

Importance of Software Documentation

Noela Jemutai Kipyegen1 and William P. K. Korir2

1Department of Computer Science, Egerton University
Njoro, Kenya

2Department of Computer Science, Egerton University

Njoro, Kenya

Abstract

Software Documentation is a critical activity in software
engineering. Documentation improves on the quality of a
software product. It also plays significant roles in software
development environment and system maintenance. Several
software development best practices are ignored. This paper
looks at the importance of software documentation, creation,
applications, tools and standards.
Keywords: Software Documentation, Importance, Role,
Applications, tools and standards

1. Introduction

Many factors contribute to the success of a software
project; documentation included. Software documentation
is an artifact whose purpose is to communicate
information about the software system to which it belongs
[1]. Parnas [2] defines a document as a written
description that has an official status or authority and
may be used as evidence. In development, a document is
usually considered binding, i.e. it restricts what may be
created. If deviation is needed, revisions of the document
must be approved by the responsible authority.
Systematic approaches to documentation increase the
level of confidence of the end deliverable as well as
enhance and ensure product’s success through its
usability, marketability and ease of support [3]. “The
dominant factor between a successful project and an
unsuccessful project reduces to the effective dissemination
of key information and successful software projects
become successful because they give the right level of
attention to clearly communicating the key concepts and
requirements” [4].
Capri defines a successful documentation as one that
makes information easily accessible, provides a limited
number of user entry points, helps new users learn
quickly, simplifies the product and helps cut support
costs.

Poor documentation is the cause of many errors and
reduces efficiency in every phase of a software product’s
development and use [2]. Documentation is an activity
that needs to commence early in development and
continue throughout the development lifecycle. It acts as a
tool for planning and decision making.

2. Motivation

After assessing students’ projects for a period of time, we
realized majority of the students are neither enthusiastic
nor motivated in the area of documentation. Most of them
prefer only one phase of software development which is,
coding. From this issue, we developed a desire to deeply
understand software documentation: applications,
benefits, creation and role in software development
environment. Does it contribute to the success of a
project? This led us to explore the existing
documentation practices in software engineering.

3. Document Creation

Capri [3] describes in Figure 1, eight processes (analysis,
design, development, validation, production,
manufacturing, delivery and customer satisfaction) that
guide in document creation. Document preparation is the
process of creating a document and formatting it for
publication [5]. Other researchers [6] gave seven rules for
sound documentation. These rules include; 1.
Documentation should be written from the point of view
of the reader, not the writer, 2. Avoid repetition, 3. Avoid
unintentional ambiguity, 4. Use a standard organization,
5. Record rationale, 6. Keep it current and, 7. Review
documentation for fitness of purpose.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 223

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Eight Phases to successful documentation (source: [3])

In the first Phase, analysis, possible audience that could
potentially need documentation for the product and the
tasks they will perform on the software are identified.
Next phase, design, involve taking all the documentation
items identified during the Analysis Phase and contents
for each are designed/planned. The third phase entails
creation of the actual document to be delivered.
Validation, phase five, entail testing the documentation to
ensure it meets its performance objectives, and the needs
of its target audiences. The purpose of phase six is to
produce high-quality finished goods (paper, videotape,
audio, CD, online, etc.) to meet demand. In the seventh
phase, final product (software and documentation) is then
delivered to the customer. The last phase is customer
satisfaction. In this phase, the document is improved
based on customer’s needs [3]. Sommerville [5], described
document preparation process in three stages namely
document creation, polishing and production as shown in
Figure 2.

 Fig. 2 Stages of document preparation (Source: [5])

Document creation involves initial input of the
information in the document. The second stage which is
document polishing entails improving the writing and
presentation of the document to make it more
understandable and readable. The last stage is document
production which defines the process of preparing the
document for professional printing [5].
The two models, (Capri’s and Sommerville’s) define
software document creation as a process which involve
continual understanding, review, and modification
throughout the development lifecycle [7] as shown in
Figure 3 below.

Fig 3 Document creation

Apart from being documentation cost and benefit model
[8], Bo sun’s model (Figure 4 below) describe in-depth
the processes involved in software documentation. The
model gives clear illustration of various actors (e.g
Requirements Engineer, Business analyst, document
reviewers, software developers and maintainer of the
system) involved in software development, and uses of the
documents. Bo Sun’s model is comprehensive and can be
efficiently employed in the description, creation,
applications, as well as understanding the costs and
benefits of documentation.

Stage1: Creation

Stage2: Polishing Approved document

Approved document

Create
Initial
draft

Review
draft

Incorporate
review
comments

Re-draft
Document

Proofread
text

Produce
final
draft

Check
final
draft

Layout
text

Review
layout

Produce
print

masters

Print
copies

Stage3: Production

modification

 Review
 and

Draft Generate

New version
document.

(Working
document)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 224

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4. Application and benefits of documentation

The role of documentation in a software engineering
environment is to communicate information to its
audience and instill knowledge of the system it describes
[1]. As seen in Bo Sun’s model, system documentation
plays another role namely software maintenance.
Parnas [2] identified several benefits of documentation.
These include: easier reuse of old designs, better
communication about requirements, more useful design
reviews, easier integration of separately written modules,
more effective code inspection, more effective testing, and
more efficient corrections and improvements.

Researchers and practitioners also have looked at the uses
of software documentation and just to compile a few, [9]
notes that documentation helps at software development,
keeps software-quality at high levels and makes it easy to
transfer projects. Documentation can also be used for [10]
learning a software system, testing a software system,
working with a new software system, solving problems
when other developers are unavailable to answer
questions, looking for big-picture information about a
software system, maintaining a software system,
answering questions about a system for management or
customers, looking for in-depth information about a
software system, working with an established software
system. Akin-Laguda [11] lists other uses which include;
facilitates effective communication regarding the system

Fig. 4 Documentation cost and benefit model (Source: [8])

Approver
(Team lead, etc.)

SW Architect (Requirements
Engineer, Business analyst…)

<<May lead to a
change in doc>>

Creating 1st
draft

First
draft

Reviews

Revision

Approved
draft

Change the doc
and create the
Next Version
draft

Next Version
draft

Artifact at
hand

May provide support

Working
draft

Maintainer
(debugger, developer)

Developer
(down the stream)

Use to develop
artifact/product at
hand (eg design,
code etc)

Understand required change

Program comprehension

Determine the change
location(s)

Change impact analysis

Perform the changes

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 225

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

between the technical and the non technical users,
training new users, solve problems like trouble shooting,
evaluation process, and quantify the financial
ramifications/footprint of the system.
All the above mentioned uses of documentation, can be
simplified and summarized as [5] puts; 1. Documentation
is used as a communication medium between members of
the development team and probably the clients, 2. Used
for maintenance, 3. Provide information for management
to help them plan, budget and schedule the software
development process and, 4. Tell users how to use and
administer the system.

5. Types of Documentation

Sommerville describes two main categories of software
documentations; process and product documents. Process
documentations are used to manage the development
process for example planning, scheduling and cost
tracking, standards among others. Product
documentations describe the main deliverable (software
product) and some of the documents in this category form
part of deliverables. These include; Requirements
Specification, Design documents, Commented Source
Code, Test Plans including test cases, Validation and
Verification plan and results, List of Known Bugs and
user manual [5].

 6. Tools for documentation

Forward and Lethbridge [12] in their survey found the
following documentation tools more helpful; MS Word
(and other word processors), Javadoc and similar tools
(Doxygen, Doc++), Text Editors, and Rational Rose.
Doxygen is a documentation system for C++, C, Java,
Objective C, Fortran, VHDL, PHP, C#. Doxygen
generates; on-line documents in HTML, off-line manual
in latex and output in RTF (MS-Word), PostScript,
hyperlinked PDF, compressed HTML, and Unix man
pages. It extracts documentation directly from the sources,
which makes it much easier to keep the documentation
consistent with the source code. Doxygen can be
configured to extract the code structure from
undocumented source files. This is very useful to quickly
locate elements in large source distributions. Doxygen
include; dependency graphs, inheritance diagrams, and
collaboration diagrams, which are all generated
automatically. These help to visualize the relations
between the various elements. Doxygen can be used for
creating normal documentation. Another important aspect
of Doxygen is that, it is highly portable [13].

A word processor is a program that is used to produce,
edit and format text. “Word processing systems are screen
based. This means that the image of the document on the
user’s terminal is, more or less, the same as the final form
of the printed document. Layout can be improved before
printing the document”[5].
LATEX is a TEX macro package that simplifies the use
of TEX. It is portable and come with its set of fonts. Most
LATEX commands are “high-level” and specify the
logical structure of a document. This simplifies the
authors work by taking care of document layout details.
LATEX provides several standard document classes from
which to choose. The document class determines how the
document will be formatted. Other benefits of LATEX
include; its flexibility, gives the user complete control,
handles big, complex documents with ease, and never
crashes or corrupts users’ files [14].

7. Software Documentation standards

Standardized documentation can be defined as documents
having a consistent appearance, structure and quality.
This means should be easier to read, understand and
usable [5], [15]. Standards act as a basis for document
quality assurance.
“Using a standard means that documentation producers
and customers have a consistent accepted reference for the
format and content that they will find in the
documentation. For example, what documentation must
be printed? What does it mean to say that the
documentation is “complete”? Does it have to include
every function and screen shot?” [15].
Reilly discusses various ISO Software documentation
standards which include;
ISO/IEC/IEEE 26514:2008, Systems and software
engineering-Requirements for designers and developers
of user documentation. This standard details both process
and product standards.
ISO/IEC/IEEE 26513:2009, Software and systems
engineering-Requirements for testers and reviewers of
user documentation. This standard covers the activities
and responsibilities for planning and conducting
documentation reviews and managing the results of the
review. It also addresses how to plan, measure, and
conduct usability tests for documentation, along with tests
of accessibility and of localized or customized versions.
ISO/IEC/IEEE 26512, Software and systems engineering-
Requirements for acquirers and suppliers of user
documentation. It lays out the processes for acquiring user
documentation services and for monitoring and managing
contractors.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 226

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

IEEE Std 1063-2001, IEEE Standard for Software User
Documentation. This standard is a revision of IEEE std
1987. It provides minimum requirements for the structure,
information content, and format of user documentation,
including both printed and electronic documents used in
the work environment by users of systems containing
software. This standard is limited to the software
documentation product and does not include the processes
of developing or managing software user documentation;
it applies to printed user manuals, online help, and user
reference documentation [16].

8. Conclusion

Software documentation is an activity of creating
documents which are used in software development
environment to communicate functions, operations and
events to various stakeholders, for example software
Requirements Engineers, Reviewers, Developers,
operators, Maintainers of the system among others.
Documents describe the product at all levels of
development including the finished product. The
documents also act as evidence of all the procedures and
activities involved in software development therefore,
documents need to be up-to date, complete, consistent and
usable. To achieve consistency, systematic ways of
document creation should be employed.

References

[1] A. Forward, “Software Documentation – Building
and Maintaining Artefacts of Communication”. MS
thesis. Institute for Computer Science, Ottawa-
Carleton. Canada. 2002.

[2] Parnas, D.L.: Precise documentation: The key to
better software. In: Nanz, S. (ed.) The Future of
Software Engineering, 2011, pp. 125–148. Springer,
Heidelberg

[3] S. Capri, Developing Successful Software
Documentation, 2006. [Accesed: 14th August,2013],
Available
online:<http://www.softwareceo.com/downloads/files/
sceo/white
papers/DevelopingSuccessfulSoftwareDocumentation.
pdf>

[4] Elowe, The role of documentation in software
development. 2006. [Accessed: 9th July,2013].
Available online:<
https://blogs.oracle.com/elowe/entry/the_role_of_doc
umentation_in>

[5] I. Sommervile, "Software Documentation",
2001.Available from World Wide Web:
<http://www.literateprogramming.com/
documentation.pdf>.

[6] F. Bachmann, L. Bass, J. Carriere, P. Clements, D.
Garlan, J. Ivers, R. Nord, R. Little, Software
Architecture Documentation in Practice:
Documenting Architectural Layers. CMU/SEI-2000-
SR-004. Carnegie. Mellon University. 2000.

[7] F. Shull, “Developing Techniques for Using Software
Documents: A Series of Empirical Studies”. PhD
thesis, Computer Science Department, University of
Maryland, USA. 1998.

[8] Bo Sun, “A Methodology for Analyzing Cost and
Cost-Drivers of Technical Software Documentation”.
MS thesis, University of Calgary. Alberta. 2012.

[9] A. Berger Guidelines: Technical Documentation
Standard for Software development. Specific Group
software solutions. v 1.3. 2010.

[10] T. C.Lethbridge, J.Singer, A.Forward, How Software
Engineers Use Documentation: The State of the
Practice, IEEE Software, v.20 n.6, 2003.p.35-
39, [doi>10.1109/MS.2003.1241364]

[11] F. Akin-Lagida, Documentation in programming.
NASSCOM. 2013. [Accessed online: 18th July, 2013].
Available:<http://www.slideshare.net/itniketan/impor
tance-of-documentation>

[12] A. Forward and T.C. Lethbridge, "The Relevance of
Software Documentation, Tools and Technologies: A
Survey," Proc. ACM Symp. Documentation Eng.,
ACM Press, 2002, pp. 26-33.

[13] Doxygen [Accessed: 16th July,
2013],Available:<http://www.stack.nl/~dimitri/doxyg
en/>

[14] Academic and Research Computing, Text Formatting
with LATEX. A Tutorial. RPI, 2007. [Accessed on
14th August, 2013]. Available
online:<www.unc.edu/depts/econ/egsa/LaTeX.pdf>

[15] A. Reilly, Audience-Oriented Standards for Software
Documentation from ISO. Intercom; Vol. 58 Issue 3,
2011, p14-17

[16] IEEE, Standard for Software User
Documentation, IEEEStd1063-2001. New York:
Institute of Electrical and Electronics Engineers.
2001.

Noela Jemutai Kipyegen holds Master of Science in Software
Engineering, awarded by Jomo Kenyatta University of Agriculture and
Technology, Kenya in 2010. Bachelor of Science in Computer
Science, from Egerton University, Kenya, awarded in 2006. Currently,
she is an Assistant Lecturer and Researcher in the Department of
Computer Science, Egerton University, Kenya. Research interests
include Software Engineering Project Management, ICT for
Development, looking at Human Computer Interaction (HCI).
Publication: Kipyegen Noela J., Waweru Mwangi, Stephen Kimani,

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 227

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Risk Management Adoption Framework for Software Projects: A
Case Study for Kenyan Software Project Managers and Developers.
International Journal for Computer Science Issues (IJCSI) Vol 9,
Issue 3, May 2012.

William Paul Kiplangat Korir is a senior Lecturer at Egerton
University. He holds MSc. in Computer Science from University of
Regina, Canada, BSc. (Hons), University of Nairobi, Kenya. He has
published several papers found in his profile,
<http://www.egerton.ac.ke/index.php/Computer-Science/kiplangat-
korir-william-pau.html>.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 228

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

