
 

 

New Approach to Optimize the Time of  Association Rules 

Extraction 

Thabet Slimani 

CS Department, Taif University, P.O.Box 888, 21974, KSA 

 

Abstract 
The knowledge discovery algorithms have become ineffective at 

the abundance of data and the need for fast algorithms or 

optimizing methods is required. To address this limitation, the 

objective of this work is to adapt a new method for optimizing 

the time of association rules extractions from large databases. 

Indeed, given a relational database (one relation) represented as a 

set of tuples, also called set of attributes, we transform the 

original database as a binary table (Bitmap table) containing 

binary numbers. Then, we use this Bitmap table to construct a 

data structure called Peano Tree stored as a binary file on which 

we apply a new algorithm called BF-ARM (extension of the well 

known Apriori algorithm).  Since the database is loaded into a 

binary file, our proposed algorithm will traverse this file, and the 

processes of association rules extractions will be based on the file 

stored on disk. The BF-ARM algorithm is implemented and 

compared with Apriori, Apriori+ and RS-Rules+ algorithms. The 

evaluation process is based on three benchmarks (Mushroom, 

Car Evaluation and Adult). Our preliminary experimental results 

showed that our algorithm produces association rules with a 

minimum time compared to other algorithms. 

Keywords: Data Mining, Association Rules, Large Databases, 

Frequent Itemsets, Peano Trees (Ptree). 

  

1. Introduction 

As a prominent tool for knowledge mining, Data mining 

[1] includes several techniques:  Clustering, Association, 

Classification and Deviation.  Knowledge Discovery in 

Data (KDD) constitutes an important advance in the area 

of data mining. It consists in the extraction of implicit 

knowledge (previously unknown and potentially useful), 

hidden in large databases. Association rule mining [2] is 

one of the principal problems treated in KDD and can be 

defined as extracting the interesting correlation and 

relation among huge amount of transactions. The task of 

association rule mining is to find interesting relationships 

from the data in the form of rules. The original application 

of association rule mining was on market basket analysis 

with the aim to study the buying habits of customers [3]. 

Currently, ARM  has been the subject of several real-

world applications in different areas requiring research 

groups of potential product or service, such as:  medical 

diagnosis [4],   biological database [5][6], electronic 

commerce [7][8]  misuse detection [9].  

  

Formally, an association rule is an implication relation in 

the form XY between two disjunctive sets of items X 

and Y. A typical example of an association rule on 

"market basket data" is that "80% of customers who 

purchase bread also purchase butter ". Each rule has two 

quality measurements, support and confidence. The rule 

XY has confidence c if c% of transactions in the set of 

transactions D that contains X also contains Y. The rule 

has a support S in the transaction set D if S% of 

transactions in D contain X Y. The problem of mining 

association rules is to find all association rules that have a 

support and a confidence exceeding the user-specified 

threshold of minimum support (called MinSup) and 

threshold of minimum confidence (called MinConf ) 

respectively. 

 

Actually, frequent itemset mining and association rule 

mining became a wide research area in the field of data 

mining, and consequently a large number of quick and 

speed algorithms have been developed. The more efficient 

are those Apriori based algorithms or Apriori variations. 

The works that used Apriori as a basic search strategy, 

they also adapted the complete set of procedures and data 

structures [3][10][11]. Additionally, the scheme of this 

important algorithm was also used in sequential pattern 

mining [12], episode mining, functional dependency 

discovery & other data mining fields (hierarchical 

association rules [13]).  

 

Another work was concentrated to develop faster 

algorithms for existing classical methods and adapting the 

algorithms into various states. As examples: 

multidimensional database mining [14], ontology based 

rule mining [15], association rule mining from the data 

cube [16][17][18], association rule mining in data 

warehouses [19],  ontology based rule mining [20], 

parallel algorithms for association rule mining [21][22] 

and other algorithms.  

 

Finding association rules is valuable for crossing-

marketing [23] and attached mailing applications. Other 

applications include catalog design, add-on sales, store 

layout, and customer segmentation based on buying 

patterns. Besides application in the business area, mining 

association rule can also be applied to other areas, such as 

medical diagnosis [24], and remotely sensed imagery [25]. 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 234

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

The databases involved in these applications are very 

large. Mining association rules in such databases may 

require substantial processing power. Therefore, it is 

necessary to have fast algorithms for this task. This 

observation motivates us to propose a new method for 

mining association rules in large databases. Given a 

relational database with various types of attributes (binary 

or not binary attributes), we first propose to convert the 

original database in a binary table (Bitmap). This 

transformation is a characteristic of the rough set method 

described in [26]. Next, we use a structure of data, called 

Peano tree (Ptree) which provides a lossless and 

compressed representation of Bitmap. By using Ptrees, an 

association rule mining algorithm with fast support 

calculation and significant pruning techniques are possible. 

The present work illustrates that using efficient data 

structures (Ptree) and our B-ARM algorithm (Binary 

Association Rule Mining) can be interesting for extracting 

the frequent itemsets
1
 which is a time consuming task, 

especially when databases are large.  

 

The Ptrees are used, in this context, to extend the  Anding 

operation [27] of Ptrees to the attributes of the database. 

Using Ptrees, we do not make the expensive task of 

database scan each time we need to calculate the itemsets 

supports because, as we have already mentioned, 

concerned database is charged in a binary file, and 

Therefore we use the proposed B-ARM algorithm to 

extract the frequent itemsets on the specified Data Base in 

minimal time compared to other works. 

 

This paper is organized as follows: in Section2, we 

describe briefly some related works. Section 3 summarizes 

the Ptree structure. Section 4 presents the specification of 

database attributes. In section 5, we details how to derive 

association rules using Ptrees. In Section 6, we describe 

our BF-ARM algorithm of the association rule mining. 

Details on implementation and experimental results are 

discussed in Section 7. Finally, we conclude with a 

summary of our approach and extensions of this work. 

2. Literature Review 

 

Early studies examined efficient mining association rules 

from different point of views. Apriori [28] is certainly the 

basic algorithm; it is developed for rule mining in large 

transaction databases. A DHP (Direct Hashing and 

Pruning) is an extension of the Apriori algorithm using a 

hashing technique [29]. A more recent algorithm called 

FDM (Fast Distributed Mining of association rules) was 

proposed by Cheung et al.[30], it is characterized by the 

                                                           
1
 Itemsets which have support above the user-specified minimum 

support. 

generation of a small number of candidate sets and by the 

reduction of the number of messages to be passed at 

mining association rules. PincerSearch[31] spreads Apriori 

algorithm to generate the frequent itemsets. Depth-project 

[32] uses a dynamic reordering in order to reduce the 

research space. Another work realized by [33] proceeds to 

the improvement of the quality of the association rules by 

rough set technique. At least, nearer of our work, on one 

hand, FP-growth algorithm that represents the basis of 

transactions in the form of a compressed tree called FP-

tree [34] and on the other hand, the MFItemsets algorithm 

(Maximum Frequent Itemsets) that represents the database 

as a truth table with an output Boolean function and sends 

back a body of Boolean products corresponding to the 

maximum frequent itemsets associated with the given 

transactions [35]. More recently, The work proposed by 

Rajalakshmi et al. [36] which identify maximal frequent 

itemsets based on minimum effort. The following 

paragraphs give a more detailed explanation of the 

previous approaches for more clarification: 

 

Apriori: Apriori proposed by [28] is the fundamental 

algorithm. It searches for frequent itemset browsing the 

lattice of itemsets in breadth. The database is scanned at 

each level of lattice. Additionally, Apriori uses a pruning 

technique based on the properties of the itemsets, which 

are: If an itemset is frequent, all its sub-sets are frequent 

and not need to be considered. 

 

DHP: DHP algorithm (Direct Haching and Pruning) 

proposed by [29] is an extension of the Apriori algorithm, 

which use the hashing technique with the attempts to 

efficiently generate large itemsets and reduces the 

transaction database size. Any transaction that does not 

contain any frequent k-itemsets cannot contain any 

frequent (k+1)-itemsets and such a transaction may be 

marked or removed.  

 

FDM:   FDM (Fast Distributed Mining of association 

rules) has been proposed by [30], which has the following 

distinct features. 

1. The generation of candidate sets is in the same 

spirit of Apriori. However, some relationships 

between locally large sets and globally large ones 

are explored to generate a smaller set of candidate 

sets at each iteration and thus reduce the number 

of messages to be passed. 

2. The second step uses two pruning techniques, 

local pruning and global pruning to prune away 

some candidate sets at each individual sites. 

3. In order to determine whether a candidate set is 

large, this algorithm requires only O(n) messages 

for support count exchange, where n is the 

number of sites in the network. This is much less 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 235

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

than a straight adaptation of Apriori, which 

requires O(n
2
 ) messages. 

 

PincerSearch: The Pincer-search algorithm [31]  proposes 

a new approach for mining maximal frequent itemset 

which combines both bottom-up and top-down searches to 

identify frequent itemsets effectively. It classifies the data 

source into three classes as frequent, infrequent, and 

unclassified data. Bottom-up approach is the same as 

Apriori. Top-down search uses a new set called 

Maximum-Frequent-Candidate-Set (MFCS).   It also uses 

another set called the Maximum Frequent Set (MFS) 

which contains all the maximal frequent itemsets identified 

during the process. Any itemset that is classified as 

infrequent in bottom-up approach is used to update MFCS.  

Any itemset that is classified as frequent in the top-down 

approach is used to reduce the number of candidates in the 

bottom–up approach. When the process terminates, both 

MFCS and MFS are equal. This algorithm involves more 

data source scans in the case of sparse data sources. 

 

Depth-project: DepthProject  proposed by Agarwal et al., 

(2000) [32] also mines only maximal frequent itemsets. It 

performs a mixed depth-first and breadth-first traversal of 

the itemset lattice. In the algorithm, both subset 

infrequency pruning and superset frequency pruning are 

used. The database is represented as a bitmap. Each row in 

the bitmap is a bitvector corresponding to a transaction and 

each column corresponds to an item. The number of rows 

is equal to the number of transactions, and the number of 

columns is equal to the number of items. By using the 

carefully designed counting methods, the algorithm 

significantly reduces the cost for finding the support 

counts.   

 

FP-tree :  FP-tree proposed by Han et al., (2000) [34] is a 

compact data structure that represents the data set in tree 

form.  Each transaction is read and then mapped onto a 

path in the FP-tree. This is done until all transactions have 

been read. Different transactions that have common 

subsets allow the tree to remain compact because their 

paths overlap. the size of the FP-tree will be only a single 

branch of nodes. The worst case scenario occurs when 

every transaction has a unique itemset and so the space 

needed to store the tree is greater than the space used to 

store the original data set because the FP-tree requires 

additional space to store pointers between nodes and also 

the counters for each item.  

GenMax: GenMax proposed by Gouda and Zaki, [37] a 

backtrack search based algorithm for mining maximal 

frequent itemsets. GenMax uses a number of optimizations 

to prune the search space. It uses a novel technique called 

progressive focusing to perform maximality checking, and 

diffset propagation to perform fast frequency computation. 

FPMax: FPMax (Frequent Maximal Item Set) is an 

algorithm proposed by Grahne and Zhu, (2005) [38] based 

on FP Tree. It receives a set of transactional data items 

from relational data model, two interesting measures Min 

Support, Min Confidence and then generates Frequent 

Item Sets with the help of FPTree. During the process of 

generating Frequent Item Sets, it uses array based structure 

than tree structure. Additionally, the FPMax is a variation 

of the FP-growth method, for mining maximal frequent 

item sets. Since FPMax is a depth-first algorithm, a 

frequent item set can be a subset only of an already 

discovered MFI. 

 

Method based on minimum effort: The work proposed 

by Rajalakshmi et al. (2011) [36] describes a novel method 

to generate the maximal frequent itemsets with minimum 

effort.   Instead of generating candidates for determining 

maximal frequent itemsets as done in other methods [31], 

this method uses the concept of partitioning the data 

source into segments and then mining the segments for 

maximal frequent itemsets. Additionally, it reduces the 

number of scans over the transactional data source to only 

two. Moreover, the time spent for candidate generation is 

eliminated. This algorithm involves the following steps to 

determine the MFS from a data source:  

1. Segmentation of the transactional data source.  

2. Prioritization of the segments   

3. Mining of segments 

3. Ptree Structure 
 

The data structure tree Peano (Ptree), also called "peano 

count tree" is a compact and efficient representation used 

to store a database (originally an image) as a binary bits 

(0 and 1). This structure was initially introduced for the 

representation of spatial data such as RSI data 

applications (Remotely Sensed imagery) [39][27]. Using 

Ptree structure, all the count information can be 

calculated quickly. This facilitates efficient ways for data 

mining. 

A Ptree is a quadrant based tree. The Ptree principle is 

to divide, recursively, the totality of spatial data into 

quadrants and counting the  bits having the value "1" for 

each quadrant, thus forming a computation quadrants 

tree. In figure 1, 55 is the number of bits in one complete 

picture, the root level is labeled level 0. The numbers at 

the next levels (level 1) are, 16, 8, 15 and 16, are the 1-

bit counts for the four major quadrants. The quadrants 

composed entirely of 1-bits are called a "pure 1 

quadrant" (the first and last quadrant with 16 value are a 

pure 1 quadrant and we do not need sub-trees for these 

two quadrants, so these branches terminate) and 

similarly, the quadrants composed entirely of 0-bits are 

called a "pure 0 quadrant" (which also terminate). This 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 236

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

process is repeated recursively using the Z-ordering of 

the four sub-quadrants at each new level. Eventually, 

every branch terminates in the leaf level or when each 

quadrant is a pure quadrant. 

The Ptrees are similar in their construction to other 

existing data structures, for example Quadtrees (Samet 

1984) and HHcodes
1
. The similarities between Ptrees, 

quadtrees, and HHcodes
2

 are that they are quadrant 

based. The difference is that Ptree include occurrence 

counts. Trees are not indexed, but they are 

representations of the dataset itself. 

When using the Ptree structure, any  information 

calculation can be completed very fast. The performance 

analysis realized in [27] shows that Ptree produces a 

good cost computation (CPU time) and reduce the 

storage space compared to the original data. 

Peano mask tree (pm-tree) is a variation of the ptree data 

structure. Pm-tree is a similar structure in which masks 

rather than counts are used. In pm-tree structure, to 

represent pure-1, pure-0 and mixed quadrant we use a 3-

value logic. In pm-tree structure, to represent pure-1, 

pure-0 and mixed quadrant we use a 3-value logic. Pm-

tree is helpful for the optimization of anding operation 

between two ptrees. 

 

 

 

 

 

 

 

 

 

 

Figure1. Ptree for 8*8  image 

 

A PM-tree example is given in the Figure 2. Other 

variations can be used, such as P1-tree and P0-Tree. In P1-

tree, we use 1 to indicate the pure-1 quadrant while use 0 

to indicate others. In P0-tree, we use 1 to indicate the pure-

0 quadrant while use 0 to indicate others. Both P1-tree and 

P0-tree are lossless representations of the original data 

[39]. 

 

 

 

 

 

 

                                                           
1
 http ://www.statkart.no/nlhdb/iveher/hhtext.html 

2
 http ://www.statkart.no/nlhdb/iveher/hhtext.html 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure1. PMtree for 8*8  image 

4. Specification of Database Attributes 
 

A Database is represented by a binary or bitmap table 

whose columns are attributes and each attribute owns a 

limited set of values (items) known by the domain 

attributes of the database. A database can have two types 

of attributes domain: Binary attributes domain (BAD) and  

non-binary attributes domain (NBAD). 

 

Binary Attributes domain:  A Binary attributes domain is 

represented by a vector               with size k, such 

that the values v1 and v2 are taken from the set {0,1}, and 

k is the number of k-tuples of values taken from {0, 1}. 1-

tuple represents a tuple of the database or transaction in 

terms of the market basket data analysis.  

A database An n-dimensional is constituted of n binary 

vectors, when each vector has 2n size and is constituted in 

turn with 4 binary vectors 2n/4 (for simplicity reasons, we 

decompose each binary vector into four quadrants). 

An Lines (transactions) repesent all combinations of n 

possible binary values 0 and 1. In the example given in 

table.1, the presence 

of a computer item in a transaction or its absence 

represents its domain {purchased, not purchased} and the 

binary transformation makes the attribute value a1 =1,  if  

the computer is purchased or a1 = 0 if the computer is not 

purchased. 

 
Table1. The transformation of raw data into a bitmap representation for 

BAD. 

 

Tid Computer  

 

 

Tid a1 

1 Purchased 1 1 

2 Not purchased 2 0 

3 Purchased 3 1 

4 Not purchased 4 0 

…. …. ….. ….. 

 

 

 55 

16 8 15 16 

3 0 4 1 4 4 3 4

1 

1 1 1 0 0 0 1 0 1 1 0 1 
 

 

 m 

1 m

8 
m 1 

m 0 1 m

1 

1 1 m 1

1 

1 1 1 0 0 0 1 0 1 1 0 1 
 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 237

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Non  Binary Attributes domain: A non  Binary attribute 

domain Aj is consituted with j items of the Database and 

represented by      
    binary vectors where n is the 

number of attributes of the non binary attributes domain. 

For example, for a better representation of the benefit of a 

client, we associated to the attribute "income" the domain 

with three (j=3) items {high, medium, low} defined as 

follows: a1 = "high income" a2 = "middle income" and a3 

= "low income" and represented by the following binary 

table (Table 2): 

 

Table2. The transformation of raw data into a bitmap representation for 

NBAD 

 

Tid Income  

 

 

Tid a1 a2 a3 

1 High 1 1 0 0 

2 Meduim 2 0 1 0 

3 Low 3 0 0 1 

4 High 4 1 0 0 

…. ………. ….. … … … 

5. Association Rule Mining using Ptree 
 

Given a user-specified minimum support and minimum 

confidence, the problem of mining association rules is to 

find all the association rules whose support and confidence 

are larger than the respective thresholds specified. Thus, it 

can be decomposed into two subproblems : 

Finding the frequent itemsets which have support above 

the user-specified minimum support. 

Deriving all rules, based on each frequent itemset, which 

have more than user-specified minimum confidence. 

The whole performance is mainly determined by the first 

step, which is the generation of frequent itemsets. Once the 

frequent itemsets have been generated, it's straightforward 

to derive the rules. To solve this problem and to improve 

the performance, Apriori algorithm was proposed [28]. 

Apriori algorithm generates the candidate itemsets to be 

counted in the pass by using only the itemsets found large 

in the previous pass - without considering the transactions 

in the database. 

The key idea of Apriori algorithm lies in the "downward-

closed" property of support which means if an itemset has 

minimum support, then all its subsets also have minimum 

support. An itemset having minimum support is called 

frequent itemset (also called large itemset). So any subset 

of a frequent itemset must also be frequent. The candidate 

itemsets having k items can be generated by joining 

frequent itemsets having k-1 items, and deleting those that 

contain any subset that is not frequent. 

Start by finding all frequent 1-itemsets (itemsets with 1 

item); then consider 2-itemsets, and so forth. During each 

iteration only candidates found to be frequent in the 

previous iteration are used to generate a new candidate set 

during the next iteration. The algorithm terminates when 

there are no frequent k-itemsets. Since finding frequent 

itemsets is a time consuming task, especially when 

databases are large, we use a Bitmap table (containing 

binary data) to organize original database and the Peano 

tree (Ptree) structure to represent Bitmap tables in a spatial 

data mining-ready-way. Ptrees are a lossless representation 

of the original database. 

5.1. Model Representation 

 

The rough set method [26] operates on data matrices, 

called "information tables" which contain data about the 

universe   of interest, condition attributes  c and decision 

attributes  d. The goal is to derive rules that give 

information how the decision attributes depend on the 

condition attributes.  

    Let us consider the original database represented by the 

corresponding information contained in Table 3 where 

condition attributes are {A, B, C, D, E, F} associated to 

the following products {cartridge printer, video reader, 

car, computer, movie camera, printer} and decision 

attribute is {G} corresponding to {graphic software}. Each 

attribute has two non null values {yes, no}. So, there are 

seven items (bitmap-attributes) for the resulting bitmap-

table {A, B, C, D, E, F and G}. 

 
Table 3. Original table (database) with its equivalent Bitmap table. 

Tid A B C D E F G 

Tid1 yes yes no no no no no 

Tid2 yes yes yes yes yes yes no 

Tid3 no yes no yes no no yes 

Tid4 no yes no no yes no yes 

Tid5 no no no yes no yes yes 

Tid6 no no no yes yes no yes 

Tid7 no yes no no yes no no 

Tid8 no yes no yes yes yes no 

 

 

 

Tid A B C D E F G 

Tid1 1 1 0 0 0 0 0 

Tid2 1 1 1 1 1 1 0 

Tid3 0 1 0 1 0 0 1 

Tid4 0 1 0 0 1 0 1 

Tid5 0 0 0 1 0 1 1 

Tid6 0 0 0 1 1 0 1 

Tid7 0 1 0 0 1 0 0 

Tid8 0 1 0 1 1 1 0 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 238

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

In the first step, all possible rules are constructed from all 

bitmap-attributes of the table. All rules not fulfilling the 

minimum support (MinSup=10%) and minimum 

confidence (MinConf=30%) should be deleted. 

5.2. From Attributes to Ptree 
 

According Ptree representation, the set of tuples must be a 

power of 2. The number of the tuples in a database is 

transformed to the nearest power of 2, knowing than the 

completed tuples are itemsets uniquely including the value 

0. In Ptree approach, each column of Bitmap table is 

represented by a vector of bits of which cuts it divisible by 

4, called basic Ptree. 

   For simplicity reasons, we suppose that the fan-out is 

four. For every vector of bits, a basic Ptree is associated. 

There are six basic Ptrees for the universe  c of Table.2, 

and since each Ptree presents a number of bits divisible by 

4, therefore, it is constituted by four under quadrants of 

which the origin quadrant is the entirety of the bits 

forming Bitmap table. As the header of Ptree files contains 

the root count, the root counts of Ptrees are immediately 

accessible, and will conveniently replace the necessity of 

using original data to count the number of transactions 

containing candidate frequent itemsets. 

 

 

 

 

 

Tid A B C D E F G 

Tid1 1 1 0 0 0 0 0 

Tid2 1 1 1 1 1 1 0 

Tid3 0 1 0 1 0 0 1 

Tid4 0 1 0 0 1 0 1 

Tid5 0 0 0 1 0 1 1 

Tid6 0 0 0 1 1 0 1 

Tid7 0 1 0 0 1 0 0 

Tid8 0 1 0 1 1 1 0 

 
Figure 1. Tabular Representation of Ptrees. 

In a similar way to the generation of the sequence of Peano 

from the spatial data, we create the Ptree in a Bottom-up 

way. The generation of Ptree depends on the number of 

fan-out in the internal nodes of the Ptree and in the root 

node. To represent Ptree with different fans-outs, we 

introduce the Ptree-(r-i ) notation ; where r = the fan-out of 

the root node and i = the fan-out of all the internal nodes 

of the level 1. We adopt in our work, the representation 

Ptree-(4-4-n), it means that this structure divides the 

database tuples into 4 blocks (the block of a transaction 

must have at minimum 4 tuples). For example, if the 

number of tuples is less than 16, one completes by 0 to 

obtain the Ptree format on 16 tuples. Generally, if the 

number of transactions is inferior to 2
n+1

 and superior to 2
n
 

then the basic Ptree is stored with 2
n+1

 number.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Snaphsot of Ptrees representation (Ptree_A). 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3. Snaphsot of Ptrees representation (Ptree_B). 

 

5.3. Ptree Anding Operation 
 

ANDing is a very important and frequently used operation 

for Ptrees. There are several ways to execute Ptree 

ANDing operation. We can execute anding level-by-level 

starting from the root level. Table. 4 gives the rules for 

performing Ptree ANDing. Operand 1 and Operand 2 are 

two ptrees with root X1 and X2 respectively. Using PM-

trees, X1 and X2 could be any value between 1, 0 and m (3-

value logic representing pure-1, pure-0 and mixed 

quadrant). For example, a pure-1 Ptree combined with any 

Ptree_A Ptree_G 

A 

1 

1 

0 

0 

0 

0 

0 

0 

 
 

 Ptree_A 

2 

2 0 0 0 

1 1 0 0 

……………

…… 

Ptree_B 

B 

1 

1 

1 

1 

0 

0 

1 

1 

  

 Ptree_B 

2 

6 

4 0 0 

0 0 1 1 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 239

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

ptree will have as consequence the second operand and a 

pure-0 ptree with any ptree will result in the pure-0 ptree. 

 

 
Table 4. Ptree anding rules. 

 

Operand 1 Operand 2 Result 

1 X2 Subtree with root X2 

0 X2 0 

X1 1 Subtree with root X1 

X1 0 0 

m m 0 if four sub-

quadrants result in 0 

value; m otherwise 

6. Algorithm BF-ARM (Binary File 

Association Rule Mining) 
 

 

In accordance with the Apriori algorithm, we wish to find 

all frequent 1-itemsets first. We do not need to scan the 

entire data set and employ a counter for each item. We 

only need to access the root count of the Ptree for every 

item in the table. Then a simple calculation will indicate 

whether the item is a frequent 1-itemset or not. If the 

root count of an item's Ptree divided by the total number of 

transactions is greater than Minsup, then the item is a 

frequent 1-itemset.  

 

Using Ptrees structure has now saved one scan of the 

entire data set, along with the necessity of memory buffer 

management. Next we want to find frequent 2-itemsets. 

The only possible candidate 2-itemsets are made up of 

frequent 1-itemsets. All other Ptrees will be ignored in 

finding frequent 2-itemsets, so we are working with a 

subset of the original data set. The candidate 2-itemsets are 

all the pairwise combinations of frequent 1-itemsets. For 

each candidate 2-itemset, the Ptrees for the two items are 

ANDed to produce a third, derived Ptree that represents 

the presence of both items in transactions. Note that the 

ANDing process is fast enough that there is no need to 

save the new Ptree for further operations (Ding et al, 

2002). To determine support for any candidate 2-itemset, 

we divide the root count of the new, 2-itemset Ptree by the 

number of transactions in the table. If support is greater 

than Minsup, we'll calculate the confidence levels to test 

against Minsup. The numbers needed to calculate 

confidence are, once again, the root counts of Ptrees. 

    Now, knowing the frequent 2-itemsets we can continue 

with discovering frequent 3-itemsets from candidate 3-

itemsets and so on until no candidate k-itemsets exist. The 

basic algorithm is to AND all the Ptrees of the items in the 

candidate k-itemset, divide the root count of the new Ptree 

by the total number of transactions, and test for Minsup. In 

every case, there is no need to scan the data since the 

necessary counts exist already within the Ptrees derived 

from AND operations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rootcount function, used in the storage procedure of 

Ptree, is to calculate admissible itemsets counts directly by 

ANDing the appropriate basic Ptrees instead of scanning 

the original databases. Let Nt be the number of tuples; n is 

initialized to 3 and I be the total number of attributes. 

Algorithm BF-ARM 
 Data Discretization 
 Ptrees_Storage  
 For each attribute i   c 
   C1 = F1  
 End For 

 Ck = C1  
 Do While (Ck ≠ ) 
    For each attribute i Ck 
       For each attribute j   d 
        Fij = AND_Ptreebase(i,j)  
        Storage_Ptrees  
       End For 

      Fk = Fk Fi  //itemsets candidats 
   End For 

  Ck = Fk{c   Ck|c.count ≥ MinSup} 
 End While 
 

Function  Storage_Ptrees 

  For (bandj=1; j<I; j++) 
     root[j] :=rootcount(1 ; bandj) 

  //vector storing the roots of Ptrees. 

    If(2
n
 ≤Nt and Nt < 2n+1) then 

       For (i :=Nt ; i≤ 2
n+1 

; i++) 

         bandj[i+1] :=0 ; 

       End For 

    End If 

     k :=0 ; 

   For (i :=1 ; i≤2
n
; 2

n
/4) 

     k :=k+1 ; 

     rootsBandj[k] :=rootcount (1 ; bandj) ; 

    End For 

    For (i :=1 ; i≤2
n
; 2

n
/4) 

      If (rootsBandj[i]<>2
n
 or rootsBandj[i]<>0)  

       then 
         bitsBandj[i] :=rootsBandj[i] ; 

    // bits vectors 

      End If 

    End For 

End For 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 240

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

The list of the strong rules generated in the example 

described previously is summarized in Table 5. The rules 

are classified by decision attribute G or F. 

 
Table5. Strong rules generated by the BF-ARM algorithm. 

 

 

Decision 

Attribute 

= G 

Decision 

Attribute = F 

Strong rules 

with 2 attributes 

BG 

DG 

EG 

FG 

AF 

BF 

DF 

EF 

Strong rules 

with 

3 attributes 

B,DG A, BF 

A,CF 

A,DF 

A,EF 

B,CF 

B,DF 

C,DF 

Strong rules 

with  4 attributes 

 A,B,CF 

A,B,DF 

A,B,EF 

A,C,DF 

B,C,DF 

B,C,EF 

B,D,EF 

C,D,EF 

Strong rules 

with 5 attributes 

 A,B,C,DF 

A,B,C,EF 

A,C,D,EF 

B,C,D,EF 

Strong rules 

with 6 attributes 

 A, B,C,D,EF 

7. Experimental Results 
 

In this section, we compare our work with the two 

approaches Apr+ (Hybrid Association Rule Algorithm 

Apriori+) and Rs+ (Rough Set Based Rule Generation 

Algorithm RS-rules+) (Delic et al. 2002). The procedure 

Apr+ is an extension of the method "faster association 

rule" combined with the procedure "rough set". The 

derived rules are produced on the basis of the successive 

reduction of the useless rules. If there is a given fixed 

decision attribute, all itemsets without this attribute can be 

ignored for rule generation. Besides the Apr+ procedure of 

rule generation with a fixed decision attribute, the 

procedure Rs+ offers the possibility of varying the selected 

decision attributes, so, each attribute can be included either 

as a decision or condition attribute. In our work, we use 

the principle for deriving rules with a fixed decision 

attribute, but we add the notion of the Ptree structure to 

accelerate the processor time generation of the strong 

rules. Furthermore, in our work, we don't produce 

redundant rules, while in Rs+ and Apr+, redundant rules 

are produced and removed by the continuation.  

    The comparison of our work is facilitated by the use of a 

benchmark data set
1
 concerning Car Evaluation Database, 

Mushroom Database and Adult database. For example, the 

car evaluation database contains 1728 tuples and 25 values 

of attributes (items) in the Bitmap table. 

 

The preliminary experimental results given in Table 6 

show that the computing times were in favor of our BF-

ARM algorithm (Figure4). Indeed, bases on Car 

Evaluation benchmark, our work produces a CPU time to 

generate strong rules equal to 0,083 min for fixed decision 

attributes and a CPU time equal to 0,067 min for no fixed 

decision attributes. By running Apr+, Rs+, and BF-ARM 

algorithms, we got identical rules. 

 
Table 6. Comparative table for the algorithms RS-ules+ (Rs+), 

Apriori+ (Apr+), Apriori (APR) and BF-ARM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 

 

 

 

 

                                                           
1
 The benchmark data can be found in UCI Repository of 

Machine Learning Databases and Domain Theories (URL : 

ftp.ics.uci.edu/car) 

 
 

0 

50 

100 

150 

200 

250 

0 2 4 6 8 

C
P

U
 T

im
e

 (
M

in
u

te
) 

Benchmark Data 

RS+ 

APR+ 

APR 

BF-ARM 

Database Car Evaluation 

CPU Time(Min) 

Mushroom 

CPU 

Time(Min) 

Adult 

CPU 

Time(Mi

n) 

MinSupp 10% 35% 17% 

MinConf 75% 90% 94% 

 Fixed Decision Attribute 

Method 

 

 

Yes No Yes No Yes No 

RS+ 1.15 3.15 3.32 15 64 233 

APR+ 1.12 1.12 2.02 2.0

2 

44 44 

APR  1.10  2  44 

BF-ARM 0.083 0.067 0.3 0.2

23 

6.29 4.54 

 

Figure 4. Comparative Snapshot for the algorithms RS-rules+ (Rs+), 

Apriori+ (Apr+), Apriori (APR) and B-ARM. 

 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 241

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

8. Conclusion 
 

In this paper, we propose a new method to derive 

association rules from large databases using Ptree 

structure. The Ptree structure is a space efficient, lossless, 

data mining ready structure for binary datasets. The 

adopted association rules method specified by our 

algorithm BF-ARM is based on the concept of pruning by 

minimum support and minimum confidence directly to 

produce strong association rules. The discovery of 

similarities between attributes/items was based on the rules 

of Ptrees ANDing. Based on the benchmark data, we 

compared the quality of the produced rules and the 

necessary computing times of the algorithms. It turned out 

the generated rules of Apr+, Rs+, Apr and BF-ARM does 

not differ. But, the computing times were in favor of BF-

ARM algorithm. Our work is beneficial because on the 

one hand, it avoids the direct scanning of database (an 

expensive operation in memory and computation time), 

which greatly exceeds the capacity of computers, despite 

their rapid evolutions and, secondly, it provides a gain of 

attributes comparison because the comparison is 

performed by a block of tuples. Another interesting 

direction is the extension of our association rule mining 

method by adding time constraints (new area for sequence 

identification). 

 

References 
 

[1] K.J.Cios, W. Pedrycz, R.W. Swiniarski, &  L.A.Kurgan. Data 

mining: A knowledge discovery approach. New York, NY: 2012, 

Springer. 

 

[2] X. Liu, K. Zhai, &, W. Pedrycz. An improved association 

rules mining method. Expert Systems with Applications. 2012, 

39(1), pp.1362–1374. doi:10.1016/j. eswa.2011.08.018. 

 

[3] R. Agrawal, R. Imielinski, & A. Swami. Mining associations 

between sets of items in massive databases. In Proceedings of the 

ACM SIGMOD Conference on Management of Data, 

Washington,  1993, pp. 207-216. 

 

[4]  Z.Xing, & J. Pei. Exploring disease association from the 

NHANES data: Data mining, pattern summarization and visual 

analysis. International Journal of Data Warehousing and 

Mining, 2010, 6(3), 11–27. doi:10.4018/jdwm.2010070102. 

 

[5] A. Rodriguez, J.M.Carazo, & O. Trelles. Mining association 

rules from biological databases. Journal of the American Society 

for Information Science and Technology, 2005, 56 (5), 493-504.  

 

 [6]  R.Martinez,  N. Pasquier, & C. Pasquier. GenMiner: Mining 

non-redundant association rules from integrated gene expression 

data and annotations. Bioinformatics (Oxford, England), 2008,  

24(22), 2643–2644.doi:10.1093/bioinformatics/btn490 

PMID:18799482. 

 

[7] R. Natarajan, & B. Sheka. Interestingness of association rules 

in data mining: Issues relevant to e-commerce. 2005, Sadhana, 

30, 291–309. doi:10.1007/ BF02706249. 

 

[8] Z. Yiyang, J. Jianxin. “An associative classification-based 

recommendation system for personalization in B2C ecommerce 

applications”, Expert Systems with Applications, 2007, 33 ,357–

367. 

[9] K.Keerthi, P.Sreenivas. Reducing Network Intrusion 

Detection using Association rule and Classification algorithms. 

International Journal of Computer Trends and Technology,2012,  

3(6), 752-756. 

 

[10] S. Brin, R. Motwani, J.D. Vllman & S. Tsur. “Dynamic 

itemset counting and implication rules for market basket data”, 

SIGMOD Record (ACM Special Interest Group on Management 

of Data),1997,  26(2), 255. 

 

[11] H.Toivonen. “Sampling large databases for association 

rules”, In the VLDB '96 Proceedings of the 22th International 

Conference on Very Large Data Bases, pp.134-145, 1996. 

 

[12] R. Agrawal and R. Srikant. “Mining sequential patterns” In 

P.S.Yu and A.L.P. Chen, editors, Proc.11the Int. Conf. Data 

engineering. ICDE, pp. 3-14. IEEE, 1995, pp, 6-10. 

 

[13] Y.F.Jiawei Han. “Discovery of multiple-level association 

rules from large databases” In Proc. of the 21St International 

Conference on Very Large Databases (VLDB), Zurich, 

Switzerland. 1995, Pp. 420-431. 

 

[14] J. Liu, H. Wang, & H. Zhou. The application of college 

employing management system based on improved multi-

dimension association rule mining algorithm. In Proceedings of 

the International Conference on Intelligent Human-Machine 

Systems and Cybernetics, China (pp. 135-137), 2011. 

 

[15]  P. Manda, S. Ozkan, H. Wang, F. McCarthy, S.M . Bridges. 

Cross-Ontology Multi-level Association Rule Mining in the Gene 

Ontology. PLoS ONE 7(10): e47411, 2012. 

doi:10.1371/journal.pone.0047411. 

 

[16] R. Messaoud,  R. S. Loudcher,  O. Boussaid, & R.Missaoui. 

Enhanced mining of association rules from data cubes. In 

Proceedings of the 9th ACM International Workshop on Data 

Warehousing and OLAP, Arlington, 2006, pp. 11-18. 

 

[17] R.B. Messaoud, S.L.Rabaseda, R.Missaoui, and O.Boussaid, 

OLEMAR: An Online Environment for Mining Association 

Rules in Multidimensional Data. pp. 1–35 in: D. Taniar (ed.), 

Data Mining and Knowledge Discovery Technologies. IGI 

Publishing, Hershey, New York, 2008. 

 
[18] J.J.Jigna, & P.Mahesh. Association rule mining method on 

OLAP cube. International Journal of Engineering Research and 

Applications, 2(2), 1147–1151, 2012. 

 

[19] H. C. Tjioe, & D.Taniar. Mining Association Rules in Data 

Warehouses.International Journal of Data Warehousing and 

Mining (IJDWM), 1(3), 28-62, 2005. 

doi:10.4018/jdwm.2005070103. 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 242

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=listeTitreSerie:%20(Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology)
http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=listeTitreSerie:%20(Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology)


 

 

 

[20] S. X. Xia, F.Li, L.Zhang."Ontology-Based Association Rule 

Quality Evaluation Using Information Theory," in International 

Conference on Computational and Information Sciences, 

Chengdu, China, 2010, pp.170-173.  

 
[21] Y. Junrui, Y. Yashuang.  "A parallel algorithm for mining 

association rules,"  2nd International Conference on Networking 

and Digital Society (ICNDS), 2010, 30-31 May 2010.  Wenzhou, 

China (pp.475-478) doi: 10.1109/ICNDS.2010.5479242. 

 

[22]  G. G. Zhang,  C. Z. Xu, P. C.-Y. Sheu, & H. Yamaguchi. 

Parallel association rule mining for medical applications. In 

Proceedings of the IEEE 11th International Conference on 

Bioinformatics and Bioengineering, Beijing, China, 2011,pp. 

148-154. 

 

[23] K.Wang., S. Zhou, & G. Webb. Mining customer value: 

from association rules to direct marketing, In Proceedings of the 

IEEE International Conference on Data Engineering, 2005, vol 

11, pp.57-80. 

 

[24] S. Doddi,  A.Marathe,  S.S. Ravi &   D.C. Torney. 

Discovery of association rules in medical data. Journal of  

Informatics for Health and Social Care 2001 26:1, 25-33. 

 

[25] J. Dong, W. Perrizo, Q. Ding, & J. Zhou. The application of 

association rule mining to remotely sensed data. In Proceedings 

of the 2000 ACM symposium on Applied computing - Volume 

1 (SAC '00), Janice Carroll, Ernesto Damiani, Hisham Haddad, 

and Dave Oppenheim (Eds.), 2000, Vol. 1. ACM, 340-345. 

DOI=10.1145/335603.335786. 

 

[26] T.Munkata. Rough Sets. In Fundamentals of the New 

Artificial Intelligence, New York : Springer-Verlag, 1998, pp. 

140-182. 

 

 [27] Q. Ding, M. Khan, A. Roy & W. Perrizo. The Ptree 

Algebra. In Proc. of ACM Symposium on Applied Computing 

(SAC'02), 2002,  Madrid, Spain, pp. 413-417. 

 

[28] R. Agrawal & R. Srikant.  Fast Algorithms for Mining 

Association Rules. In Proc. 20th Int. Conf. Very Large Data 

Bases (VLDB), 1994, pp. 487-499. 

 

[29] J.S. Park, M.S. Chen & P.S. Yu.  An Effective Hash-based 

Algorithm for Mining Association Rules. In Proc. 1995 ACM 

SIGMOD International Conference on Management of Data, 

1995, pp. 175-186. 

 

[30] C.Cheung, J. Han, V.T. Ng, A.W. Fu & Y. Fu.  A Fast 

Distributed Algorithm for Mining Association Rules. In Proc. of 

1996 Int'l Conf. on Parallel and Distributed Information Systems 

(PDIS'96), 1996, Miami Beach, Florida, USA. 

 

[31] D.Lin & Z. M.Kedem. Pincer Search : A New Algorithm for 

Discovering the Maximum Frequent Set. In Proc. Int. Conf. on 

Extending Database Technology, 1998. 

 

 

[32] R.C. Agarwal, C.C. Aggarwal & V.V.V. Prasad  Depth First 

Generation of   Long Patterns. In Proc. of the 6th Int. Conf. on 

Knowledge Discovery and Data Mining, 2000,  pp. 108-118. 

 

[33]  D.Delic, L.Lenz & N.Neiling .Improving the Quality of 

Association Rule Mining by means of Rough Sets. Free 

university of Berlin, Institute of Applied Computer Science, 

Garystr. 21, D-14195, 2002, Berlin, Germany. 

 

[34] J. Han, J. Pei & Y. Yin. Mining Frequent Patterns without 

Candidate Generation. In Proc. 2000 ACM SIGMOD Intl. 

Conference on Management of Data. 

 

[35] A. Salleb & Z. Maazouzi. Approche Booléenne pour 

l'extraction des itemsets fréquents maximaux. In Conf. 

d'Apprentissage (CAp'02), 2002, Orléans, pp. 111-122. 

 

[36] M. Rajalakshmi,   T. Purusothaman, R Nedunchezhian. 

International Journal of Database Management Systems ( IJDMS 

), Vol.3, No.3, August 2011, pp. 19-32, 2011. 

 

[37] K.Gouda, and M.J.Zaki, ‘GenMax : An Efficient Algorithm 

for Mining Maximal Frequent Itemsets’, Data Mining and 

Knowledge Discovery, 2005, Vol 11, pp. 1-20.  

 

[38] G.Grahne and  G.Zhu. ‘Fast Algorithms for frequent itemset 

mining using FP-trees’, in IEEE transactions on knowledge and 

Data engineering, 2005, Vol 17, No. 10,  pp. 1347-1362. 

 

[39]  W. Perrizo, Q. Ding, Q. Ding & A. Roy.  On Mining 

Satellite and other Remotely Sensed Images. In Proc. of 

Workshop on Research Issues on Data Mining and 

Knowledge Discovery, 2001,  pp. 33-44.  

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 243

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




