
A Metric Based Approach to Extract, Store and Deploy Software

Reusable Components Effectively

Muhammad Ilyas1, Mubashir Abbas2, Khansa Saleem3

1Department of Computer Science and Information Technology, University of Sargodha

Sargodha, Punjab, Pakistan

2Department of Computer Science and Information Technology, University of Sargodha

Sargodha, Punjab, Pakistan

3Department of Computer Science and Information Technology, University of Sargodha

Sargodha, Punjab, Pakistan

Abstract

Software reusability is a valuable methodology for quality,

economical and timely software development. The effective

use of reusability gives benefits in the form of less time,

efforts and cost for quality software development.

Reusability also helps to diminish the risk associated with

software development and success. Due to inevitable

payback, reusability has grown up to be most accepted

practice for software development. But reusability handling

methods and techniques are not well organized, so need is to

formalize the reusability process in order to get its actual

benefits in form of time, cost and effort savings. Formal and

structured approach is required in reusability practices

because reusability observation, extraction, classification

and deployment methods are not disciplined. In this paper a

framework is suggested to make reusability process formal

and organized. In this approach quality earning criteria are

defined at each level of reusability process to observe the

need of reusability, extracting reusable components,

classifying them and then integrating with new systems

efficiently. The aim is to formalize each activity of

reusability process to get satisfactory and quality results.

KEYWORDS: Software Component Assessment, Software

Reusability, Software Risk, Reusability Process.

1. Introduction

Reusability methodology has turn into a productive

tool for software development as it reduces time, cost

and work required for the software development [1, 2,

3].Reusability increases reliability, quality and

productivity of software products by using already

existing tested components [1, 6 , 5]. Developers

consider it most favorable choice for economical

development of business and technical projects

[1].Reusability ensures within time delivery of

software products and minimizes risk involved with its

success [2, 4]. Reusability boosts up confidence of

developing team as they have previously groundwork

in the current domain [2]. Reusability gives benefits in

the form of portability, maintainability and

productivity improvements [1, 4]. Due to inevitable

paybacks reusability is widely used for cheaper and

timely software development purposes. But techniques

for its observability, suitability, selection and

deployments are not well organized, so need is to

apply structured and formal approach in the

implementation of reusability to acquire real benefits.

This study aims to formalize the all activities

performed during reusability life cycle [1].It will help

to obtain satisfactory and quality results. For this

purpose the reusability life cycle is divided into three

stages: Reusable Component’s Extraction, Reusable

Component’s Storage and Reusable Component’s

Deployment. Certain metrics are defined at each stage

aiming quality and productive output from each stage.

Meticulous meditation is given to the extraction of

quality software components that can be reused for

productive software development purpose. Than these

reusable components are stored and classified in the

reuse repository on the basis of certain characteristics.

These characteristics make searching and retrieval

process efficient [7]. At the end Pre Adopt test is

conducted to find the most suitable and trusted

reusable components according to the new system

requirements [3].

The next section constitutes related work followed by

a proposed process and conclusion and future work.

2. Related Work

Al-badareen [1] proposed framework consists of

extraction, adaptation, storage, pre–store and pre-use

process. The extraction of reusable components is

performed during develop for-use process, which is

focused on that how to extract suitable information for

a reusable component. The storage process is

performed to store extracted reusable components in

the library, so they can be accessed easily for reusable

purposes. The adaptation process is how to pick a

suitable component according to new system

requirements. Pre-store is the process to evaluate and

enhance reusable components according to certain

standards to satisfy library requirements. Pre-store

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 257

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

process evaluates reusable components on the basis of

co-existence, compliance, generality and adaptability

characteristics. The pre-use process is the process to

evaluate and modify the reusable components,

retrieved from the library to satisfy the new system

requirements. Three main characteristics: suitability,

accuracy and compliance are considered and evaluated

in pre-use process. Both pre-store and pre-use

processes include a reusability test. Reusability test

checks for certain library conditions to be fulfilled by

the reusable component during pre-store process. In

pre-use process, reusability test evaluates the reusable

components according to certain requirements of new

system.

G. Sindre [7] has introduced reboot approach to deal

with reusability issues. Reboot qualification model is

used to ensure existence of quality reusable

components in the library. Portability, flexibility,

understandability and confidence metrics are used for

evaluation of reusable components. It ensures that

quality components have qualified for storage in the

library. With large libraries having large numbers of

reusable components of different domains, a proper

way is required for efficient retrieval of these reusable

components. For this purpose reboot used a faceted

classification scheme to classify these reusable

components in the library. He made use of four facets

abstraction, operations, operates on and dependencies

for the classification of reusable components. Also

some other attributes like who developed it, when it

was developed and how big it is, are considered for

storing and classifying the reusable components in the

library.

Fazl-e-amin [6] developed the reusability attribute

model and metrics to measure the attributes of

reusable components. This model defines those

attributes of an aspect oriented component that

contributes to its reusability. Flexibility,

maintainability, portability, scope coverage,

understandability and variability were identified as the

attributes of the given model.

Fig.1 RESAD Framework

3. Proposed Framework

Although Reusability has grown up into a fruitful

practice for software development but its

implementation techniques are not systematic and

formal. Formal approach is pretty required in

reusability observation, extraction, classification and

deployment processes. To overcome limitations in

usage of reusability, a frame work is purposed in this

paper. Aim is to formalize the reusability process at

each step that will help to gain quality results from

each stage of reusability life cycle [1].

According to this purposed approach reusability life

cycle is divided in to three stages Reusable

Component’s Extraction, Reusable Component’s

Storage and Reusable Component’s Deployment

shown in fig. 1.

At each stage certain metrics are defined, which

component has to be fulfilled to move on to the next

stage during reusability life cycle. At Extraction stage

components that can be reused are extracted. These

reusable components must be capable of some

particular characteristics to become an effective

reusable component [1]. When a reusable component

is selected then it needs to be store into the reusable

repository from where it can be retrieved for reuse

purpose [1, 7]. So searching and retrieval of reusable

components can be easily made if components are

properly stored. Third stage of this framework is

deployment process in which a component of similar

functionality is fetched from the Reuse Repository.

Now this fetched component is assessed for suitability

with new system’s requirements. If it satisfies the new

system requirements then it is adopted and put for Pre

Adopt test for final selection [1]. After using metrics

at each stage quality results are anticipated aiming to

get true benefits of reusability in the form of less time,

cost and work for the quality and productive software

development.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 258

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4. Extraction of Reusable Components

Reusability has become an ideal methodology for

software development as it helps to develop quality

software components with minimum cost and effort. It

is possible when there is some repository of reliable,

portable and qualitative components that can be reused

into a new system. In this way time, cost and effort is

decreasing and productivity of the new system is

increasing [1, 3, 5, and 6]. So there must be a formal

process to extract the components that can be reused.

Extraction of reusable components is the process of

finding components that can be reused. This selection

is made on the basis of some particular characteristics

shown in fig.2. These characteristics are defined to

produce healthy reusable components. In this study

following metrics are defined that a software

component must fulfill in order to be select as a

reusable component.

Fig. 2 Extraction Process

4.1. Versatility

Versatility characteristic of software component is the

ability to deal with different type of platforms

efficiently. It means that entire software component

can perform its functionality independent of hardware

and software constraints [1, 7]. Component is

providing support to wide range of machines on which

different operating systems are running.

Versatility of software component also defines that it

contains support or compatible with different

programming languages. Component with versatility

feature is considered more flexible and portable, has

the great chance to be reused [7].

Here Versatility Metric is being used as combination

of Generality and Portability Metric of software

components. To determine versatility of software

components both generality and portability metrics

will be analyzed. To measure versatility characteristic

following metrics are proposed:

4.1.1 Generality Metric

According to W. J. Salamon generality of software

can be measured by following metrics [8].

• Multiple Usage Metric

A module is more general if it is referenced by more

than one module. Higher the value of entire metric

denotes maximum generality of software component.

Total	no. of	modules	refferenced	by	more	than	one	module
	Total	no. of	modules

This relation can be denoted mathematically as

follows:

��� � ∑ ������
�

∴ ����
� 1	, #$��	�%�&'()�	(*	+����+�&�,	-.	/)+�	'$0�)��	/),%1�

0	,)'$�+#(*�

Where i=1, 2 …n & n= Total no. of modules

(1)

• Mixed Function Metric

A function is considered to be Mixed Function if it

performs more than one task like I/O as well as

processing operation. Higher value of this metric

provides maximum generality.

Total	no. of	modules	with	mixed	function	property
	Total	no. of	modules

Mathematical form of this relation is:

�78 � ∑ 	�(9���
�

∴ �(9� � 1	, #$��	�%�&'()�	:�+�)+/*	/)+�	'$0�)��	'0*;
0	,)'$�+#(*�

Where i=1, 2 …n & n= Total no. of modules

(2)

• Data Volume Metric

A module that can process unlimited range of inputs is

considered more general.

Total	no. of	modules	with	data	volume	property
	Total	no. of	modules

Mathematically it can be represented as:

=>? � ∑ @/_B(/('���
�

∴ @/_B(/('� � 1	, #$��	�%�&'()�	(*	,0'0	C)1%/�	1(/('�,
0	,)'$�+#(*�

Where i=1, 2 …n & n= Total no. of modules

(3)

• Data Value Metric

A module is more general if it can process long range

of data items.

Total	no. of	modules	with	data	value	property
	Total	no. of	modules

Mathematical representation of this relation is:

=>D � ∑ @1_B(/('���
�

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 259

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

∴ @1_B(/('� � 1	, #$��	�%�&'()�	(*	,0'0	C01%�	1(/('�,
0	,)'$�+#(*�

Where i=1, 2 …n & n= Total no. of modules

(4)

• Redefinition of Constants Metric

To change the function of modules constants should

not be redefined.

No. of	constants	that	are	redefined
	Total	no. of	constants

Mathematical form of this relation is:

FG7 � ∑ �,��H�
F

∴ �,�� � 1	, #$��	&)�*'0�'	(*	+�,��(��,
0	,)'$�+#(*�

Where i=1, 2……. c & c= no. of constants

(5)

K.K Aggarwal presented the idea of General

Programming using templates. According to him

templates are more generic and can be used with

different data types [9].

Templates can be classified in to two types Function

Templates and Class Templates.

• Function Template Metric

To make behaviour of a function general, to be

operate on each given data type function templates are

used.

No. of	fuctions	using	function	template
	Total	no. of	functions

Mathematically it can be represented as:

JK? � ∑ LJ'���
�

						
∴ LJ'� � 1	, #$��	�%�&'()�	(*	%*(�M	�%�&'()�	'�/:10'�	

0	,)'$�+#(*�

Where i=1, 2……… n & n= Total no. of functions

(6)

• Class Template Metric

To make behaviour of a class general, to accept

objects of particular data type class template are used.

No. of	classes	using	class	template
	Total	no. of	classes

Mathematical form of this relation is:

FK? � ∑ LF'�H�
� 				

	∴ LF'� � 1	, #$��	&10**	(*	%*(�M	&10**	'�/:10'�	
0	,)'$�+#(*�

Where i=1, 2………. C & C= no. of Classes

(7)

Probable effect of all above described metrics about

generality of software component is mentioned in

following table.

Table 1: Effect of Generality Metrics

Metric Name

Metric

Symbol

Value Reusability

Probability

Multiple

Usage

MUS High High

Mixed

Function

MFN Low High

Data Volume DVM Low High

Data Value DVL Low High

Redefinition

of Constants

CRF Low High

Function

Template

FTM High High

Class

Template

CTM High High

4.1.2. Portability Metrics

W. J. Salamon made use of following metrics to

measure portability characteristic of software

components [8].

Software Independence Measurement

• Compatibility Metric

No. of operating systems with software is compatible

F?N � ∑ OPQRQ
�

∴ S*� � 1	, #$��):�+0'(�M	*.*'�/	(*	&)/:0'(-1�
0	,)'$�+#(*�

Where i=1, 2………n & n= no. of operating systems

(8)

• System Utilities Metric

Total no. of system utility utilized. (To measure S/W

dependability)

T�U � ∑ L'.���VW
�

∴ UtyY � 1	, #$��	*.*'�/	%'(1('.	(*	-�(�M	%'(1(Z�,
0	,)'$�+#(*�

Where i=1, 2………n & n= no. of operating system utilities

(9)

• Standard Constructs Metric

Checks for Common, standard subsets of language

used:

Total	no. of	modules	using	non	standard	constructs
	Total	no. of	modules

Mathematical form of this relation is:

TH8 � ∑ LT(�M	_[*',���
�

∴ L*(�M_[*',�
� 1	, #$��	/),%1�	(*	%*(�M	�)�		*'0�,0+,	&)�*'+%&'*

0	,)'$�+#(*�

Where i=1, 2……… n & n= Total no. of modules

(10)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 260

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Hardware Independence Measurement

• Open system Metric

Are the programming languages and tools (e.g.,

compilers, DBMS, and user interface) available on

other machines? A value of 1 means yes, 0 means No.

Mathematically this property can be represented as:

	S�U
� 1	, #$��	:+)M+//(�M	10�M%0M�*	0�,	'))1*	0+�	0C0(10-1�

0	,)'$�+#(*�

(11)

• I/O References Metric

Total	no. of	modules	making	IO	references
	Total	no. of	modules

�_O � ∑ ������
�

∴ ���� � 1	, #$��		/),%1�	(*	/0;(�M	`/S	+���++��&�
0	,)'$�+#(*�

Where i=1, 2……… n & n= Total no. of modules

(12)

• Word/Character Size Metric

Total	no. of	modules	not	following	convention
	Total	no. of	modules

b�c � ∑ [d_F)�C���
�

∴ [d_F)�C� � 1	,#$��	/),%1�	(*	�)'	�)11#)(�M	&)�C��'()�
0	,)'$�+#(*�

Where i=1, 2……… n & n= Total no. of modules

(13)

Anticipated outcome of above metrics measuring

Generality of software component is mentioned below:

Table 2: Effect of Portability Metrics

4.2 Clarity

Clarity of the software components is the

characteristic which states that component is clear and

well understood in its vision, scope and functionality

[6, 7]. A component is understandable if it is readable.

Then it supports its understandability which enhances

analyzability and changeability of software component.

Bajeh has suggested following metric to measure

readability of software component which is directly

connected with it clarity and understandability [10].

• Indentation Metric

No. of	lines	of	code	properly	indented
	No. of	lines	of	code	expected	to	be	indented

Mathematical form of this relation is:

[D_ � ∑ e(,�D�
∑ f(,�D�

∴ e(,� � 1	,#$��	1(��)�	&),�	(*	:+):�+1.	(�,��'�,
0	,)'$�+#(*�

∴ f(,� � 1	, #$��	1(��)�	&),�	(*	�9:�&'�,	')	-�	(�,��'�,
0	,)'$�+#(*�

Where i=1, 2……… L & L= Total no. of lines of codes

(14)

• Comments Metric

No. of	lines	of	code	commented
	Total	no. of	lines	of	code

Mathematically it can be represented as:

[DH � ∑ F/'�D�
B

	∴ F/'� � 1	, #$��	1(��)�	&),�	(*	&)//��'�,	
0	,)'$�+#(*�

Where i=1, 2……… L & L= Total no. of lines of code

(15)

Anticipated effect of clarity metrics is described in

following table.

Table 3: Effect of Clarity Metrics

Metric Name

Metric

Symbol

Value Reusability

Probability

Indentation

Metric

NLI High High

Comments

Metric

NLC High High

4.3 Reliability

 Reliability characteristic of software component

states that entire component is a confident component.

It has performed its functionality satisfactory without

any failure in different environments at different times

[1, 7]. Reliability of software components can also be

defined as the entire component is capable of excellent

quality results in various circumstances without any

exception that is associated with quality and

performance decreasing.

Mathematically it can be represented as:

No. of	time	used
No. of	time	failure	is	reported

�DU � ∑ J1+�K�	
d

	∴ J1+� � 1	,#$��	�0(1%+�	(*	+�:)+'�,
0	,)'$�+#(*�

Where i=1, 2……… T & T= Total no. of time used

(16)

Metric Name

Metric

Symbol

Value Reusability

Probability

Compatibility CMP High High

System

Utilities

USY Low High

Standard

Construct

SCN Low High

Open System OSY Yes High

I/O Reference RIO Low High

Word/

Character Size

WSZ High High

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 261

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.4 Standardization

Standardization characteristic of software component

declares that component is developed in view of

standard software engineering rules and practices [1].

These rules are necessary to be followed for standard

and quality software products developments.

In other words it is the certificate held by the software

products that they can be reused for satisfactory

results.

Mathematical representation of this metric is as

follows:

TKg � 1	, #$��	&)/:)���'	(*	�)11)#(�M	*)�'#0+�	*'0�,0+,*
0	,)'$�+#(*�

(17)

5. Storage and Classification of Reusable

Components

During extraction process, candidates that are selected

as reusable components needs to be store somewhere

from which they can be retrieved and accessed easily

[1]. So there must be a proper way to store and

classify the software components. Now it will be easy

to access and retrieve them with minimum effort and

time that are the focal benefits of the reusability

methodology [7].

In this purposed approach components that are

selected as reusable components are classified on the

basis of some features shown in fig. 3.

Fig. 3 Storage and Classification Process

5.1 Descriptions

Description attribute of classification process contains

information about name and type of reusable

component.

• Name attribute specifies the name of reusable

component.

• Type attribute defines whether reusable

components is requirement document, design

template , source code, test case or else one

belongs to SDLC phase[7].

5.2 Scope

Scope attribute of classification process provides

details about range of hardware and software.

• Hardware attribute specifies the series of

machines where this component can be run to

perform the prescribed task.

• Software attribute specifies the range of operating

systems that provide support to entire component

to perform its functionality.

5.3 Supportability

Supportability attribute of classification process

contains two attributes, Support To and Support By.

• Support To attribute defines the software category

to which it belongs. Software categories can be

system software, application software, embedded

software etc.

• Support By attribute defines the set of compatible

programming languages.

6. Assessment Process

Assessment process is the activity during reusability

life cycle in which reusable components are evaluated

and analyzed according to the new system

requirements [1, 7].

The aim is to find the most suitable component for the

given requirement. There is possibility that more than

one reusable component can be in the repository for

the given requirements. In this situation the task is to

select the best component that is most suitable to the

given requirements [7].

Fig.4 Assessment Process

In this purposed approach this task is performed by

Assessment Process. It selects most suitable

component from the repository for the given

requirements. Assessment is performed on the basis of

metrics described in fig. 4:

6.1 Maximum Similarities

The reusable component, having maximum similarity

with given requirements is fetched from the repository.

The selected component can be the most suitable

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 262

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

choice to carry out the given task efficiently due to the

maximum similarities with given requirement.

Mathematical form of this relation is as follows:

No. of	features	available
No. of	features	required

��? � ∑ J'+�7�
J 	

∴ J'+� � 1	, #$��	+�i%(+�,	��0'%+�	(*	0C0(10-1�
0	,)'$�+#(*�

Where i=1, 2……… F & F = Total no. of features

(18)

6.2 Minimum Modifications

Assessment Process fetches reusable component from

repository which is requiring minimum modifications

to meet new system requirements. The selected

component with minimum modifications is demanding

less efforts, time and cost to perform required

functionality.

Minimum Modification metric is compliment of

Maximum Similarities metric. Mathematically this

relation can be shown as:

Mkl � ~Mno

(19)

7. Adaptation Process

The assessment process provides components having

maximum similarities and minimum modifications to

the given requirements. Now this component is most

suitable for integrating with new system. But still this

component has to cross Pre Adopt test. Pre Adopt test

consists of characteristics specifically belongs to new

system requirements. These characteristics evaluate

that whether the selected component is suitable or not

to use in the new system [1].

Fig. 5 Pre Adopt Test

7.1 Compatibility

Compatibility metric of Pre Adopt Test evaluates that

selected component is compatible with new system. It

is and easier job to adjust it into the new system and it

can perform required functionality without any

complication.

F?N � 1	, #$��	&)/:)���'	(*	&)/:0'(-1�	#('$	��#	*.*'�/
0	,)'$�+#(*�

(20)

7.2 Integration

Integration metric of Pre Adopt test analysis that

selected component from the reusable repository is

easy to integrate with new system. Proper interfaces

are available for integrating with other systems. This

attribute focuses that overall reusing cost and effort is

less than development cost and effort of newly

developed component.

`8K � 1	, #$��		(�'�+�0&�	�)+	(�'�M+0'()�	(*	0C0(10-1�
0	,)'$�+#(*�

(21)

7.3 Size

Size metric of Pre Adopt test observes that the size of

selected reusable component. It will observe that

whole component or some part of it is needed to fulfill

given requirement.

Sqr � 1	, #$�/	�%11	&)/:)���'	(*	+�i%(+�,
0	, #$��	:0+')�	&)/:)���'	(*	+�i%(+�,

(22)

7.4 Quality

Quality metric of the Pre Adopt Test determines the

quality of selected component. Quality metric depends

upon Maximum Similarities Metric, Compatibility

Metric and Integration Metric. Positive values of these

metrics ensure that selected component is economical

and trusted component for subsequent usage.

Mathematical relation between Quality and above

mentioned metrics can be shown as follows:

Qtu � Mno ∧ Cox ∧ Ilt

(23)

8. Conclusions and Future Work

Reusability methodology has grown up into a

productive tool for economical, quality and timely

software development. Effective use of reusability

improves quality, productivity and maintainability of

the software products. But there is need of formal and

systematic approach in the use of reusability

methodology. This formalism is aiming earning of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 263

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

actual benefits of reusability in the form of less time,

cost and effort.

In this context, a framework is purposed to adopt

formalism in the reusable component life cycle. This

framework consists of three stages: Extraction,

Storage and Deployment of reusable components.

Extraction stage extracts the quality based reusable

components during software development life cycle.

Now this reusable component can be reused for

similar kind of problem. Storage Stage classifies and

stores these reusable components. After this they can

be accessed and retrieved easily. Assessment Process

evaluates the reusable component according to new

system requirements and finds the most suitable

component. In deployment stage Pre Adopt test is

conducted for the final selection. After this selected

reusable component is integrated with new system.

All these tasks are performed on the basis of particular

metrics at each level of reusability life cycle.

Our future work is aimed at validation of metrics used

in the purposed framework to measure these attributes

in different conditions. Prototype of this framework is

also under construction, which is the foremost goal of

future work.

9. References

[1] A. B. AL-Badareen, M. H. Selamat and M. A. Jabar

“Reusable Software Component Life Cycle”

International Journal of Computers, Vol.5, Issue 2

(2011), pp. 191-199.

[2] G. Singaravel, V. Palanisamy and A. Krishnan

“Overview Analysis of Reusability Metrics in Software

Development for Risk Reduction” International

Conference on Innovative Computing Technologies

(ICICTI), February, 12-13 (2010), Tamil Nadu, India.

[3] R. Kamalraj, B. G. Geetha, and G.Singaravel “Reducing

Efforts on Software Project Management using Software

Package Reusability” IEEE International, Advance

Computing Conference, March, 6-7 (2009), pp.1624-

1627, Patiala, India,

[4] P. S. Sandhu, Aashima, and P.Kakkar “A Survey on

Software Reusability“2nd International Conference on

Mechanical and Electrical Technology (ICMET),

September, 10-12 (2010)

[5] S. Singh, M. Thapa, and S. Singh, et al. “Software

Engineering, Survey of Reusability Based on Software

Component” International Journal of Computer

Applications (0975 – 8887) Vol. 8– No.12, October

(2010), pp.39-42.

[6] F. Amin, A. K. Mahmood, and A. Oxley “A Proposed

Reusability Attribute Model for Aspect Oriented

Software Product Line Components” Information

Technology (ITSim), International Symposium, June,

(2010).

[7] G. Sindre E, A. Karlsson, and T. Staalhane “A Method

for Software Reuse through Large Component Libraries”

Fifth International Conference on Computing and

Information. Proceedings ICCI ‘May (1993).

[8] W. J. Salamon and D. R. Wallace “Quality

Characteristics and Metrics for Reusable Software”

Preliminary Report, U.S. Department of Commerce,

(1994).

[9] K. K. Aggarwal, Y. Singh and A. Kaur, et al. “Software

Reuse Metrics for Object-Oriented Systems”

Proceedings of the 2005 Third ACIS Int'l Conference on

Software Engineering Research, Management and

Applications (SERA’05), (2005).

[10] A. O. Bajeh. “A Novel Metric for Measuring The

Readability of Software Source Code”, Journal of

Emerging Trends in Computing and Information

Sciences. Vol. 2. No. 10. October (2011), pp.492-497.

Muhammad Ilyas received a Master degree in Software

Project Management in 2004 from National University of

Computer and Emerging Sciences, Lahore and a Doctor of

Informatics from Johannes Kepler University, Linz Austria

in 2010. His research interests include Software Engineering,

Design Pattern and knowledge base systems. He is currently

an assistant professor in the Department of Computer

Science and Information Technology at the University of

Sargodha, Pakistan.

Mubashir Abbas is a student of the Master of Science in

Computer Sciences at the University of Sargodha. He has

already completed his BS 4 year degree in computer

sciences. His research interests include Software

Engineering, Software Reusability and other topics.

Khansa Saleem is a student of the Master of Science in

Computer Sciences at the University of Sargodha. Her

research interests include Software Engineering, Semantic

searches and other topics.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 264

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

