

Lock-Free Readers/Writers

Anupriya Chakraborty1, Sourav Saha2, Ryan Saptarshi Ray3 and Utpal Kumar Ray4

 1 Department of Information Technology, Jadavpur University Salt Lake Campus

Kolkata, West Bengal 700098, India

2 Department of Information Technology, Jadavpur University Salt Lake Campus

Kolkata, West Bengal 700098, India

3 Department of Information Technology, Jadavpur University Salt Lake Campus

Kolkata, West Bengal 700098, India

4Department of Information Technology, Jadavpur University Salt Lake Campus

Kolkata, West Bengal 700098, India

Abstract
The past few years have marked the start of a historic transition

from sequential to parallel computation.The necessity to write

parallel programs is increasing as systems are getting more

complex while processor speed increases are slowing down.

Current parallel programming uses low-level programming

constructs like threads and explicit synchronization using locks

to coordinate thread execution. Parallel programs written with

these constructs are difficult to design, program and debug.

Also locks have many drawbacks which make them a

suboptimal solution.

Software Transactional Memory (STM) is a promising new

approach to programming shared-memory parallel processors. It

is a concurrency control mechanism that is widely considered to

be easier to use by programmers than locking. It allows portions

of a program to execute in isolation, without regard to other,

concurrently executing tasks. A programmer can reason about

the correctness of code within a transaction and need not worry

about complex interactions with other, concurrently executing

parts of the program.

 This paper shows the concept of writing code using Software

Transactional Memory (STM) and the performance comparison

of codes using locks with those using STM.

Keywords: Parallel Programming; Multiprocessing; Locks;

Transactions; Software Transactional Memory

1. Introduction

Generally one has the idea that a program will run faster

if one buys a next-generation processor. But currently that

is not the case. While the next-generation chip will have

more CPUs, each individual CPU will be no faster than

the previous year’s model. If one wants programs to run

faster, one must learn to write parallel programs as

currently multi-core processors are becoming more and

more popular. The past few years have marked the start of

a historic transition from sequential to parallel

computation. The necessity to write parallel programs is

increasing as systems are getting more complex while

processor speed increases are slowing down. Parallel

Programming means using multiple computing resources

like processors for programming so that the time required

to perform computations is reduced [1].

2. The Readers/Writers Problem

The Readers/Writers Problem of Synchronization can be

described as follows:

An object is shared among many threads, each belonging

to one of two classes:

– Readers: read data, never modify it

– Writers: read data and modify it

Using a single lock on the data object is overly restrictive:

--There are many readers reading the object at once

– Allow only one writer at any point

–We must control access to the object to permit this

protocol.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 180

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Correctness criteria:

– Each read or write of the shared data must happen

within a critical section.

– Guarantee mutual exclusion for writers.

– Allow multiple readers to execute in the critical section

at once.

3. The Readers/Writers Problem using

Locks

3.1 Description

The hardest problem that should be overcome when

writing parallel programs is that of synchronization.

Multiple threads may need to access the same

locations in memory and if careful measures are not

taken the result can be disastrous. If two threads try to

modify the same variable at the same time, the data

can become corrupt. Currently locks are used to solve

this problem. Locks ensure that a critical section,

which is a block of code that contains variables that

may be accessed by multiple threads, can only be

accessed by one thread at a time. When a thread tries

to enter a critical section, it must first acquire that

section's lock. If another thread is already holding the

lock, the former thread must wait until the lock-

holding thread releases the lock, which it does when it

leaves the critical section [2].

In the Readers/Writers problem there are multiple

readers and writers accessing the elements in the same

buffer at the same time. The buffer is of fixed size. In

the examples below we have taken the buffer size as

100000000. The problem is to synchronize these

accesses properly so that when a write operation is

occurring it should not be affected by any other read

or write operation.

3.2 Reader and Writer Threads Code using

Locks

The following code shows the reader and writer

threads using threads and locks which solves the

Readers/Writers problem:

void *reader(void *num_ptr1)
 {

 unsigned char num1,*number_ptr1,

 byte_under_stm1;
 unsigned long k;
 int i;
 structtimevalini_tv;
 number_ptr1=num_ptr1;
 num1=*number_ptr1;

 for((k=(((num1*ARRAY_SIZE)/(NUM_THREADS))));
 k<(((num1+1)*ARRAY_SIZE)/(NUM_THREADS))/2;
 k++)
 {
 pthread_mutex_lock(&mutex);
 printf("The data read is %d\n",arr[rcount[num1]]);
 pthread_mutex_unlock(&mutex);
 }
 pthread_exit(0);
}

void *writer(void *num_ptr)
{
 unsigned long byte_under_stm1,k,ki=0;
 unsigned char num, *number_ptr;
 structtimevalini_tv;
 number_ptr=num_ptr;
 num=*number_ptr;

 for(k=((((num)*ARRAY_SIZE)/(NUM_THREADS)));
 k<((num+1)*ARRAY_SIZE)/(NUM_THREADS)/2;
 k++,ki++)
 {
 pthread_mutex_lock(&mutex);
 arr[rcount[num]]=1;
 printf("The data written is %d\n",
 arr[rcount[num]]);
 rcount[num]++;
 pthread_mutex_unlock(&mutex);
 }
 pthread_exit(0);
}

3.3 Code Explanation

The above program was tested using NUM_THREADS

ranging from 1 to 6 threads (in effect 12 threads are

created, one for reading and one for writing, making up a

total of 6 reader/writer pairs), created to access the values

in array arr. There are two processes, reader and writer

whose functions are respectively, as the names suggest.

The array is divided into several parts depending on the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 181

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

value of NUM_THREADS and the reader/writer pair

accesses the corresponding part of the array.

The reader thread is invoked using the thread ID which is

passed to it as the parameter num_ptr. Based on this

parameter, each thread accesses the corresponding part of

the array. Each element is first locked, thereby entering

the critical section, where no other thread may access the

data being read. Once the data is read, the lock is

released. The writer process works in a similar manner.

In the above program “reader” and “writer” are the two

thread processes for reading and writing elements from

the buffer respectively. Here the array arr is the buffer.

The global array rcount keeps track of the position of

elements in the buffer.

In the thread “reader”, elements are read from the buffer

by the following statements.

 for((k=(((num1*ARRAY_SIZE)/(NUM_THREADS))));
 k<(((num1+1)*ARRAY_SIZE)/(NUM_THREADS))/2;
 k++)
 {
 pthread_mutex_lock(&mutex);
 printf("The data read is %d\n",
 arr[rcount[num1]]);

 pthread_mutex_unlock(&mutex);
 }

In the thread “writer” elements are written into the buffer

by the following statements.

 for(k=((((num)*ARRAY_SIZE)/(NUM_THREADS)));
 k<((num+1)*ARRAY_SIZE)/(NUM_THREADS)/2;
 k++,ki++)
 {
 pthread_mutex_lock(&mutex);
 arr[rcount[num]]=1;
 printf("The data written is %d\n",
 arr[rcount[num]]);
 rcount[num]++;
 pthread_mutex_unlock(&mutex);
 }

The following statement is used to record the time before

the threads are created:

gettimeofday(&ini_tv,NULL);

The same call is also used to record the time when all

threads have just finished their executions.

The total time taken is then calculated and printed using

the following statement:

printf("Total Time Taken = %ld\n", final_tv.tv_sec -

ini_tv.tv_sec);

As it can be seen from the above code snippet, 3 calls

related with the mutex are being used. They are as

follows:

 pthread_mutex_init(&mutex,NULL) is used
for lock initialization.

 pthread_mutex_lock(&mutex) means that
any thread must acquire the lock on mutex
to execute the critical section following this
function.

 pthread_mutex_unlock(&mutex) is used
for unlocking.

In this program, the regions where more than one thread

may access the global array, rcount[] at the same time

are the critical sections. Thus these regions are enclosed

within locks. Hence when a write operation is occurring

in this program it is not being affected by any other read

or write operation.

3.4 Experimental Results

We have taken all the experimental data for the outputs

shown in this paper by running the codes on a machine

which has 6 cores with hyper-threading. Thus, a

maximum of 12 threads can run in parallel.

The experimental results for The Readers/Writers

Problem using locks are presented below:

Number of Reader/Writer Pairs Time Taken (Locks)

1 99

2 52

3 33

4 25

5 19

6 16

Table 1: Experimental Results for the Readers/Writers Problem using

Threads and Locks

The above experimental data has been represented

graphically in Figure 1 and Figure 2 which show the

variation of Time Taken for execution of the code, and

Speedup respectively, with increase in the number of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 182

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

threads for the code of the Readers/Writers Problem using

threads with Locks.

Fig. 1 : Graph showing the Time Taken vs. Number of Reader/Writer

Pairs for the Readers/Writers Problem using Threads with Locks

It can be seen from the above graph that as the number of

reader/writer pairs increases, the time taken for execution

decreases.

Fig. 2 : Graph showing the Speedup vs. Number of Reader/Writer Pairs

for the Readers/Writers Problem using Threads with Locks

We can see that the speedup increases linearly with the

number of reader/writer pairs.

4. The Readers/Writers Problem using STM

4.1 Description

The synchronization problem can also be solved using

STM. If STM is used in a program then we do not have to

use locks in the program. Thus the problems which occur

due to the presence of locks in a program do not occur in

this type of code. The critical section of the program has

to be enclosed within a transaction. Then STM by its

internal constructs ensures synchronization in the

program.

There are 8 categories of calls associated with STM

which have been used in this program. They are as

follows:

 stm_initis used to initialize the TinySTM library

at the outset. It is called from the main thread

before accessing any other functions of the

TinySTM library.

 stm_init_threadis used to initialize each thread

that will perform transactions. It is called once

from each thread that performs transactional

operations before the thread calls any other

functions of the TinySTMlibrary. In this

program it is called from the threads reader and

writer.

 stm_exitis the corresponding shutdown function

for stm_init. It cleans up the TinySTM library. It

is called once from the main thread after all

transactional threads have completed execution.

 stm_exit_threadis the corresponding shutdown

function for stm_init_thread. It cleans up the

transactional thread. It is called once from each

thread that performs transactional operations

upon exit. In this program it cleans up the

threads reader and writer.

 START(0,RW) is used to start a transaction. In

this program it is used in the threads reader and

writer.

 COMMIT is used to close the transaction. In

this program it is used in the threads reader and

writer.

 byte_under_stm1=(unsigned

char)LOAD(&rcount) stores the value of

rcount in byte_under_stm1. In this program it is

used in the threads reader and writer.

 STORE(&rcount, byte_under_stm1) stores

the value of byte_under_stm1 in rcount. In this

program it is used in the threads reader and

writer.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 183

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.2 Reader and Writer Threads Code using

STM

The following code shows the reader and writer threads

using threads and STM which solves the

Readers/WritersProblem:

void *reader(void *num_ptr1)
{
 unsigned char num1,*number_ptr1;
 unsigned long k;
 unsigned long byte_under_stm1;
 structtimevalini_tv;
 number_ptr1=num_ptr1;
 num1=*number_ptr1;

 stm_init_thread();

 for((k=(((num1*ARRAY_SIZE)/(NUM_THREADS))));
 k<(((num1+1)*ARRAY_SIZE)/(NUM_THREADS))/2;
 k++)
 {
 START(0,RW);
 byte_under_stm1=(unsigned char)
 LOAD(&rcount);
 printf("The data read is %d\n", arr[rcount[num1]]);
 STORE(&rcount,byte_under_stm1);
 COMMIT;
 }
 stm_exit_thread();
 pthread_exit(0);
}

void *writer(void *num_ptr)
{
 unsigned long byte_under_stm1,k,ki=0;
 unsigned char num, *number_ptr;
 number_ptr=num_ptr;
 num=*number_ptr;
 stm_init_thread();

 for(k=((((num)*ARRAY_SIZE)/(NUM_THREADS)));
 k<((num+1)*ARRAY_SIZE)/(NUM_THREADS)/2;
 k++,ki++)
 {
 START(0,RW);
 byte_under_stm1=(unsigned char)
 LOAD(&rcount);

 arr[rcount[num]]=1;

 printf("The data written is %d\n", arr[rcount[num]]);
 rcount[num]++;
 STORE(&rcount,byte_under_stm1);
 COMMIT;
 }
 stm_exit_thread();
 pthread_exit(0);
}

4.3 Code Explanation

The program structure of the above code is same as that

of the program for readers-writers problem using threads

and locks. The only difference is that STM is being used

in this code.

In this program, the regions where more than one thread

may access the global array rcount[]at the same time are

the critical sections. Thus these regions are enclosed

within transactions using STM. Hence when a write

operation is occurring in this program it is not being

affected by any other read or write operation.

4.4 Experimental Results

The experimental results for The Readers/Writers

Problem using STM are presented below:

No. of Read/Write Pairs Time Taken (STM)

1 116

2 59

3 36

4 25

5 23

6 18

Table 2 : Experimental Results for the Readers/Writers Problem using

Threads and STM

The above data has been represented graphically in Figure

3 and Figure 4 which show the variation of Time Taken

for execution of the code, and Speedup respectively, with

increase in the number of threads for the code of the

Readers/Writers Problem using threads with STM.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 184

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 3 : Graph showing the Time Taken vs. Number of Reader/Writer

Pairs for the Readers/Writers Problem using Threads with STM

It can be seen from the above graph that as the number of

reader/writer pairs increases, the time taken for execution

decreases.

Fig. 4 : Graph showing the Speedup vs. Number of Reader/Writer Pairs

for the Readers/Writers Problem using Threads with STM

We can see that the speedup increases linearly with the

number of reader/writer pairs.

5. Conclusions

Figure 5 is a combination of Figures 1 and 3 as shown in

previous sections.

Fig. 5 : Graph showing the Time Taken vs. Number of Reader/Writer

Pairs for the Readers/Writers Problem using both Threads with Locks

and Threads with STM

We can see from the above graph that the time taken for

executing the code using threads and STM is almost

equal to the time taken for executing the same code using

threads and locks. Thus, further research is being

undertaken to improve the execution speed of STM.

Similarly, Figure 6 is a combination of Figures 2 and 4 as

shown in previous sections.

Fig. 6 : Graph showing the Speedup vs. Number of Reader/Writer Pairs

for the Readers/Writers Problem using both Threads with Locks and

Threads with STM

From the above graph we can see that the speedup for the

codes using both locks and STM for this problem, are

nearly the same. This is because the times taken for

executing both the codes are also nearly equal.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 185

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

STM has been shown in many ways to be a good

alternative to using locks for writing parallel programs.

STM provides a time-tested model for isolating

concurrent computations from each other. This model

raises the level of abstraction for reasoning about

concurrent tasks and helps avoid many parallel

programming errors.

This paper has discussed how STM can be used to solve

the problem of synchronization in parallel programs, and

in particular, the Readers/Writers Problem of

Synchronization has been solved with Lock-Free Code

using STM. STM has ensured that lock-free parallel

programs can be written. This ensures that the problems

which occur due to the presence of locks in a program do

not occur in this type of code.

 Many aspects of the semantics and implementation of

STM are still the subject of active research. While it may

still take some time to overcome the various drawbacks,

the necessity for better parallel programming solutions

will drive the eventual adoption of STM. Once the

adoption of STM begins it will have the potential to pick

up momentum and make a very large impact on software

development in the long run. In the near future STM will

become a central pillar of parallel programming.

References

[1] [1] Simon Peyton Jones, “Beautiful concurrency”.

[2] Elan Dubrofsky, “A Survey Paper on Transactional Memory”.

[3] Pascal Felber, Christof Fetzer, Torvald Riegel, “Dynamic
Performance Tuning of Word-Based Software Transactional
Memory”.

[4] http://en.wikipedia.org/wiki/Transactional_memory

[5] James Larus and Christos Kozyrakis. “Transactional Memory”

[6] Pascal Felber, Christof Fetzer, Patrick Marlier, Torvald Riegel,
“Time-Based Software Transactional Memory”

[7] Tim Harris, James Larus, Ravi Rajwar, “Transactional Memory”

[8] Mathias Payer, Thomas R. Gross, “Performance Evaluation of
Adaptivity in Software Transactional Memory”

[9] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill, David A. Wood., “LogTM: Log-based Transactional
Memory”

[10] Dave Dice , Ori Shalev , Nir Shavit., “Transactional Locking II”

[11] http://tmware.org

[12] Maurice Herlihy, J. Eliot B. Moss, “Transactional
Memory:Architectural Support for Lock-Free Data Structures”.

[13] Martin Schindewolf, Albert Cohen, Wolfgang Karl, Andrea
Marongiu, Luca Benini, “Towards Transactional MemorySupport
for GCC”.

[14] Virendra J. Marathe, Michael F. Spear, Christopher Heriot,Athul
Acharya, David Eisenstat, William N. Scherer III, Michael L.
Scott, “Lowering the Overhead ofNonblocking Software
Transactional Memory”.

[15] Utku Aydonat, Tarek S. Abdelrahman,Edward S. Rogers Sr.,
“Serializability of Transactions inSoftware Transactional
Memory”.

[16] Maurice Herlihy, Nir Shavit, “The Art of Multiprocessor
Programming”.

[17] Brendan Linn, Chanseok Oh, “G22.2631 project report: software
transactional memory”.

[18] Ryan Saptarshi Ray , “WritingLock-FreeCode using Software
Transactional Memory”.

[19] http://en.wikipedia.org/wiki/Software_transactional_memory

[20] http://research.microsoft.com/~simonpj/papers/stm/

[21]http://www.haskell.org/haskellwiki/Software_transactional_memor

y.

First Author is currently a 3rd year student of B.E. (I.T.) in
Jadavpur University, Kolkata, West Bengal, India.

Second Author is also a 3rd year student of B.E. (I.T.) in
Jadavpur University, Kolkata, West Bengal, India.

Third Author is a research scholar in the Department of
Information Technology, Jadavpur University, Kolkata, West
Bengal, India.

Fourth Author is an Associate Professor in the Department of
Information Technology, Jadavpur University, Kolkata, West
Bengal, India.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 186

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Transactional_memory
http://tmware.org/
http://www.haskell.org/haskellwiki/Software_transactional_memory
http://www.haskell.org/haskellwiki/Software_transactional_memory

