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Abstract 

Today, multi-core design has become the trend of 
enhancing the processor’s performance, and most 
industries have been considering multi-core as the 
future of development. Thus, a programmer or a 
compiler explicitly parallelizes the software, which is 
the key to enhance the performance on multi-core 
design. Nevertheless, currently, needs an in-depth 
knowledge of both software and hardware design to 
develop parallel applications. Automatic 
parallelization is one of the approaches aiming at a 
better and easier use of parallel computers. In recent 
years, several research auto-parallelization tools 
appeared. However, the automatic parallelization is 
yet to become a widely adopted industrial practice. 
This paper presents an empirical comparison 
between three research tools, namely CETUS, PLUTO 
and GASPARD. Indeed, we discuss the success of these 
tools to automatically generate OpenMP parallel 
codes from serial C codes and compare them using 
known benchmark C workloads and some evaluation 
metrics. 
 
Keywords: Multi-core, automatic parallelization, OpenMP, 
metrics, parallel benchmarks. 

1. Introduction 

While classical parallel machines serve a relatively 
small user community, multi-cores aim to capture a 
mass market, which targets user-oriented, high-
productivity programming tools. Furthermore, multi-
cores are replacing complex superscalar processors, 
the parallelism of which was unquestionably exploited 
by the compiler and underlying architecture [6]. 
However, while developing a parallel application, 
multiple challenges, ranging from the extraction of the 

application parallelism to the management of the 
communications between processors, are to be 
overcome. Dating back to more than 15 years, the 
automatic parallelization approaches have appeared as 
one of solutions that aimed at a better and easier use of 
parallel computers. It consists in taking a program 
written for a sequential computer (which has only one 
processor) and to adapt it to a parallel computer. The 
condition for executing loop iterations in parallel is that 
the variable usage in the loop does not result in loop-
carried dependences. So, the auto-parallelizing 
compilers try to analyze codes and eliminate these 
dependences to automatically generate parallel codes. 
Building an auto-parallelizing compiler has proven to 
be a very difficult task when producing efficient code in 
all cases for a wide variety of applications.  
Multiple research auto-parallelization projects have 
been developed to address some of these problems. For 
example, ROSE [9] is an open source compiler. It builds 
source-to-source program transformation and analysis 
tools for large-scale FORTRAN, C, C++, and OpenMP. 
CETUS [6] is a source-to-source C compiler written in 
Java and maintained at Purdue University. CETUS 
provides automatic parallelization, and many other 
applications have emerged. CETUS 1.2.1 release 
provides OpenMP to-CUDA package. PAR4ALL [10] is 
an open-source environment to do source-to-source 
transformations on C and FORTRAN programs for 
parallelizing, optimizing, reverse engineering, etc. on 
various targets, from multicore system-on-chip with 
some accelerators up to high performance computers 
and GPU. Also, there are other compilers which can 
automatically transform serial C/C++ codes to parallel 
C/C++ codes or to parallel programs by using OpenMP 
directives [15] or CUDA [5]. In recent years, several 
commercial compilers that parallelize sequential code 
also appeared (eg. Intel’s[19], IBM’s[20] compilers). 
Despite all those efforts, the automatic parallelization is 
yet to become a widely adopted industrial practice. The 
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most important reason is the quality of the generated 
parallel code, resulting in inefficient hardware 
utilization and low performance gain. 
This paper studies the above outlined problems 
through an empirical comparison between three 
available research tools, namely CETUS, PLUTO and 
GASPARD. The objective of our work is to have an 
experiment on some auto-parallelization tools, to let us 
know if these tools are really available, or if they are 
actually effective when they are used to enhance the 
performance. Some parallel benchmarks are used 
through these compilers. To compare their 
performance some parallel program performance 
metrics are adopted. 
The rest of this paper is organized as follows. Section 2 
presents automatic parallelization techniques and 
some related work. Section 3 describes the analysis 
model proposed for the experimentation, while section 
4 presents the obtained results. Finally conclusions and 
future work are presented in section 5. 
 

2. Automatic parallelization techniques  

Several works in parallel programming area aim to 
automatically parallelize a sequential code through 
many analyses programmes. On an academic scale, we 
find several auto-parallelization tools. In this section, 
we separated these auto-parallel tools into two types, 
one is source to source and the other is model to source 
parallelizer. 
 

2.1 Source-to-Source auto-parallelizer 

Many compute-intensive applications often spend most 
of their execution time in nested loops. The Polyhedral 
Model provides a powerful abstraction to reason about 
transformations on such loop nests by viewing a 
dynamic instance of each statement as an integer point 
in a well-defined space called the statement’s 
polyhedron [7]. Also,   the polyhedral model allows 
representing easily regular calculations. He allows 
specifying, examining, analyzing, transforming, and 
parallelizing affine equations and so generating regular 
parallel architecture. It can treat programs with static 
control structure and affine references/loop-bounds. 
Also, codes with non-affine array access functions or 
code with dynamic control can be handled, but only 
with conservative hypothesis on some dependences. 
Automatic parallelization efforts in the polyhedral 
model broadly fall into two classes: (1) 
scheduling/allocation-based, and (2) partitioning 
based. Griebl [18] (to some extent) fall into the former 

class, while Lim/Liao’s approach [14] falls into the 
second class. Griebl [18] presents an integrated 
framework for optimizing locality and parallelism with 
space and time tiling, by treating tiling as a post-
processing step after a schedule is found. Lim and Liao 
[14] proposed a framework that identifies outer 
parallel loops (communication-free space partitions) 
and permutable loops (time partitions) to maximize the 
degree of parallelism and minimize the order of 
synchronization. They employ the same machinery for 
blocking. Several solutions equivalent in terms of the 
criterion they optimize for result from their algorithm, 
and these significantly differ in performance. 
No metric is provided to differentiate between these 
solutions as maximally independent solutions are 
sought, without using any cost function. As shown 
through this work, without a cost function, solutions 
obtained even for simple input may be unsatisfactory 
with respect to communication cost, locality, and target 
code complexity. The proposed approach in [7] is closer 
to the latter class of partitioning-based approaches. 
However, it is the first to explicitly model tiling in a 
polyhedral transformation framework, thereby 
enabling the effective extraction of coarse-grained 
parallelism along with data locality optimization. At the 
same time, codes which cannot be tiled or only partially 
tiled are all handled, and traditional transformations 
are captured. In fact, it presents an automatic 
polyhedral source-to-source transformation 
framework PLUTO that can optimize regular programs 
for parallelism and locality simultaneously.  This 
framework has been implemented into a tool to 
automatically generate OpenMP parallel code from C 
program sections.  
However, the front end used in PLUTO accepts only a 
very little nested loops set.  An important limitation of 
polyhedral parallelizer compilers: there isn’t enough 
information during the compilation to generate a 
parallel code. For example when the parallelism of the 
application depends on input data, the compiler is not 
able to parallelise the program. This problem can be 
resolved by the taking advantage of the compilation 
directives which can indicate to the compiler how to 
decompose the parts of a sequential program for its 
parallel executing. Automatic parallelization by 
directives insertion is the set of code transformations at 
the code source level where the parallelism is 
expressed by directives given to the compiler. These 
directives allow the programmer a separation of the 
preoccupations correction and efficiency [1]: they are a 
good means to optimize the programmes without 
questioning the correctness of them. Directives of 
compilation are used to facilitate the extraction of the 
parallelism as well as to help in the placement of the 
calculations and the data on processors. This 
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methodology is used for example in HPF [4]. In this 
work, the programmer supplies the directives of 
partitioning and placement to obtain the placement of 
the calculations on processors. More than the directives 
of placement, we distinguish another directive type: the 
directives of scheduling for shared memory 
architectures (such as the parallel directive of OpenMP 
[15]). For example, the CETUS tool [6] provides an 
infrastructure for research on multicore compiler 
optimizations that emphasizes automatic 
parallelization. The CETUS compiler translates OpenMP 
directives into text strings and stores them in the 
Intermediate Representation (IR). Then, the OpenMP 
parser analyzes these text strings to convert them into 
Annotation, which is a CETUS’ map data structure that 
contains processed OpenMP directive information. For 
example, “#pragma omp parallel private(a, b)” in the 
input OpenMP program is transformed into a single text 
string, which is converted into Annotation map data 
structure whose (key, values) mappings are (parallel, 
true) and (private, {a, b}). Compiler analysis passes can 
easily look up this Annotation map data structure to 
query the necessary OpenMP information, which is also 
stored in the CETUS IR. The compiler infrastructure, 
which targets C programs, supports source-to-source 
transformations, is user oriented and easy to handle, 
and provides the most important parallelization passes. 
HiCUDA [8], a high-level directive-based language for 
CUDA programming. It allows programmers to perform 
these tedious tasks in a simpler manner, and directly to 
the sequential code. Nonetheless, it supports the same 
programming paradigm already familiar to CUDA 
programmers. Han [8] prototyped a source-to-source 
compiler that translates a hiCUDA program to a CUDA 
program. HiCUDA presents the programmer with a 
computation model and a data model. The computation 
model allows the programmer to identify code regions 
that are intended to be executed on the GPU and to 
specify how they are to be executed in parallel. The 
data model allows programmers to allocate and de-
allocate memory on the GPU and to move data back and 
forth between the host memory and the GPU memory. 
The hiCUDA directives are specified using the pragma 
mechanism provided by the C and C++ standards. The 
hiCUDA compiler, despite its flexibility, demand to 
programmer to write correct and optimal programme 
to obtain preferment results. Lin and Chen [3] 
introduce a novel compiler based approach for GPGPU 
programming by providing a high degree of data 
parallelism.  Compiler directives are used to label code 
fragments that are to be executed on the GPU. The 
proposed GPGPU compiler, Guru, converts the labelled 
code fragments into ISO-compliant C code that contains 
appropriate OpenGL and Cg APIs. A native C compiler 
can then be used to compile it into the executable code 

for GPU. Guru is implemented based on the Open64 
compiler infrastructure. 
However, for these parallelizer compilers by directives 
insertion, the process of parallel programming remains 
ineffective because of absence of the inevitable specific 
details of programming. The model-based automatic 
parallelization environments reduce a lot the 
complexity of development of the parallel programs by 
their graphic parallel programs modelling in a high 
level abstraction. 

2.2 Model-to-Source auto-parallelizer 

The usage of models for the design of multi-processor 
systems is on its own a great improvement over current 
practice because it provides a higher abstraction level 
that especially helps for component reuse and parallel 
coding. The graphical representation also facilitates the 
global vision of complex systems and of interactions 
between the parts of the system. One methodology for 
the extraction of the parallelism is to partition the 
original program to diverse independents tasks. It can 
be realized by using tasks graphs as in ParDT [17]. 
ParDT is a graphical model-driven development tool 
suite which supports not only modelling of parallel 
programs on high abstraction level but the translation 
of the constructed models into source code skeletons 
according to the specific runtime environments and 
libraries. The process of translation, which involves the 
parsing of graphical models and the generation of 
source code skeletons aimed at different parallel 
platforms, are explained in detail. ParDT is 
implemented based on Eclipse and compatible with its 
plug-in architecture. The tool suite manages to help 
programmers relieve the burden of building parallel 
applications. One important challenge that arises in 
multicore systems is the ability to dynamically adapt a 
running application to target architecture in the face of 
changes in resource availability (e.g., number of cores, 
available memory or bandwidth). In GASPARD [2], the 
compilation is a sequence of small and maintainable 
transformations that allows passing gradually from a 
high-level description into models closer in abstraction 
to the final model, which is then converted into code. 
The specification of the system is done exclusively via 
UML MARTE [11] models. From the MPSoC model 
GASPARD provides several transformation chains. As 
output of a transformation chain, the user expects 
compilable code which can be used in already available 
tools. The GASPARD environment permits to select a 
target into which the SoC should be transformed. The 
most obvious target is a synthesizable hardware 
description and application code compilable for this 
particular hardware. Each chain is a sequence of 
several model transformations separated by 
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metamodels and finished by a code generation. It is 
notable that the majority of auto-parallelization 
frameworks, like CETUS, use the sequential C code as 
input and openMP as output. But, despite they have the 
same objective, they use different transformation 
techniques.  In this paper, we propose an experiment 
model to evaluate three research auto-parallelization 
tools, namely PLUTO, CETUS and GASPARD. These tools 
have the same main goal: automatically generating 
parallel code with openMP. 

3. Measurement model 

Experimental Software evaluation is important to 
discover how some techniques perform, discover its 
limitations and understand how to improve them [12]. 
Indeed, in evaluating a system, we need to identify a set 
of performance metrics that provide adequate 
information to understand the behavior of the system. 
Metrics which capture the processor characteristics in 
terms of the clock speed (MHz), the instruction 
execution speed (MIPS), the floating point performance 
(MFLOPS), and the execution time for standard 
benchmarks (SPEC) have been widely used in modeling 
uniprocessor performance. A nice property of a 
uniprocessor system is that given the hardware 
specifications it is fairly straightforward to predict the 
performance for any application to be run on the 
system. However, in a parallel system the hardware 
specification (which quantifies the available compute 
power) may never be a true indicator of the 
performance delivered by the system. This is due to the 
growth of overheads in the parallel system either 
because of the application characteristics or certain 
architectural limitations. So, metrics for parallel system 
performance evaluation should quantify this gap 
between available and delivered compute power. 
When we wish to evaluate some techniques or process, 
it is necessary to follow some measurement models 
that provide the mechanisms to conduct this 
evaluation. Some mechanisms for defining measurable 
goals have appeared in the literature like the 
Goal/Question/Metric Paradigm (GQM) [13] that we 
choose for defining our measurement model. The GQM 
paradigm is a mechanism for defining and evaluating a 
set of operational goals using measurements [13]. A 
measurement model is defined into three levels: 
conceptual (goal), operational (question), and 
quantitative (metric).  
 
In this work, we use the Goal Question Metric (GQM) 
paradigm for defining our measurement model.  
Goal: Evaluate the auto-parallelization tools: CETUS, 
PLUTO and GASPARD. 

Questions: 
• What is the parallelization effort of auto-
parallelization tools? 
• How much performance gain is achieved by 
parallelizing a given application over a sequential 
implementation? 
•What is its ability to increase performance as number 
of processors increases? 
Metrics to be considered in order to find out answers 
to these questions are defined as follow: 

3.1 Cost/Effort 

Cost C reflects the sum of the time that each PE 
(processor element) spends solving the problem: 
 
   C= Parallel runtime x the no. of PEs used      (1) 
 
If p=1: The cost of solving a problem on a single PE is 
the execution time of the fastest known sequential 
algorithm. 

3.2 Speedup 

Speedup is a widely used metric for quantifying 
improvements in parallel system performance as the 
number of processors is increased. Speedup is defined 
as the ratio of the time taken by an application of fixed 
size to execute on one processor to the time taken for 
executing the same on processors. However, ideal 
behavior is not achieved because while executing a 
parallel algorithm, the processors cannot devote 100% 
of their time to the computations of the algorithm. For 
Example, part of the time required by the processors to 
compute the sum of n numbers is spent idling (and 
communicating in real systems). Speedup, S, is the 
ratio of the time taken to solve a problem on a single 
PE to the time required to solve the same problem on a 
parallel computer with p identical PEs. 
                                  

S=Ts/Tp  (2) 

3.3 Efficiency  

So, Efficiency is a measure of the fraction of time for 
which a processor is usefully employed. 
Efficiency E is the ratio of Speedup S to the number of 
PEs (p):  
 

E=S/p                              (3) 
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In an ideal parallel system efficiency is equal to one. 
This means that all processor resources are spent on 
the task. But, rarely the case because of the overhead 
associated with coordinating processes. Also some 
parts of a program (such as I/O) might not parallelized. 
So, in practice, efficiency is between zero and one. 

4. Performance evaluation 

The experiments were run on a quad-core Intel Core 2 
Quad Q6600 CPU clocked at 2.4 GHz (1066 MHz FSB), 
with a 32 KB L1 D cache, 8MB of L2 cache (4MB shared 
per core pair), and 2 GB of DDR2-667 RAM, running 
Linux kernel version 2.6.22 (x86-64). The used 
compiler is ICC10.0 [16], which was also used to 
compile the C codes transformed by the three systems.  
 
Table 1.  Benchmarks list for evaluating CETUS, PLUTO 
and GASPARD systems. 
 

Benchmark Description 

MM (Matrix 
Multiply) Computes the product of two matrices. 

FT (Fast 
Fourier 
Transform: 
NAS parallel 
benchmarks) 

FT contains the computational kernel of 
a 3-D fast Fourier Transform (FFT)-
based spectral method. 

LU (Lower-
Upper 
symmetric 
Gauss-Seidel: 
NAS parallel 
benchmarks) 

Solve a synthetic system using three 
different algorithms involving block 
tridiagonal, scalar pentadiagonal and 
symmetric successive over-relaxation 
(SSOR) solver kernels 

MVT (Matrix 
Vector 
Transpose) 

The MVT kernel is a sequence of two 
matrix vector transposes. It is found 
within an outer convergence loop with 
the Biconjugate gradient algorithm. 

 
 
 
The NAS Parallel Benchmark (NPB) suite [23] consists 
of five kernel benchmarks and three pseudo-
applications from the field of computational fluid 
dynamics. The NPB presents an excellent resource for 
this study, in that it provides multiple language 
implementations of each benchmark. Table 1 lists the 
four used parallel benchmarks code for performance 
evaluation. 
 

- Runtime and memory usage 
One aspect of evaluating a compiler infrastructure is its 
efficiency in terms of runtime and memory usage when 
dealing with realistic applications. Runtime consists 
mainly of parallelization time, of which the dependence 
analyzer consumes a major portion. Experiments (table 
2) show that PLUTO has the best performance than 
GASPARD and CETUS for the benchmarks running on 
the same system. Indeed, CETUS and GASPARD are 
written in Java which is slower and requires more 
memory than C or C++. Also, memory usage is driven 
primarily by the complexity of loops analyzed for 
dependence testing, in terms of their nesting levels and 
the total number of array accesses they contain. These 
factors contributed to CETUS and GASPARD taking a 
noticeably longer time to process its input than, for 
instance, the PLUTO compiler.  
 
Table 2. Statistics on loops parallelization with PLUTO, 
CETUS and GASPARD 
 

 Runtime 
(sec) 

Memory usage 
(Mbytes) 

PLUTO 10 70 
CETUS 18 110 
GASPARD 25 140 

 
- parallelization quality 
 

The performance evaluation of auto-parallelization 
infrastructure is based on several criteria like the 
ability to achieve auto-parallelization and to detect 
parallel and nested loops in the sequential code. In this 
work, the GASPARD system is tested with only the 
Matrix Multiply benchmark due to many problems. 
First, only the Multiply Matrix example is available. 
Second, in the available GASPARD version, it is not 
permuted to model our proper parallel application. 
These preliminary obstacles show the difficulty 
founded in using a graphical system. But these systems 
offer an efficient solution to solve the automatic 
parallelisation problems. They reduce a lot the 
complexity of development of the parallel programs by 
their graphic parallel programs modelling in a high 
level abstraction.  Effectively, as shown in Figure 1 
GASPARD performs close to or better than PLUTO on 
MM benchmark, and better than PLUTO in terms of 
achieve automatic parallelization. Figure 2 show that 
GASPARD performance can attain to 80% in terms of 
parallel loops and Nested loop detection, and to 70% in 
terms of analysis dependence. 
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Fig 1. Performance comparison in terms of ability to 
achieve automatic parallelisation between the different 
systems 
 
In the case of FT and MVT, CETUS performs poorly than 
PLUTO. In fact, CETUS is not able to achieve an 
automatic parallelization. In fact, the codes generated 
by CETUS need a manual correction to optimally obtain 
parallel codes. On the other hand, in the LU’s case, 
CETUS performs close to or better than PLUTO. Thus, 
PLUTO successfully performs the majority of 
benchmarks by using “–tile” option in the framework 
execution. In fact, the PLUTO compiler uses the tiling 
technique which is a key transformation in optimizing 
for parallelism and data locality.  
 

0%

20%

40%

60%

80%

100%

120%

parallel loops Detection Analysis dependence Nested Loops Detection

Characteristics

P
e
rc

e
n

ta
g

e
 o

f 
c
o

v
e
ra

g
e
 

PLUTO
CETUS
GASPARD

 
         Fig 2. Performance comparison between 
PLUTO, CETUS and GASPARD systems

As shown in figure 2, PLUTO has a high ability to detect 
nested loops in the contrary of CETUS which poorly 
detect such loops. On the other hand, the tests show 
that CETUS detect parallel loops with 100 percent. 
Thus, CETUS is powerful in terms of parallel loops 
detection. But, PLUTO and GASPARD have the same 
efficiency to detect parallel loops. Moreover, GASPARD 
and CETUS are better than PLUTO in the terms of 
dependence analysis. In fact, CETUS enables automatic 
parallelization by using dependence analysis with the 
dated Banerjee-Wolfe inequalities, array and scalar 
privatization, reduction-variable recognition, and 
induction-variable replacement. These are the 

techniques found to be most important for 
automatically parallelizing compilers. 
In GASPARD’ case, the designer creates a model of the 
application with all the information needed for the 
implementation, that is: without ambiguity and with all 
the details concerning the realization of a parallel 
application. This is the main advantage of the model-
based systems. 
 

Error! 
Bookmark not defined. 

 

- Cost, speedup and efficiency 
 
This section presents a quantitative comparison 
between the three selected tools to better evaluate their 
performance and parallelization quality. Indeed, the 
performance of a compiler is usually measured in terms 
of the execution efficiency of compiled code [21]. The 
results presented in this section are based on metrics 
described in section 3. The experiments are performed 
using OpenMP standard functions that calculate the 
wallclock time between two points in the program. For 
example, OMP GET WTIME(OpenMP) function is 
intrusive in the code to evaluate the speedup. CPU time 
does not include the overhead for parallelization. 
 
 

 
                               
 Fig 3. Execution time for parallel Matrix Multiplication  
 
Figure 3 shows the execution time for parallel Matrix 
Multiplication (size from 256 to 2048) generated by the 
three tools. We notice that, comparing to PLUTO, 
CETUS and GASPARD has the higher execution time in 
all matrix size except in n=1024. Indeed, when we 
execute the codes transformed by GASPARD and CETUS, 
we got a run-time error. But, we could only transform 
successfully by using PLUTO. This is can be explained 
by insufficient of memory. Indeed, a computer can run out 
of memory when it is running multiple programs at once 
or even when running just one or two memory-intensive 
programs. Running out of available memory causes 
an error because the computer cannot 
continue running all of the programs until free memory is 
available. Execution time is not a serious issue for 
modestly-sized programs, but it can be a problem for 
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large benchmarks like LU. Figure 4 shows that when 
increasing the number of cores (multiplying by 2), the 
Cost C decrease executing the LU application in the case  
of both CETUS and PLUTO. So, a super-speedup is 
achieved. 
 

 
 
Fig 4. Cost/Effort C running LU application by varying 
the cores number 
 
Table 3 summarizes the performance of transformed 
codes using the three tools. The results show a good 
speedup attained by different cores numbers. Indeed, in 
the case of MM (n=1024), the three tools have a 
comparable speedup on dual core design. But, on multi-
core design (4 cores), PLUTO has a higher speedup than 
CETUS and GASPARD. In the case of FT application, 
PLUTO and CETUS have a comparable speedup on both 
dual and multi core designs. While, in the case of MVT 
and LU applications, PLUTO is better than CETUS on 
both dual and multi core designs.  
Figure 5 shows the efficiency of the code generated by 
the selected tools in the case of multi-core design (4 
cores). We notice, firstly, that CETUS performs close to 
or better than PLUTO on FT application. Secondly, 
comparing to CETUS and GASPARD, a very high 
efficiency percentage is attained (97,5%) using PLUTO 
in the case of MM application. Also, PLUTO is more 
efficient than CETUS executing LU and MVT application. 
The final comparison list is presented in table 4. 
 
 

 

Fig 5. Efficiency percentage 
 
 

Table 3: speedup comparison 

 
 

Table 4: comparison list (the smaller is better) 
 

 PLUTO CETUS GASPARD 

Runtime  1 2 3 

Memory usage 1 2 3 
Dependency 
analysis 2 1 1 

Parallel loops 
Detection 2 1 3 

Nested loops 
Detection 1 2 3 

Cost/effort 1 2 3 

Speed up 1 2 3 

Efficiency 1 2 3 
 
From the experimental results in this paper, we find 
that only PLUTO can transform all benchmarks codes 
successfully. We conclude also, that CETUS is more 
efficient than GASPARD. But it gives us, in some cases 
error results; sometimes we could not transform 
successfully using CETUS. So, the perfect auto-
parallelizing research compiler is yet to be produced. 
However, there are some cases where auto-
parallelization is perfectly suited. 
 

4. Conclusions 

Parallel programming is not easy to programmers. So, 
some frameworks support the auto-parallelization 
helping them to easily transform sequential codes to 
parallel codes. In this paper, we presented a 
comparison between three auto-parallelization tools 
using a set of criteria. The goal of this assessment was 
to evaluate the current state of the available automatic 
parallelization tools when intended to be used by 

Bench-
mark 

dual core speedup  
(2 cores) 

Multi-core speedup  
(4 cores) 

 Pluto Cetus Gaspard Pluto Cetus Gaspard 
MM 1.9× 1.5× 1.1× 3.9× 3.5× 3× 
LU 1.8× 1.5× - 3.3× 3× - 
FT 1.7× 2.1× - 2.6× 3.1× - 
MVT 1.1× 0.8× - 2.9× 1.9× - 
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software designers to develop parallel applications. The 
comparative study showed that PLUTO is more efficient 
than the other tools; it gave optimal results for all 
benchmarks. The advantage of CETUS was his efficiency 
in terms of dependency analysis and parallel loops 
detection. But, it gave us error results in detecting and 
parallelizing nested loops. GASPARD showed the limit 
of the model-to-source parallelizer comparing to 
source-to-source parallelizer. It was not flexible and 
applicable for all benchmarks. But, it gave tolerable 
results for MM workload. 
One common limit of those auto-parallelization tools is 
the generation of parallel openMP code which depends 
on the OpenMP API, compiler and OS run time support 
to realize task partition. However, such support is 
rarely available in an embedded context where OS is 
not always present [22]. For future work, we will 
propose an automatic accelerator generation flow that 
integrates PLUTO and adapts an application targeting 
the general purpose processor to an embedded 
environment. The choice of PLUTO is based on the 
empirical comparative study presented in this paper.  
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