 1 2 3

Speed up 1 2 3

Efficiency 1 2 3

From the experimental results in this paper, we find
that only PLUTO can transform all benchmarks codes
successfully. We conclude also, that CETUS is more
efficient than GASPARD. But it gives us, in some cases
error results; sometimes we could not transform
successfully using CETUS. So, the perfect auto-
parallelizing research compiler is yet to be produced.
However, there are some cases where auto-
parallelization is perfectly suited.

4. Conclusions

Parallel programming is not easy to programmers. So,
some frameworks support the auto-parallelization
helping them to easily transform sequential codes to
parallel codes. In this paper, we presented a
comparison between three auto-parallelization tools
using a set of criteria. The goal of this assessment was
to evaluate the current state of the available automatic
parallelization tools when intended to be used by

Bench-
mark

dual core speedup
(2 cores)

Multi-core speedup
(4 cores)

 Pluto Cetus Gaspard Pluto Cetus Gaspard
MM 1.9× 1.5× 1.1× 3.9× 3.5× 3×
LU 1.8× 1.5× - 3.3× 3× -
FT 1.7× 2.1× - 2.6× 3.1× -
MVT 1.1× 0.8× - 2.9× 1.9× -

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 273

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

software designers to develop parallel applications. The
comparative study showed that PLUTO is more efficient
than the other tools; it gave optimal results for all
benchmarks. The advantage of CETUS was his efficiency
in terms of dependency analysis and parallel loops
detection. But, it gave us error results in detecting and
parallelizing nested loops. GASPARD showed the limit
of the model-to-source parallelizer comparing to
source-to-source parallelizer. It was not flexible and
applicable for all benchmarks. But, it gave tolerable
results for MM workload.
One common limit of those auto-parallelization tools is
the generation of parallel openMP code which depends
on the OpenMP API, compiler and OS run time support
to realize task partition. However, such support is
rarely available in an embedded context where OS is
not always present [22]. For future work, we will
propose an automatic accelerator generation flow that
integrates PLUTO and adapts an application targeting
the general purpose processor to an embedded
environment. The choice of PLUTO is based on the
empirical comparative study presented in this paper.

References
 [1] P. Gerner. La sémantique des directives au
compilateur: application au parallélisme de données.
PhD thesis, Université Louis Pasteur, 2002.
[2] Eric Piel, Philippe Marquet, and Jean-Luc Dekeyser
Model Transformations for the Compilation of Multi-
processor Systems-on-Chip, GTTSE 2007, LNCS 5235, pp.
459–473, 2008. Springer-Verlag Berlin Heidelberg
2008
[3] Compiler support for general-purpose computation
on GPUs, Yu-Te Lin · Peng-Sheng Chen Springer
Science+Business Media, LLC 2008.
[4] B. Chapman, H. Zima, and P. Mehrotra. Extending
HPF for advanced data-parallel applications. Parallel &
Distributed Technology: Systems & Applications, Jan
1994.
[5]. NVIDIA (2008) NVIDIA CUDA homepage. Website.
Online available at
http://developer.nvidia.com/object/cuda.html
[6] Chirag Dave, Mansang Bae, Seung-jai Min,Seyong
Lee, Rudolf Eignmann, Samuel Midkiff “CETUS: A
source-to-Source Compiler Infrastructure for
Multicores,” computer, PLDI’08, vol.42,no.12,pp .36-42,
Dec.2009.
[7] Uday Bondhugula, Albert Hartono, J. Ramanujam, P.
Sadayappan “A Practical Automatic Polyhedral
Parallelizer and Locality Optimizer”, June 7–13, 2008,
Tucson, Arizona, USA.
[8] Tianyi David Han, Tarek S. Abdelrahman “hiCUDA: A
High-level Directive-based Language for GPU

Programming” GPGPU ’09 March 8, 2009, Washington,
D.C. USA
[9] ROSE, http://www.rosecompiler.org/
[10] PAR4ALL, http://www.par4all.org/
[11] ProMarte partners: UML Profile for MARTE, Beta 1
(August 2007),
http://www.omg.org/cgi-bin/doc?ptc/2007-08 04.
[12] V. R. Basili. The role of experimentation in software
engineering: past, current, and future. In ICSE ’96:
Proceedings of the 18th international conference on
Software engineering, pages 442–449. IEEE Computer
Society, 1996.
[13] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric approach. Encyclopedia of
Software Engineering, 1:528–532, 1995.
[14] A. Lim, S. Liao, and M. Lam. Blocking and array
contraction across arbitrarily nested loops using affine
partitioning. In ACM SIGPLAN PPoPP, pages 103–112,
2001.
[15] OpenMP Architecture Review Board. OpenMP
Application Program Interface, version 3.0. OpenMP
Architecture Review Board, May 2008.
[16] http://software.intel.com/en-us/c-compilers,
2013
 [17] Xu Zhen , Sun Jizhou , Yu Ce, Wu Huabei , Meng
Xiaojing , Tang Shanjiang. A Visual Model-Driven Rapid
Development Tool suite for Parallel Applications 2009
World Congress on Computer Science and Information
Engineering.
[18] M. Griebl. Automatic Parallelization of Loop
Programs for Distributed Memory Architectures.
University of Passau, 2004. Habilitation thesis.
[19] http://software.intel.com/en-us/intel-parallel-
studio-xe, 2013.

[20]http://www.ibm.com/developerworks/wikis/disp
lay/hpccentral/IBM+Parallel+Environment+Developer
+Edition, 2013.
[21] CHING, W.-M., NELSON, Rick, and SHI,
Nungjane. An empirical study of the performance of the
APL370 compiler. ACM, 1989.
[22] G. Tian, G Hammami, O. “Performance
measurements of synchronization mechanisms on
16PE NOC based multi-core with dedicated
synchronization and data NOC”. In: International
Conference on Electronics, Circuits, and Systems
(ICECS’09), 2009, pp. 988 – 991.
[23] NAS Parallel Benchmarks -
 http://www.nas.nasa.gov/Software/NPB/, 2013

First Author Emna KALLEL: received his Dipl.-Ing. degree in
2006 from the National School of Engineers of Sfax (ENIS)
Tunisia, where he is currently working toward the Ph.D.degree
with research focused on automatic code generation for

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 274

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.par4all.org/�
http://www.omg.org/cgi-bin/doc?ptc/2007-08%2004�
http://software.intel.com/en-us/c-compilers�
http://software.intel.com/en-us/intel-parallel-studio-xe�
http://software.intel.com/en-us/intel-parallel-studio-xe�
http://www.ibm.com/developerworks/wikis/display/hpccentral/IBM+Parallel+Environment+Developer+Edition�
http://www.ibm.com/developerworks/wikis/display/hpccentral/IBM+Parallel+Environment+Developer+Edition�
http://www.ibm.com/developerworks/wikis/display/hpccentral/IBM+Parallel+Environment+Developer+Edition�
http://www.ibm.com/developerworks/wikis/display/hpccentral/IBM+Parallel+Environment+Developer+Edition�
http://www.nas.nasa.gov/Software/NPB/�

embedded systems. She has been with Enis School, as Research
Assistant.
Here further research interests include parallel computing, parallel
architectures, automatic parallelisation, Rapid prototyping and
video processing and object-oriented methods for hardware
generation.
Second Author Yassine Aoudni: Studied Electrical Engineering
and Computer software Engineering at the National School of
Engineers of Sfax (ENIS) Tunisia. He received Dipl.-Ing.from the
National School of Engineers of Sfax in 2002 and Dr.-Ing. from
the University of South Brittany, France in 2010. From 2008 till
2011, he worked as a Research Assistant at National School of
Engineers of Sfax (ENIS) Tunisia conducting research in FPGA
prototyping Since 2011 he is Assistant Professor at the National
School of Engineers of Sfax. He acts as a member of several
technical program committees, as a reviewer for different journals.
His research interests include joint source FPGA prototyping,
signal processing, system high level design, parser design,
information theory, as well as multiprocessor architecture

Third Author Mohamed Abid: He received Dipl.-Ing. from the
National School of Engineers of Sfax (ENIS) in 1985 and the
phddegree from the National Institution of applied Science,
Toulouse, France. In 2000, he received his doctorale degree in
Electrical and Computer Engineering at National Engineering
School of Tunis. He is currently Professor at the Electrical
Department of ENIS. Since 2006, he has been on the Head of the
research laboratory «Computer Embedded System » CES-ENIS.
He is responsible for research projects in the area of automatic
signal and image processing, wireless networks and information
systems. He has been on the Head of Federator Research Project
since 2009. He has authored or co-authored more than 120
international conference papers, and he has written more than 20
technical contributions to various international standardization
projects. He is a member of the Scientific and Program
Committees of several international conferences and workshops.
He is the Co-coordinator of several Nationals and Internationals
projects with universities and industries like DGRSRT, CNRS,
INRIA, CMCU, training for research, PNM, Tempra, etc.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 275

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

