
An Expressive Role-based Approach for Improving Distributed

Collaboration Transparency

Abdullah O. Al-Zaghameem
1
 and Mohammad Alfraheed

2

1
 Department of Mathematics and Computer Science, Tafila Technical University

Tafila, 66110, Jordan

2
 Department of Mathematics and Computer Science, Tafila Technical University

Tafila, 66110, Jordan

Abstract
This paper presents an approach for applying the Remote Role-
Playing (RRP) concepts in the development of Distributed
Collaborative Applications (DCAs) that use the collaboration-
based (role-based) design. The paper studies a programming

model called Object Teams (OT), which aims at implementing
this design for the object-orientated languages. Then, it
introduces the RRP for improving the DCAs modularity
through mapping the fundamentals of the OT model to
distributed environments. The approach is demonstrated
through developing a simple case study.

Keywords: Distributed collaborative application (DCA);
DCA Modularity; Role-based design; Object Teams (OT)

1. Introduction

A Distributed Collaborative Application (DCA) could
be defined as a group of separated programs which are
executed on several network nodes to achieve a shared
goal. The demand to smoothly design and implement
DCAs is highly increased as the complexity of the
development of these applications has increased too. The
main complexity in the development of DCAs is the
decomposition of system functionalities into separated
components [3]. Recently, the Aspect-Oriented
Programming (AOP) proves itself as a promising
technique to improve the quality of software by
decreasing the level of code scattering and tangling [2] [4].
As a consequence, AOP concepts are applied in various
software engineering fields. For instance, several
approaches have been developed like Tako-approach [6]
(a black-box approach) and AO-CVE - approach [1], to
improve the modularity of the DCAs by separating the
collaborative functionalities (CFs) of components from
the application core functionality.

In the context of collaboration modularity, the Object-
oriented Collaboration-based Design (OOCBD) describes
a methodology for decomposing object-oriented
applications into a set of classes and a set of collaboration
modules [7]. The AOP-based approaches lack the
appropriate module for expressing collaboration modules.
One of the recent approaches that adopt the OOCBD is

Object Teams (OT) [5]. The OT programming model
offers a Role-based technique [9] [10]. Role is one of the
foundation concepts for building collaborative
applications [8]. .

The OT model captures collaborations in new modules
called Teams, and separates the collaborative
functionality of application objects inside modules called
Roles [5 and 14]. An object in a collaborative application
participates by playing a role in the collaboration via
Role-playing process [11]. The OT model has many
features; the capability to decompose collaborative-based
applications in modules in expressive and modular way.
Moreover, offering an integration foundation between the
AOP concepts and the Object-orientation. The main
contribution of this research is to map the OT’s features to
distributed environments. The realization of this mapping
improves the DCAs modularity and offers expressive
representation of the CFs; hence simplifies DCA
composition. In addition, the mapping assists developers
to construct easy to develop, evolve, and maintain DCAs.

In this paper, the Remote Role-Playing (RRP) is
introduced as an approach to enable the distributed object-
oriented application components to play the roles of
“teams” remotely (i.e. in distributed environment), while
preserving the semantics of the OT role-playing. The
team module in RRP (called remote team) is used to
represent the context of the collaboration, which enables
the dynamic management of collaboration activities like
activating/deactivating objects participation. The role
modules (called remote roles), on the other hand, are used
to capture the CFs of application components in
collaborations. The utilization of modularity of
collaboration-based design in RRP facilitates resolving
primary collaborative problems like conflict resolution
[12] and early conflict resolution [13]; because remote
roles intercept the CFs of application objects before they
are employed in collaboration.

The paper is organized as follows: in Section 2, a
simple collaborative application will be developed as a
case study. Section 3 presents an overview of the OT
model, and highlights its key features. Section 4 presents
the RRP approach; which maps OT features to distributed
environments. The case study of Section 2 will be used to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 61

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:aoz_0202@yahoo.com

CollPainting

CoPainter
R

T

Painter

-painterID: String
..

+generateShape(Shape s)
+paint(Shape s):void
+prepareGUI():void

..

+paintersList:List

+getPaintingStatistics():void

..

+collPaint (Shape s):void

collPaint after paint;
basePaint(Shape s) paint(Shape s);
String getID() get String painterID;

..

playedBy

+paintMe (..):void

..

..

Shape

1

0..1

0..*

0..*

Fig.4 Modularizing the CBD of “painting collaboration” in OT.

demonstrate the RRP. The section addresses the
requirements of accomplishment the mapping process and
emphasizes the features offered by RRP. In Section 5, an
evaluation discussion will be held for the performance of
RRP. Section 6 discusses the related works, and in
Section 7 the conclusions.

2. Case Study: Simple Painting Collaboration

In this paper, the following simple collaborative
scenario will be used to demonstrate the distributed
collaboration based on remote role-playing: Consider a
collaboration of multiple users for drawing a shared
“painting”. Using the object-orientation model, the
following primary application entities could be
recognized: the painter (who performs drawing), the
shapes which a painter can draw, and the place on which
shapes could be drawn. In the world of patterns, the
Model-View-Controller pattern fits best the design of this
application. The painter (the Controller) works on a set of
shapes (the Model). The controller can create and add
shapes on a graphical interface (View). Fig. 1 illustrates
the UML class diagram of this composition. Java
programming language is used to implement the case
study as shown in Fig. 2. The figure illustrates a code
snippet of the implementation of Painter class.

Inspecting the code in Fig. 2, the method paint is
recognized as a Collaborative Functionality (CF). That is,
it points out to the part of painter object’s behavior in the
collaboration processes. Depending on object-oriented
Collaboration-based Design (CBD), the “painting
collaboration” crosscuts painters’ functionality at paint
method. Fig. 3 shows the CBD, where CollPainting (the
name of our painting collaboration) crosscuts Painter
class.

In OT model, the intersection between Painter class
and CollPainting collaboration is the role which Painter
objects can play in that collaboration. The OT model
captures the CollPaining collaboration in a team module.
It captures the CF of Painter class in the team within role
module. For modeling purposes, the OT model uses UML
notions to model collaborations as an integration of
package and class diagrams. Fig. 4 illustrates the OT
representation of “collaborative painting” application. In

this way, the CF of Painter class is captured in the
CoPainter role.

A Team module in OT/J [14] (the programming
language implementing the OT model in Java) is a first-
class entity. Thus, it can declare attributes and methods
(see Fig. 4), extends other teams and, most importantly, it
can be instantiated. Likewise, roles can have their own
attributes and methods.

The OT model organizes the collaborative relationship
between teams and application classes (called bases)
through a high expressive relationship called playedBy.
The “playedBy” relationship selects one base class to play
exactly one role in any specific team. At runtime, it binds
base objects to role instances by the mediation of team
instance.

2.1 The Collaborating Process

To facilitate application base objects participation in
teams, the “playedBy” relationship establishes two types
of communication between bases and their roles: the first
one is called Callin Method Binding (CIMB), which
enables base objects to call into role instances specific
methods after, before, or in replacement of their methods.
For example, the expression {collPaint after paint;},
shown in Fig. 4, is a CIMB that instructs Painter objects
to call the method collPaint after they call their paint
method. The method collPaint is named as role’s callin
method. In fact, the OT model introduces the CIMB
expression and role’s callins as counterparts to,
respectively, pointcut and advice concepts of AOP
languages like AspectJ [15].

The second communication type is called Callout
Method Binding (COMB), and indicates that a role
instance declare a method, which is not available locally,
by calling out to a method of the associated base object.

Painter

CollPainting

The intersection is the
behavior of Painter

objects inside the
CollPainting

collaboration

Fig.3 CBD of the collaborative Painting application

Fig1. Class diagram of painting application

1. class Painter

2. implements MouseListener, ..

3. {

4. JFrame window = ..;

5. List<Shape> shapesList = ..;

 :

6. public void prepareShape(Shape s){..}

7. public void paint(Shape s) {..}

8. }

Fig.2 Part of Painter class implementation in Java.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 62

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

User3:Painter

H4

User1:Painter

H1

User2:Painter

H2

coll:CollPainting

H3

DRS Layer

playedBy

Instance of

CoPainter role

r3 r1 r2

Fig.6 Deploying “Painting collaboration” on distributed Environment.

OT presents two types of COMBs: the first is called
method-COMB, which indicates that the stated role
method will invoke a base method. For example, the
expression {basePaint(Shape s) paint(Shape s);} will
dispatch the calls made to basePaint method (which is
never implemented) toward the base method paint. The
second COMB type is called field-COMB, which enables
role instances to get or set the values of their base objects’
fields. For example, the expression {String getID() get

String painterID;} will get the value of painterID field of
the bound base object whenever a call is made to the
method getID.

The CIMB and COMB mechanisms together form a
complete communication channel between base objects
and their roles, which facilitates control and data flow,
and fulfills the needs of role and base objects for
accomplishing precise collaborating.

2.2 Collaboration Programming

In OT/J, developers can define teams by using the

keyword “team”, and define role classes as inner-classes.

Fig. 5 shows a code snippet of the implementation of

CollPainting team. Note the expressive binding between

Painter base class and CoPainter role class through the

keyword “playedBy” at line 3.

3. Obstacles to Remote Role-Playing in OT/J

The Remote Role-Playing (RRP) is the technique

aims at enabling the objects of distributed applications to

play the roles of OT/J applications remotely while

preserving the semantics of the OT role-playing. In
practice, the OT/J programming language involves the

following specifications that technically prevent the

remote role-playing to be applied:

 Obs-1: The OT/J’s weaver adopts the mechanism
of Load-Time Transformation (LTT) [14] to
weave roles in the bytecode of application base
classes. The LTT technique is widely used in
AOP for injecting aspects into the application’s

business logic. In general, the using of LTT
results in hard coding roles’ callin methods inside
base classes’ bytecode. This will prevent mapping
OT/J applications to distributed environments
because teams are taught to bind their roles to
local base objects only. Similarly, role classes are
compiled and transformed in a way the generated
role instances deal with local base references only,
which are irreplaceable by remote references at
the source code.

 Obs-2: OT/J supports only static role-playing, i.e.
a specific base object can play only those roles
that woven into its base class. Thus, it cannot play
new roles dynamically at runtime. Practically, this
impacts the capability of OT/J in developing
dynamic collaborations.

 Obs-3: In Java-based distributed applications,
distributed components often represented via
contract-based designs like CORBA-IDL [16] or
remote interfaces of Java-RMI [17]. In both cases,
OT/J does not fully support playing roles by bases
that are interface; due to implementation
limitations [14] (§2.1.1).

4. Mapping OT/J Applications to

Distributed Environments

In this section, the conception of mapping OT/J

applications to distributed environments is presented in

order to investigate the shortcomings of OT/J to support

the remote playing of roles. The section first addresses

the requirements for a precise mapping (see section 4.2),
and introduces the Remote Role-Playing (RRP) (see

section 4.3).

4.1 Distributing OT/J Applications

To make the application of case study in Section 2 a
true DCA, painters need to be able to participate in
“painting collaboration” over a real distributed
environment. The participation imposes the existence of
Painter objects and CollPainting team (and its role
instances) at separate network nodes or application
processes. To demonstrate the impact of technical
problems described previously (in section 2), three
Painter-application instances are deployed on three
different nodes (H1, H2, and H3) as shown in Fig. 6. In

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Fig. 5 Implementation of CollPaining team in OT/J.

 public team class CollPainting{

 List paintersList =…;

 protected class CoPainter playedBy Painter {

 ..

 public void collPaint(Shape s)

 {

 System.out.println(“Painter:”+getID());

 /* paint the shape s at all

 other participants painters */

 for(CoPainter coP : paintersList)

 if(coP != this)

 coP.basePaint(s);

 }

 collPaint <- after paint; // CIMB

 basePaint(Shape s) -> paint(Shape s); // COMB

 String getID() -> get String painterID; // COMB

 }

 public void getPaintingStatistics() {…}

 }

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 63

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Painter

Teams Remote Interface Bases Remote Interface

CollPainting

DRS GCU

DOTM

Fig.7 The RRP Runtime Infrastructure.

addition, an individual CollPainting team instance must
be deployed at each node to capacitate the deployed
Painter objects playing the CoPainter role. In this case,
three-separated local collaborations (teams) must be
created. The problem arises here is that “User1” (H1) is
not be able to share the CF (i.e. painting) with “User2”
(H2) and “User3” (H3) because she plays a local role.

Another problem shows up is that the state of
separated local-collaboration instances (i.e. teams) must
be synchronized all the time. For example, the activation
of one of them should lead to activating others. The same
thing must be done in case of collaboration deactivation;
otherwise, collaboration inconsistency is encountered.

To overcome these problems, a single team instance
has to be deployed and all Painter objects should play its
roles remotely; thus, synchronizing team-instance copies
is eliminated instead of preserving a unified consistent
state among them. Furthermore, the inter-relationships
between team’s roles are preserved (if any) unbroken. For
these reasons, the RRP is introduced as a communication
layer over which the deployed Painter objects can play
the CoPainter role remotely (see Fig. 4). The “playedBy”
relationship is marked with the antenna symbol to indicate
that it binds discrete base and role objects. Having a
single team instance is very important to unify the effects
of role-playing on base objects via team
activation/deactivation operations.

4.2 Requirements of RRP

The separation of base objects and team instance of
CollPainting results in the broken of “playedBy”
relationships. The breaking results due to hard coding
roles inside base class’s bytecode by the OT/J
transformers. The fundamental idea in the RRP approach
is to reformulate base and team classes (including roles),
which are involved in remote “playedBy” relationships. In
such way, their objects are able to communicate over
distributed environments. This communication should
guarantee precise CIMB and COMB executions, and
preserves the semantics of the local “playedBy”
relationship. Therefore, the accomplishment of the
following primary Requirements (R) is essential in order
to realize that communication:

 R1: The participation of distinct base objects of
class Painter in the collaboration. In this
requirement, the capability of the base objects of
class Painter deployed on hosts H1, H2 and H3
(hereafter called remote base objects) has to
participate in the collaboration. In OT/J, this
requirement implies that remote base object’s
functionality must be remained intercepted by the
role’s CIMBs. Moreover, remote base objects
must determine the location of the team instance,
which encloses their roles before any of their
functionalities (i.e. methods) is invoked.
Simultaneously, a remote base object must
dispatch its CF remotely to the desired team
instance; thus, a distributed collaboration could
be achieved.

 R2: creating role instances based on demand. In
this requirement, the capability of the
CollPainting team instance deployed on host H4
(hereafter called remote team instance) has to
create role instances on-demand. Therefore, the
requirement involves its capability to bind the
created role instances to the remote base objects.

 R3: addressing the declared COMBs on the exact
remote base objects. In this requirement, the
capability of role instances of CoPainter has to
issue the declared COMBs on the exact remote
base objects associated with. For example, the
role instance “r1” (shown in Fig. 6) should invoke
the field-COMB getID() (see lines 6 and 13 of
Fig. 5) on the remote base object “User1” only.

4.3 The RRP Implementation

In terms of implementation of the RRP, two issues
have to be taken in account. First, carrying out these
requirements imposes the relaxation of tight coupling
between base and team classes (including its remote roles)
before they are loaded into the Java Virtual Machines
(JVMs) for execution. Furthermore, requirements of RRP
have to be fulfilled without violating the core
functionality of base or team objects. In other words,
remote base objects of Painter class have not to detect
that they are playing remote roles, and they have to
exhibit their behaviors, even though, for example, the
team found deactivated. Second, the remote base objects
must be affected by the role-playing to achieve the
participation in the collaboration. To achieve these two
issues, the (Distributed OT/J (DOT/J)) Runtime System
(DRS) layer is here developed to first operate underneath
the remote objects (bases and teams) and to second
facilitate the RRP activities (see Fig. 6). Therefore, a need
to communication layer is aroused. Two types of
communications are introduced:

1) An inter-communication between the DRS

components: The DRS layer comprises two main units

(as shown in Fig. 7) which are the Group

Communication Unit (GCU) and the Distributed Objects

and Teams Manager (DOTM). The latter provides the

necessary coordination for remote base objects and team

instances in a distributed OT/J application to accomplish

a precise binding. The Group Communication Unit

(GCU), on the other hand, is responsible of the

transparent deployment of team instances and the

conteatxual information of roles on every application

node. Moreover, GCU implements a reliable

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 64

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

communication protocol between the deployed DOTMs,

so that they can preserve the collaboration consistency by

synchronizing their states; in particular, the Remote

Teams List (RTL).

2) The actual RRP communication: This type of

communication involves the direct communication

between remote base objects and their roles (via the

remote team instance) to execute the CIMBs and COMBs

declared in these roles. Establishing smoothly this type of

communication requires that remote base objects and

remote teams have to communicate remotely. In addition,

the relaxation of base and role bytecodes needs to be

accomplished. Therefore, the Provided/Required

Interface design is adopted to glue the remote base

objects and remote teams of application. The

provided/required interface design nicely captures the

relationship between remore objects. Thus, remote base

objects of Painter must provide a specific remote

interface, and require another interface from the remote

team CollPainting. Likewise, the remote team instance

of CollPainting provides a remote interface and requires

the interface of Painter objects. Fig. 7 depicts this

relationship.

In order to preserve the integrity of remote base and
remote team objects, the structure of their classes after
gluing must not be negatively violated, i.e. their
hierarchical structures must remain untouched.
Consequently, the LTT is adopted to reformulate remote
base Painter and remote team CollPainting classes into
distributed components as shown in Fig. 7. The
transformation details are beyond the scope of this paper.
Nevertheless, it is important here to mention that our
bytecode transformers (see Obs 1 in section 3) reuse the
transformed classes of the OT/J application, and carefully
replace the features of local “playedBy” relationship with
remote ones. For example, role instance “r1” (shown in
Fig. 6) is bound to the remote stub generated from the
remote interface provided by the remote base object
“User1”.

4.4 The Engagement between Remote Base Objects

and Remote Team Instances

Enabling remote base objects of Painter class to
allocate dynamically the remote team instance “coll”
requires that the team instance registers itself in the
DOTM (i.e. DOTM runs on host H4). The registration
process involves providing the local DOTM component
with contextual information about the team instance such
as its remote stub and a list of the CIMB expressions
declared by its remote roles. As a consequence, the
DOTM broadcasts the record of the registered team (via
the GCU) to all the DOTMs executed on other application
nodes. Moreover, the DOTMs deployed on hosts H1, H2
and H3 keep an identical RTL.

Once a registration record arrives to the local DOTM
at host H1, it notifies all the remote base objects
coexisting at the same node (in this case the instance

“User1”). At this moment, “User1” obtains the
knowledge that a team instance comprises one of its roles.
In OT/J, a base object starts playing a role after it has
been bounded to an instance of that role. The binding
process has been carried out when one of base object’s
methods has been intercepted by a declared CIMB. Thus,
as “User1” already obtains the recent RTL, it can check
whether any of its functionalities has matched any of the
CIMBs. To facilitate this task, the bytecode transformer
injects a trap at every declared method in Painter class,
and dispatches their calls to a central dispatcher method.
The dispatcher method traverses the RTL and extracts
those CIMBs matching the current invocation.

Here, two different transformation strategies can be
chosen:

The first is to invasively trap all base methods (called
total hook weaving [18]); thus, the dynamic playing of
roles is supported at runtime whenever new teams are
attached to the application without interrupting its
execution. Within this strategy, the remote team instances
and remote base objects are required to provide generic
remote interfaces. As a consequence, remote base objects
can plug into any dynamic collaboration (team), and
different remote team instances can bind the same remote
base object using a single remote stub. In addition, a
transparent conversion of base objects into collaborative-
objects is achieved.

The second strategy is to declare those base class
functionalities desired for being intercepted by CIMBs in
a data file (like XML). The latter is then directed to the
transformer in order to target only these functionalities. In
this way, a great performance is saved overhead at
runtime. However, the desired dynamic evolution of the
DCAs is restricted.

When “User1” draws a specific shape, the method
paint is called and trapped by the dispatcher. The
dispatcher, in turn, detects a CIMB matching.
Consequently, the dispatcher extracts the accurate Team
Level Wrapper Method (TLWM) of the remote team
instance “coll” from the contextual information. In
addition, the extraction guarantees that the TLWM
corresponds to the role’s call in method collPaint. The
latter then invokes that TLWM via the remote stub of
“coll”. The team instance “coll” receives, as an argument
to TLWM, the remote stub of “User1” base object.
Therefore, it can create a new role instance (in our case it
was “r1”) and binds it to the remote stub. According to
the latter, the role instance “r1” can address COMBs on
the remote base object “User1” using the RMI
invocations.

5. Evaluation

To evaluate RRP, the application shown in Fig. 6 is
executed as follows: first, the Team-application is run at
host H4. Therefore the three Painter-applications are
executed at H1, H2 and H3. The role CoPainter is
implemented, so that it adds the participant painter to the
painters list (see line 2 of Fig. 5). We achieve this by
intercepting the method prepareGUI of Painter objects

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 65

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

by a CIMB (not shown in Fig. 5). After then, each one of
the painters “User1”, “User2”, and “User3” paints
randomly 10 shapes. The CollPainting team has been
provided with a GUI, so it can clone the shared painting
as well. The role’s callin method collPaint will take care
of synchronizing the painted shapes of a specific painter
at others GUI (lines 7 to 9 of Fig. 5). As expected, the 30
shapes appear on all Painter- and Team-applications’
GUIs.

For performance analysis, the runtime required for
carrying out a complete CIMB interceptions is recorded ,
which includes (1) dispatching the control flow from
remote base object to the bounded role instance, (2)
broadcasting the painted shape to all other painters, and
(3) painting that shape at the team’s GUI. The recorded
values (in milliseconds) are shown in Table 1. The
average runtime values give clear symptoms for a
promising approach. However, further evaluation on more
advanced case studies is one of our future works. The
time required at the first interception in all cases is higher
than the rest. The extra time is consumed by the Java-
RMI system for generating dynamic proxy objects.

Table 1: Runtime values for intercepting paint method 10 times at
the three painter-applications.

No. User1 (H1) User2 (H2) User3 (H3) Avg.

1 50 20 30 25
2 16 14 7 10
3 10 13 7 8
4 12 6 6 7
5 14 13 6 10
6 17 16 10 12
7 8 15 7 9
8 18 13 10 12
9 11 9 11 10
10 17 13 6 12

Avg. 17.3 13.2 10 11.5

6. Related Works

The RRP could be considered as a distributed-AOP
approach; because it supports intercepting the remote base
objects’ functionalities by the remote CIMBs of roles, and
then executing the associated advices remotely. In
addition, it could be introduced as an approach for
improving the composition and modularity of DCAs. In
this regard, the RRP shares several features with TaKo
[6]. First, RRP and TaKo are AOP-approaches which
address the transparent collaboration between legacy
applications that were not designed for collaborating.
TaKo proposes a full blackbox approach for supporting
collaboration transparency. However, it is environment-
specific as it targets AWT- and Swing-based Java
applications only. In contrast, RRP presents more
expressive approach to design and model the
collaboration and the collaborating functionalities. After
that, the RRP infrastructure operates to provide the
necessary facilitation for accurate distributed
collaboration. In RRP, the strategies of solving problems
like Collision Detection, Priority, Logging, etc. are easy
to customize and implement.

In [1], a proposal for employing the AOP concepts in
the development of collaborative virtual environments
(CVEs) is presented. The approach stands on intercepting
the functionalities of application components, and
dispatch control flow to a dedicated middleware layer,
which interconnects between components and aspects
dynamically. All aspects must be previously registered in
this layer to ensure accurate interconnections. The RRP
offers a similar approach; remote team instances need to
register in the DOTM. However, the AO-CVE as an
AOP-based approach lacks support for clear collaboration
modularity and expressive relationships between
collaborative components and aspects as in RRP.

Service-Oriented Architecture (SOA) is used in [19]
besides a set of off-the-shelf technologies to develop a
collaborative authoring application, which involves five
users collaborating over the internet. This and other
approaches like CoDesign [13] and GroupUML [20] are
classified as collaborative software design and modeling
environments. These and alike approaches cope mainly
with problems of conflict detection, shared state and time
synchronization, among others. Our approach offers better
separation between the core functionality of application
components and the collaborative functionalities each
component exhibits in the collaboration. Even though
SOA is (in concept) similar to team module of OT, teams
provide twofold facilities; a clear contextual
collaborations and providing services. In addition, the
client-server topology depicted in base-team relationships
capacitates team instances for resolving any CFs conflicts.

7. Conclusions and Future work

This paper has presented the Remote Role-Playing
(RRP) concept as a promising approach for improving the
modularity and composition of distributed collaborative
applications (DCAs). The realization of this approach has
been discussed through the process of mapping the
fundamentals of the Object Teams (OT) model. The OT
model implements the collaboration-based (role-based)
designs for the object-oriented languages. A primary key
feature of the OT model is that it presents a high
expressive modularization technique through introducing
collaborations as first-class entities; which makes RRP an
approach that is neither total black-box nor total white-
box.

The paper has presented a simple case study to
demonstrate the approach and emphasize its capability for
supporting transparent collaboration between legacy Java-
based applications without their source code needed. In
addition, it can offer several programming capabilities for
DCAs like managing collaboration contexts via team
instances, besides the dynamic participation in
collaborations. That is, applications’ base objects can
enroll in several collaborations dynamically. As future
work, further evaluations need to be established in real
case studies.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 66

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References

[1] M. Pinto, M. Amor, L. Fuentes, and J. M. Troya., “Collaborative

virtual environment development: An Aspect-oriented approach,”
In Proceedings of DDMA Workshop. Phoenix, Arizona, pp. 97-

102, April 2001.

[2] G. Kiczales, and et al., “Aspect-oriented Programming,” In
European Conference on Object-Oriented Programming -

ECOOP’97, 1997.

[3] M. Pinto, L. Fuentes, J.M. Troya, “Towards an aspect-oriented

framework in the design of collaborative virtual environments,” In
Proceedings of the Eighth IEEE Workshop on Future Trends of

Distributed Computing Systems (FTDCS.01), 2001.

[4] S. Subotic, and J. Bishop, “Emergent Behaviour of Aspects in
High Performance and Distributed Computing,” Proceedings of

SAICSIT’05, pp. 11–19, 2005.

[5] S. Herrmann, “Object Teams: Improving Modularity for
Crosscutting Collaborations,” In NetObjectDays Conference on

Objects, Components, Architectures, Services, and Applications
for a Networked World (NODe '02), Springer-Verlag, London,

UK, pp. 248-264, 2002.

[6] R. Mondéjar, P. García-López, E. Fernández-Casado, and C.
Pairot., “TaKo: Providing transparent collaboration on single-user

applications,” Computer Languages, Systems and Structures,
Elsevier Science Publishers, Amsterdam, The Netherlands, Vol.

38, Issue. 1, pp. 108-121, April 2012.

[7] M. Mezini and K Lieberherr, “Adaptive plug-and-play
components for evolutionary software development,” In

Proceedings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications

(OOPSLA '98). ACM, New York, NY, USA, pp. 97-116, October
1998.

[8] H. Zhu, “Some issues of role-based collaboration,” Electrical and

Computer Engineering, 2003. IEEE CCECE 2003. Canadian
Conference on , vol.2, pp. 687- 690, May 2003.

[9] H. Zhu, “Role mechanisms in collaborative systems,”
International Journal of Production Research, Vol. 44, No. 1, pp.

181–193, January 2006.

[10] H. Zhu and M.C. Zhou, “Role-based collaboration and its kernel
mechanisms,” IEEE Transactions on Systems, MAN, and

Cybernetics —Part C: Applications and Reviews, vol. 36, no. 4,
pp. 578-589, July 2006.

[11] M. VanHilst and D. Notkin, “Using role components in

implement collaboration-based designs,” In Proceedings of the
11th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications (OOPSLA
'96). ACM, New York, NY, USA, vol. 31, no. 10, pp.359-369,

October 1996.

[12] H. Zhu, “A Role-based conflict resolution method for a
collaborative system,” IEEE International Conference on

Systems, Man and Cybernetics, vol. 5, pp. 4135-4140, October

2003.

[13] J. Y. Bang and et al., “CoDesign: a highly extensible collaborative

software modeling framework,” In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -

(ICSE '10), ACM, New York, NY, USA, vol. 2, pp. 243-246,
2010.

[14] S. Herrmann, C. Hundt, and M. Mosconi, “OT/J language

definition v1.3,” Technical Universitäte Berlin. Object Teams
home-page: http://www.objectteams.org, (2009), last visited:

March 2012.

[15] G. Kiczales and et al., “An overview of AspectJ,” In Proceedings
of the 15th European Conference on Object-Oriented

Programming (ECOOP '01), Springer-Verlag, London, UK, pp.
327-353, 2001.

[16] Object Management Group (OMG), CORBA v3.1 , Release Date:

January 2008, Home-page:
http://www.omg.org/spec/CORBA/3.1/, last visited: March 2012.

[17] Sun Microsystems. “Java Remote Method Invocation

Specification v1.5.0,” Sun Microsystems Inc., Santa Clara,
California,U.S.A. 2004.

[18] R. Chitchyan and I. Sommerville, “Comparing dynamic AO

systems,” In Proceedings of the AOSD’04 - dynamic aspects
workshop. Lancaster, UK, pp. 23-36, 2004.

[19] A. Roczniak, J. Melhem, P. L´evy and A. El-Saddik, “Design of
distributed collaborative application through service aggregation,”

In Proceedings of the 10th IEEE international symposium on
Distributed Simulation and Real-Time Applications (DS-RT '06).

IEEE Computer Society, Washington, DC, USA, pp.165-174,
2006.

[20] N. Boulila, “Group support for distributed collaborative

concurrent software modeling,” In Proceedings of the 19th IEEE
international conference on Automated software

engineering (ASE '04). IEEE Computer Society, Washington, DC,
USA, pp. 422-425, 2004.

Abdullah O. Al-Zaghameem (Ph.D) a lecturer in Tafila
Technical University (Tafila, Jordan) since September, 1999. He
was awarded the doctoral degree of Computer Science in
Software Engineering from Technical University of Berlin
(Germany) in September, 2012. His current research interests
include: distributed AOP, collaboration-based computing, and
Information Systems Design.

Mohammad Alfraheed (Ph.D) a lecturer in Tafila Technical
University (Tafila, Jordan) since September, 2012. He has the
doctoral degree of Computer Science in Computer Vision from
RWTH-Aachen University (Germany) in July, 2012. His current
research interests include: Digital Image Processing, Computer
Vision, Robotics and Software Engineering.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 67

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

