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Abstract 
This paper represents the first part of our work in which a 
successful exoskeleton system has been designed. With this 
design, the concentration is on effects of compliant human – 
exoskeleton robot on kinematics and muscle activity during 
human walking with or without carrying loads. In order to 
achieve these aims, two control methods are used: kinematic and 
surface electromyography (sEMG) – based control. In this article, 
three simulation techniques of sEMG signal are investigated. The 
obtained results of this work are very useful in designing and 
testing our actual exoskeleton system. 
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1. Introduction 

In recent decades, exoskeleton robots have been 
considered and developed purposely to assist the mobility 
of physically weak persons who are elder, injured and 
disabled, or extending the strength of humans, especially in 
the army [4, 6]. A Lower Limb and Power Assist (LLPA) 
exoskeleton which has been developing in our laboratory is 
designed mainly for soldiers who always work under hard 
conditions. A typical LLPA exoskeleton normally consists 
of a waist holder, a thigh holder, a lower leg holder, two 
DC motors, two links, a footrest and two force sensors in 
one leg [6].  
 
In order to control a LLPA exoskeleton system, many 
control techniques had been taken up [3, 4] in which the 
sEMG-based control method has attracted a lot of 
considerations. According to this method, there are plenty 
of control trends done to reach remarkable achievements. 
Nevertheless, few of real time sEMG-based exoskeleton 
systems are available out of laboratories. 
 
The scope of this present research is to explore deeply the 
simulation techniques of sEMG signals as the first step of 
our work to evaluate experimental results of real system. 
Because researches on sEMG signal- based exoskeleton 

 
systems only began a decade ago, models of this signal are 
still useful for present studies and the future [5, 14]. Most 
of these models only concentrated on one technique and 
they were not comprehensive for sEMG signals [3, 13, 15]. 
This investigation will give three basic models of sEMG 
signal: physiologically mathematic model, random variable 
model, and 3-layered volume model. The simulated results 
are shown clearly to present the survey of sEMG signal 
which are powerful for LLPA exoskeleton systems. 
 
The second phase of this paper is to analyze two models of 
sEMG based control scheme of LLPA exoskeleton system: 
basic and advanced model. These models are evaluated 
clearly to choose the most suitable control scheme for our 
system to obtain important design goals of our exoskeleton 
project as high efficiency and extended application. With 
the chosen model, we combine a sEMG-based control 
method with an effective human-exoskeleton robot 
interaction by using human sensors to measure ankle 
angles, velocity and acceleration during human walking 
with or without carrying loads. To implement experiments, 
we will use an open-circuit respirometer to evaluate human 
metabolic cost as one of the most important goals of our 
work. 

2. Three sEMG Basic Models 

2.1 The Physiologically Mathematic Model 

The motor unit in Fig.1 is the smallest activity unit of 
muscle which is composed by many muscle fibers [8]. The 
excitability of these muscle fibers through neural control 
represents a major factor in muscle physiology. To 
simulate the single fiber potential, we use the volume 
conduction theory based on the intracellular potential of 
the fiber [5, 14] which is calculated by (1) 

3( )[ ] 768 exp( 2 ) 90e z mV z z       (1) 
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Fig. 1 Motor unit model 

 
where z, in mm, is the axial direction. The transmembrane 
current is 
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where dm, in ,m is the diameter of the fiber, i is the 

intracellular conductivity ( 11.01i Sm  [14]). 

 
A relationship between the axial direction and time domain 
is expressed in (3) 

( , )[ ]z U t mm Ut                             (3) 

where, U, in ms-1, is the propagation velocity of the action 
potential in the muscle fiber which can be calculated as a 
function of fiber diameter [5]. 

1( )[ ] 2.2 0.05( 25)mU d ms d                   (4) 

Hence, the single muscle fiber action potential can be 
yielded by (5) 

[ ] [ ( ), ( )]SFiV mV conv i t w t                (5) 

here conv is symbolic of the convolution and w(t) is the 
weighting function which can be calculated by [5]. W. 
Wang in [15] gave another formula to compute VSFi in (6). 
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where m  is the muscle conductivity and r is the distance 

between the fiber section S and the observation point [5]. 

Motor unit action potential is obtained in (7) by calculating 
the total of all the single fiber action potentials 

1

[ ]
N

MU SFi

i

V mV V


   (7) 

with N being the number of muscle fibers which can be 
defined by [5, 14]. 

2.2 The Random Variable Model of sEMG 

The sEMG signals contain important diagnostic data in 
both the time and frequency domains. In the time domain, 
root-mean-square (RMS) value and mean rectified value 
are two common values in which proportional control of 

myoelectric prostheses is typically dependent on the first 
value of sEMG. In the second domain, the power spectrum 
density (PSD) is always used as a common value from 
which measures of median and mean frequency can be 
extracted to be used for different control goals. 
 
Sometimes, the sEMG signals can be analyzed as a random 
distribution which is similar to Gaussian signal [13]. Here, 
the generation of each motor unit action potential is known 
as a stochastic process of the status of neuromuscular 
system and the different impulse delay between two 
consecutive action potentials. This delay can be used as an 
independent random variable to model each motor unit 
action potential approximated to an identical distribution. 
By applying the central limit theorem, the identically 
distributed and independent motor unit action potential is 
reasonable to make sEMG as a pseudo-Gaussian 
distribution with the roughly equal mean of zero as shown 
in Fig. 2. 

 
Fig. 2 Simulation of sEMG as a random variable of Gaussian distribution 

 
In order to simulate sEMG signal based on a pseudo-
Gaussian distribution, we will use the following formula to 
calculate the strength of each motor unit action potential: 

2 2
max

1
[ ]

( / 2 )
MUiV mV

r z i


 
  (8) 

where r, in mm, is the distance between the recording site 
and muscle fiber, zmax, in mm, is the length of muscle fiber. 
Here, we assume that r is a uniformly random variable with 
a suitable interval from 0.5 to 2 [13]. 
 
We also create the sEMG signal by combining a lot of the 
above motor unit action potentials. To obtain an overall 
sEMG signal with the representation of time and frequency 
domains, a bandpass filter with a bandpass filtering of an 
interval from 20Hz to 200Hz is used in this work. 

2.3 A 3-Layered Volume Model for sEMG Signal 

Dario Farina and Roberto Merletti in [11] proposed a non-
homogeneous (layered) and anisotropic volume conductor 
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model. By combining with Fansan Zhu in [9] , a circuit to 
simulate sEMG signal based on a 3-layered volume 
conduction model is presented as shown in Fig. 3.  
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Fig. 3 A 3-layered volume model 

 
This model includes three layers: 

(a) the skin layer: is shown by simple resistors RS; 
(b) the fat and tissue layer: is approximated as a low 

pass filter (RFTCFT filter); 
(c) the muscle fiber layer: is considered as a voltage 

source with an internal resistor RM and a natural 
capacitor CM of the muscle fiber. 

In this model, we assume that values of resistors and 
capacitors are similar in each area [2, 9]. To obtain the 
graph of sEMG, a 2-D state space model can be utilized as 
shown below 

'X AX BU 
  

   (9) 

where A, B are state space matrices [7], U


 is the input 

voltage vector, and X


 is the derivative of output voltage 
vector. In our work, the intracellular potentials of the fiber 
given by combining of equations (1) and (3) will be fed to 
the input voltage vector to create respective sEMG signals. 
These desired signals can be obtained by measuring output 
voltages across skin resistors. The simulated values of 
resistors and capacitors can be found in [2, 9]. 

2.4 Simulation Results of sEMG Signal 

In order to obtain simulation results in time domain, the 
relationship in (3) will be used. Fig.4 presents simulation 
results of the intracellular potential and its derivatives in 
time domain. This potential changes quickly from -90mV 
up to +40mV and it includes three periods: threshold, 
depolarization and overshoot. A phase of the membrane 
named After Hyperpolarization which creates instantly a 
monopolar electrical burst is shown after 1.5ms. This 
figure also illustrates derivatives of the intracellular 
potential in which algebraic signs of the first derivative 
affect the orientation of the dipoles: depolarization with the 
positive sign and repolarization with the negative sign.  

If the fiber diameter is changeable, it is well known to see 
effects on the intracellular potential as shown in Fig. 5. 
Here, we assume that the fiber diameter changes from 
25µm up to 85µm [14]. With this change, minimum and  

 
Fig. 4 Simulation results of the intracellular and its derivatives 

 

 
Fig. 5 Effect of fiber diameter on the intracellular potential when fiber 

diameter changes from dmin = 25µm up to dmax = 85µm. 

 

 
Fig. 6 Simulation of transmembrane current and weighting function. 
Simulation parameters are: dmax = 85µm, dmin = 25µm, d_Tibialis 

anterior = 57µm and d_gastrocnemius medialis  = 54µm [15]. 

maximum values of the intracellular potential are not 
changeable, the corresponding times, however, are variable. 

Figure 6 (a) shows the change of transmembrane currents 
corresponding to the variation of the fiber diameter which 
belongs to a square relationship.  Figure 6 (b) gives the 
simulation result of a weighting function which is 
computed by [5]. 
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Fig. 7 Simulation of a sEMG signal train. 

 

 
Fig. 8 Simulation of the random sEMG signal. 

 

 
Fig. 9 Simulation results of sEMG signal of the gastrocnemius medialis 

muscle during gait cycles. 

By using algorithms of FFT (Fast Fourier Transform) and 
iFFT (inverse FFT), we can compute and simulate the 
single fiber action potential as shown in Fig. 7. To achieve 
the superposed sEMG signal of a single fiber motor unit, 
we combine above motor units at different firing 
frequencies. In Fig. 7, sEMG signal of measured muscle is 
well known to reflect the recruitment and firing properties 
of the discovered motor unit. 

According to the second sEMG signal model, simulation 
results are shown in Fig. 8. Here, conditions of simulation 

technique are used similarly with the above Gaussian 
sEMG signal (Fig. 2) to compare respectively simulated 
results. Their shapes are clearly close and appropriate to 
the actual sEMG signal. 

With three above models of sEMG signal, aims of 
simulation are implemented successfully. Figure 9 
illustrates the sEMG signal of gastrocnemius medialis 
muscle which is one of three important muscles in each leg 
during human walking with five gait cycles that can make a 
great significance for our exoskeleton system. Simulated 
parameters are found in [15] and this result is also 
appropriate for real experiments [15]. 

 3. Analyzing of EMG-Based Control Schemes 
for LLPA Exoskeleton 

In this part, we analyze several control strategies for LLPA 
exoskeleton based on EMG signal to approach our system. 
Figure 10 (a) describes a basic control scheme for our 
work. As shown in this diagram, measured EMG signal is 
fed to EMG signal processing block to make control 
signals [1]. Many methods have been investigated 
successfully to process EMG signal with high-pass filtering, 
rectification, and then low-pass filtering to obtain a control 
signal [1, 3, 6]. By combining with the other control blocks 
as muscle model, gain and controller, needful control 
signals are fed to LLPA exoskeleton system. These signals 
are normally used for torque and force of joints to control 
an exoskeleton robot [7, 10]. Feedback signals that can be 
used in this model are torque and position signals to 
implement feedback control for this system [3]. The 
advantages of this control scheme are simple to construct 
and implement. Its drawbacks are lower efficiencies and 
limited applications. 

Recent researches have been improved significantly above 
disadvantages by giving new control schemes [3, 7]. In 
these systems, interaction between human and exoskeleton 
is concentrated more efficiently [3, 7, 10] and sensor 
systems are used for both robot and human as shown in Fig. 
10 (b). In this control model, sensors are only used for the 
robot, such as encoders. Human sensors are applied to 
measure human parameters as angle, force, velocity, and 
acceleration of ankle or knee. These parameters are useful 
to control an exoskeleton for other goals of stroke patient 
rehabilitation [12] or extending the strength of humans [3]. 
These systems can be called as exoskeleton robot 
intelligent systems. 
 
In order to apply a model for our work, besides above 
sensors, an open-circuit respirometer is used to measure 
oxygen consumption and carbon dioxide production to 
estimate human metabolic cost during walking with or 
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without LLPA exoskeleton and with carrying military 
loads of 20 kg, 40 kg, and 55 kg. According to the aim of 
our exoskeleton system, the most important design tasks 
are to reduce the metabolic cost of locomotion and 
minimize the power requirements of assisted robot. With 
these tasks, sEMG signal-based control is able to achieve 
lower metabolic cost than those under kinematic control. 
 

 
Fig. 10 Diagram of EMG-based control schemes. 

4. Conclusions 

In this paper, sEMG signal simulation techniques and 
control schemes of EMG-based LLPA exoskeleton system 
are presented. Although simulation techniques of sEMG 
signal are vast, three models of them are discussed as the 
most popular approaches. The first is the most basic, the 
second is the most easy, and the third is the most exact to 
simulate sEMG signal for goals of study and evaluation of 
simulated models with real systems. The other part of this 
paper explains two general models of EMG-based control 
algorithm for a LLPA exoskeleton in which the second one 
is applied for our work as an exoskeleton robot intelligent 
system. In the near future, we will perform this model and 
compare with real system to reach successfully given tasks 
in the exoskeleton project in our laboratory.  
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