
Adaptive Neuro-Fuzzy Inference System (ANFIS) Based

Software Evaluation

Khyati M. Mewada

 1
, Amit Sinhal

2
 and Bhupendra Verma

3

1
 Dept. of Information Technology, Technocrats Institute of Technology

Bhopal, Madhya Pradesh, India

2
 Dept. of Computer Sc. & Engg., Technocrats Institute of Technology

Bhopal, Madhya Pradesh, India

3
 Dept. of Dept. of Computer Sc. & Engg., Technocrats Institute of Technology (Excellence)

Bhopal, Madhya Pradesh, India

Abstract
Software metric is a measure of some property of a piece
of software or its specifications. The goal is to obtain reproducible
and quantifiable measurements, which may have several valuable
applications in schedule and budget planning, effort and cost
evaluation, quality assurance testing, software debugging, software
performance optimization, and optimal personnel task assignments.

Software effort evaluation is one of the most essential and crucial
part of software project planning for which efficient effort metrics is
required. Software effort evaluation is followed by software cost
evaluation which is helpful for both customers and developers. Thus,
efficiency of effort component of software is very essential. The
algorithmic models are weak in estimating early effort evaluation
with regards to uncertainty and imprecision in software projects. To
overcome this problem, there are various machine learning methods.

One of the methods is soft computing in which there are various
methodologies viz., Artificial Neural Network, Fuzzy Logic,
Evolutionary computation based Genetic Algorithm and Meta-
heuristic based Particle Swarm Optimization. These methods are
good at solving real-world ambiguities. This paper highlights the
design of an efficient software effort evaluation model using
Adaptive Neuro-Fuzzy Inference System (ANFIS) for uncertain
datasets and it shows that this technique significantly outperforms
with sufficient results.

Keywords: Software metrics, Software effort evaluation, Cost
evaluation, Soft Computing Techniques, COCOMO, ANFIS.

1. Introduction

The goal of any successful software project is to develop

quality software within time, cost and resource constraints.

This can be achieved consistently, only through effective

management of the software development process. Well-

defined measures of the process and the product are necessary

to exercise control and to bring about improvement in the

software development process. Software metrics are

quantitative measures that provide the basis for effective

management of the software development process. Software

metrics are used to improve software productivity and quality.
“Metric is a quantitative measure of the degree to which a

given attribute is possessed by a system or its component or by

a process.” Software metrics are measures that are used to

quantify different attributes of a software product, software

development resource and software development process.

Software metrics deals with the evaluation and measurement

of different attributes of the software product and the software

development process [1]. There are three kinds of software

metrics: procedure metrics, project metrics, and product
metrics [2].

 Procedure metrics measure the resources (time and cost)

that a program development effort will take. They are

useful for the administration and management of the

project.

 Project metrics give information about the actual

situation of the project. These metrics include costs,

effort, risks, and quality. These are used to improve the

development process of the project.
 Product metrics assess quality information about the

program. These metrics focus on reliability,

maintainability, complexity, and reusability of all or part

of the software developed for the program.

The reliability of these software metrics as predictors bugs has

been studied and tested by many researchers [3, 4, 5], who

have used different regression models applied to different

languages. All of these researchers have claimed software

metrics to have good capabilities as indicators of bugs.

Metrics are seen as force multipliers in improvement

initiatives and quality movements. Metrics have led

organizations and individuals in a process of self-discovery of

goals, capabilities and constraints. Inspired by metrics, data
patterns, evaluation models for bug fixing have been

constructed and as a result the bug evaluation task has been

refined and redefined in many organizations. The most vital

contribution of metrics is the decision-making support.

Constant interpretations of metrics inject a stream of values

into the organization. Problem-solving cycles have benefited

from metrics in all the phases. Metrics are used for recognition

and later for diagnostics of problems. Experiments are

conducted to test ideas, true to the scientific spirit of metrics

application.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 244

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Software effort evaluation is one of the most essential and

crucial part of software project planning for which efficient

effort metrics is required. Software effort evaluation is

followed by software cost evaluation which is helpful for both

customers and developers. Thus, efficiency of effort

component of software is very essential. Software effort
evaluation is an important activity in software engineering.

Estimating software effort early in software development

lifecycle is a challenging task. Software size estimate is one of

the most important inputs for software effort evaluation. Thus

providing a size estimate with good accuracy early in the

lifecycle is equally important.

However, estimates that are computed early in the lifecycle

are typically associated with uncertainty. To deal with this

problem, many effort evaluation techniques and metrics are

developed by many researchers based on many different

methods. Traditionally, there are various evaluation

techniques based on comparison, analogy, equations which are

broadly categorized as macro evaluation techniques. There are

other micro evaluation techniques also like work breakdown

structure (also known as Delphi Technique) based on Expert
Judgment. The other most popular method used for effort

evaluation is COCOMO found by Barry Boehm in 1981. One

more technique called Putnam‟s Life Cycle Model is also

available in the literature.

2. Background

This section describes the software effort evaluation

approaches, traditional effort evaluation techniques and soft

computing based evaluation for effort. It also describes the

software metrics.

2.1 Effort Evaluation Approaches

There are two major software evaluation approaches: macro

(for example, top-down; parametric) and micro (for example,

bottom-up; task based), although some evaluation approaches
combine typical aspects of both macro and micro techniques.

Any of the techniques could be used at any point in the life

cycle. However, the more accurate is the estimate of the

project‟s size, the more precise is the effort and duration

estimates. The relative precision of resultant estimates will

match the precision of inputs.

2.2 Traditional Effort Evaluation Techniques

Based on the above mentioned approaches, there are various

effort evaluation techniques in both the categories.

2.2.1 Delphi Technique
When quantified or empirical data are absent, then expertise

based techniques are needed. The opinion of experts is taken,

but the drawback with this technique is that the estimate is as

well as the expert‟s opinion only. For example, Delphi

technique or work breakdown structure. Delphi is a place in

Greece, which was supposed to confer predictive powers to

the person. A temple was built there and virgin girls were

appointed there to answer questions about the future, they

were called oracles. Oracle‟s prophecies were considered

prophetic or at least wise counsel [6]. So, Delphi technique

was derived from them. Under this method, project
specifications are given to a few experts and their opinion is

taken.

2.2.2 Putnam‟s Life Cycle Model

The Putnam Model is an empirical software effort evaluation

model [7]. Lawrence H. Putnam in 1978 [8] is seen as

pioneering work in the field of Software Process Modeling.

This model describes the time and effort required for a project
of specified size. SLIM (Software Lifecycle Management) is

the name given by Putnam. Closely related software

parametric models are COCOMO (Constructive Cost Model),

PRICE-S (Parametric review of Information for Costing and

Evaluation Software) and (SEER-SEM) Software Evaluation

and Evaluation of Resources-Software estimating model.

Nordon studied the staffing patterns of several R & D projects.

He noted that the staffing pattern can be approximated by a

Rayleigh distribution curve. Putnam studied the work of

Nordon and determined that Rayleigh curve can be used to

relate the number of lines of code to estimate time and effort

required by the project.

2.2.3 COCOMO

The Constructive Cost Model (COCOMO) was launched in

1981 by Barry Boehm. It is also called COCOMO 81. The

model assumes that the size of a project can be estimated in

thousands of delivered source instruction and then uses a non-

linear equation to determine the effort for the project.

COCOMO II is the successor of COCOMO 81 and is better

suited for estimating modern software development projects

and updated project database. The need for the new model

came as software development technology moved from
mainframe and overnight batch processing to desktop

development, code reusability and the use of off-the-shelf

software components. COCOMO consists of a hierarchy of

three increasingly detailed and accurate forms. The first level,

Basic COCOMO is good for quick, early, rough order of

magnitude estimates of software costs, but its accuracy is

limited due to its lack of factors to account for difference in

project attributes (Cost Drivers). Intermediate COCOMO

takes these Cost Drivers into account and Detailed COCOMO

additionally accounts for the influence of individual project

phases.

2.3 Soft Computing Based Effort Evaluation Techniques

The limitations of algorithmic models led to the exploration of

the non algorithmic techniques which are soft computing
based. These include artificial neural network, evolutionary

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 245

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

computation, fuzzy logic models, case-based reasoning, and

combinational models and so on.

2.3.1 Neural Networks

Neural networks are nets of processing elements that are able

to learn the mapping existent between input and output data.

The neuron computes a weighted sum of its inputs and
generates an output if the sum exceeds a certain threshold.

This output then becomes an excitatory (positive) or inhibitory

(negative) input to other neurons in the network. The process

continues until one or more outputs are generated [9]. It

reports the use of neural networks for predicting software

reliability; including experiments with both feed forward and

Jordan networks with a cascade correlation learning algorithm.

The Neural Network is initialized with random weights and

gradually learns the relationships implicit in a training data set

by adjusting its weights when presented with these data. The

network generates effort by propagating the initial inputs

through subsequent layers of processing elements to the final
output layer. Each neuron in the network computes a nonlinear

function of its inputs and passes the resultant value along its

output [10]. The neural network is known for its ability in

tackling the classification problem. Contrarily, in effort

evaluation what is needed is generalization capability.

2.3.2 Fuzzy Logic

Fuzzy logic is a valuable tool, which can be used to solve

highly complex problems where a mathematical model is too

difficult or impossible to create. It is also used to reduce the

complexity of existing solutions as well as increase the

accessibility of control theory [11]. The development of
software has always been characterized by parameters that

possess a certain level of fuzziness. The study showed that the

fuzzy logic model has a place in software effort evaluation

[12]. The application of fuzzy logic is able to overcome some

of the problems which are inherent in existing effort

evaluation techniques [13]. Fuzzy logic is not only useful for

effort prediction, but that it is essential in order to improve the

quality of current estimating models [14]. Fuzzy logic enables

linguistic representation of the input and output of a model to

tolerate imprecision [15]. It is particularly suitable for effort

evaluation as many software attributes are measured on

nominal or ordinal scale type which is a particular case of
linguistic values [16].

2.3.3 Genetic Algorithm

Genetic Algorithm is one of the evolutionary methods for

effort evaluation. Evolutionary computation techniques are

characterized by the fact that the solution is achieved by

means of a cycle of generations of candidate solutions that are

pruned by the criteria „survival of the fittest‟ [17]. When GA

is used for the resolution of real-world problems, a population

comprised of a random set of individuals is generated. The

population is evaluated during the evolution process. For each

individual a rating is given, reflecting the degree of adaptation

of the individual to the environment. A percentage of the most

adapted individuals are kept, while that the others are

discarded. The individuals kept in the selection process can

suffer modifications in their basic characteristics through a

mechanism of reproduction. This mechanism is applied to the
current population aiming to explore the search space and to

find better solutions for the problem by means of crossover

and mutation operators generating new individuals for the next

generation. This process, called reproduction, is repeated until

a satisfactory solution is found [18].

2.3.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a computational method

that optimizes a problem by iteratively trying to improve a

candidate solution with regard to a given measure of quality.

Such methods are commonly known as Meta Heuristics as

they make little or no assumptions about the problem being

optimized and can search very large spaces of candidate
solutions. PSO shares many similarities with evolutionary

computation techniques such as Genetic Algorithms (GA).

The system is initialized with a population of random

solutions and searches for optima by updating generations.

However, unlike GA, PSO has no evolution operators such as

crossover and mutation. In PSO, the potential solutions, called

particles, fly through the problem space by following the

current optimum particles. An algorithm [19] is developed

named Particle Swarm Optimization Algorithm (PSOA) to

fine tune the fuzzy estimate for the development of software

projects.

2.4 Software Metrics

“Metric is a quantitative measure of the degree to which a

given attribute is possessed by a system or its component or by

a process.” Software metrics are measures that are used to

quantify different attributes of a software product, software

development resource and software development process.

Software metrics deals with the evaluation and measurement

of different attributes of the software product and the software
development process. [1]

3. Literature Review

This section explores some of the researches done on software

evaluation using different techniques by various researchers in

previous years.

In 2010, Jin-Cherng Lin et al. [20] used Pearson product

moment correlation coefficient and one-way to analyze to

select several factors and then used K-Means clustering

algorithm to software project clustering. After project

clustering, they used Particle Swarm Optimization that takes

the mean of MRE (MMRE) as a fitness value and N-1 test
method for optimization of COCOMO parameters. Finally,

they took parameters that finish the optimization to calculate

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 246

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

the software project effort that is wanting to evaluate. This

research used 63 history software project data of COCOMO to

test. The experiment really expresses using base on project

clustering with multiple factors making more effective base on

the effort of the software estimate of COCOMO's three project

mode.

In 2011, Jin-Cherng Lin et al. [21] proposed a model which

combines genetic algorithm (GA) with support vector

machines (SVM). We can find the best parameter of SVM

regression of the proposed model, and make more accurate

predictions. The model was tested and verified by using the

historical data in COCOMO, Desharnais, Kemerer, and

Albrecht. The results were shown by prediction level (PRED)

and the mean magnitude of relative error (MMRE).

In 2012, Thamarai.I et al. [22] proposed a genetic algorithm

and artificial neural network based on which Feature Selection
and Similarity Measure between the projects can be achieved

by using Differential Evolution. This is a population based

search strategy. The Differential Evolution is used to compare

the key attributes between the two projects. Thus we can get

most optimal projects which can be used for the evaluation of

effort using the analogy method.

4. About the Problem

To get an accurate or near to accurate effort evaluation has

always been a challenge in software development. To deal

with this problem, many researchers have contributed in

various areas by applying many techniques. These techniques

include regression analysis, analogy-based evaluation,

comparison based evaluation and machine learning based

evaluation. The uncertainty can be reduced by any of the

above techniques.

Neural networks are good at training the dataset, but the

clustering and feature input is somewhat weak in neural

networks. Fuzzy logic based models are good at featuring and

clustering but the training of datasets is not provided. Genetic

algorithms as an optimization technique are usually applied in

multi-neural systems in order to improve operations or

performance of the system, either as an expert or global level.

PSO easily suffers from the partial optimism, which causes the

less exact at the regulation of its speed and the direction. The

method cannot work out the problems of scattering and

optimization. The method cannot work out the problems with
non-coordinate system, such as the solution to the energy field

and the moving rules of the particles in the energy field.

From the above survey, it is clear that each of the methods

mentioned has some of the disadvantages over the other. To

overcome this problem, this paper gives the detail of an

efficient framework for effort evaluation using neuro-fuzzy

technique i.e., ANFIS.

5. Proposed Framework

The proposed framework includes the evaluation of software

effort using neuro-fuzzy based (ANFIS toolbox) of MATLAB.

The details for proposed framework are mentioned as under:

 For software effort evaluation, NASA dataset with 18

projects is considered for implementation. The

performance measures MMRE and RMSE are used for

comparing the performance of ANFIS in effort evaluation

with other traditional evaluation models.

Thus, the framework measures the effort component of the
software efficiently using ANFIS which in turn is useful for

cost evaluation of software.

This paper proposes ANFIS based software effort evaluation.

ANFIS is a hybrid AI technique, which combines best features

of Fuzzy Logic and parallel processing neural networks. It

possesses fast convergence and has more accuracy than back

propagation neural network. Various forms of ANFIS methods

are explored for effort evaluation. ANFIS methods are

comparatively good at evaluation than complex neural

networks.

The Sugeno based Fuzzy Inference system is developed and in

order to train the Sugeno FIS, Adaptive Neuro-Fuzzy system

(ANFIS) is designed that makes use of the Sugeno FIS

Structure as shown in Fig. 1.

Fig.1. Architecture of ANFIS

The algorithm used for effort evaluation is based on Neuro-

Fuzzy technique. More specifically, it is known as Adaptive

Neuro-Fuzzy Inference System (ANFIS). The implementation

is done on a NASA dataset of 18 projects in MATLAB

R2011a Environment. The steps of the proposed algorithm are

shown in the form of the flowchart in Figure 2.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 247

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig.2. Flowchart of ANFIS

6. Experimentation and Results

The list of parameters used for simulation in MATLAB is

shown in the Table 1 below:

Table 1: List Of Parameter Variables And Their Values

Parameter Variables Associated Values

Simulation Tool MATLAB 7.12.0 (R2011a)

Dataset used for experimentation NASA dataset

Total No. of projects 18

No. of projects used for training 13

No. of projects used for testing 5

FIS method Grid Partitioning

Optimization method Hybrid

No. of membership functions 2

Type of membership functions

Trimf, Trapmf, gbellmf, gaussmf,

 gauss2mf, pimf, dsigmf, psigmf.

No. of epochs 500

In Table 2 and 3 the computed effort for training datasets is

described for each membership function using ANFIS toolbox

of MATLAB. In Table 4 and 5 RMSE and MMRE criteria is
computed over the complete data set for ANFIS model for

different membership functions is shown [23]. In Table 6

computed software quality metric for membership functions

compared with the other models are shown.

Neuro-Fuzzy model using ANFIS toolbox of MATLAB uses

different membership functions. There are 8 functions in

ANFIS, out of which gauss2 membership function has the

lowest MMRE and RMSE of 0.0050 and 0.6410 respectively.

Also, gbell membership function has the lowest MMRE and

RMSE of 0.0367 and 0.4976.

The software quality metric EEA should approach to 1 and SP

(total) should be equal to the value resulting from total source
size divided by the actual effort value. Here, in this case, we

have taken the comparison for a first project from datasets of

all projects. Accordingly, the value of EEA and SP (total) for

neuro-fuzzy functions outperforms the other traditional

models.

Table 2: Computed Effort For Nasa Software Projects-Training Case - ANFIS

Functions

No. DKLOC
Method-

ology

Actual

Effort

Trimf

Effort

Trapmf

Effort

Gbellmf

Effort

Gaussmf

Effort

1 90.2 30 115.8 115.7801 115.7990 115.8005 115.7801

2 46.2 20 96 95.6446 88.6000 95.9679 95.6446

3 46.5 19 79 79.2911 88.6000 79.0235 79.2911

4 54.5 20 90.8 90.7932 88.6000 90.8010 90.7932

5 31.1 35 39.6 39.8002 39.6113 39.6464 39.8002

6 67.5 29 98.4 98.4448 98.4015 98.3999 98.4448

7 12.8 26 18.9 19.9137 10.2485 18.9679 19.9137

8 10.5 34 10.3 9.4786 8.8195 9.2436 9.4786

9 21.5 31 28.5 27.9643 28.4680 28.4765 27.9643

10 3.1 26 7 5.7052 10.2485 6.2696 5.7052

11 4.2 19 9 9.0087 9.0000 9.0504 9.0087

12 7.8 31 7.3 8.4028 8.9545 8.4367 8.4028

13 2.1 28 5 5.3722 10.2485 5.5157 5.3722

Table 3: Computed Effort For Nasa Software Projects-Training Case - ANFIS

Functions

No. DKLOC
Method-

ology

Actual

Effort

Gauss2mf

Effort

Pimf

Effort

Dsigmf

Effort

Psigmf

Effort

1 90.2 30 115.8 115.7970 115.7995 115.7972 115.7972

2 46.2 20 96 95.9509 88.6000 95.9353 95.9334

3 46.5 19 79 79.0113 88.6000 79.0390 79.0396

4 54.5 20 90.8 90.8375 88.6000 90.8235 90.8247

5 31.1 35 39.6 39.6263 39.6083 39.6210 39.6154

6 67.5 29 98.4 98.4053 98.4008 98.4048 98.4048

7 12.8 26 18.9 18.8415 10.2625 18.8965 18.8706

8 10.5 34 10.3 9.0406 8.8123 9.0812 9.0714

9 21.5 31 28.5 28.4568 28.4770 28.4656 28.4914

10 3.1 26 7 6.0100 10.2625 6.0194 6.0301

11 4.2 19 9 9.0034 9.0000 9.0039 9.0040

12 7.8 31 7.3 8.6562 8.9143 8.7286 8.7210

13 2.1 28 5 5.9624 10.2625 5.7833 5.7953

Table 4: Computed RMSE And MMRE Criterion For Anfis Functions

Performance

Criteria

ANFIS Function Used

trimf trapmf gbellmf gaussmf

MMRE 0.1770 0.1974 0.0367 0.0443

RMSE 0.6369 4.5543 0.4976 0.6369

Table.5 Computed RMSE And MMRE Criterion For Anfis Functions

Performance

Criteria

ANFIS Function Used

gauss2mf pimf dsigmf psigmf

MMRE 0.0050 0.1973 0.0472 0.0473

RMSE 0.6410 4.5533 0.6269 0.6269

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 248

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 6: Computed EEA and SP (total) Criterion for ANFIS Functions for

project 1 in the dataset
Software

quality

metric trimf trapmf gbellmf gaussmf gauss2mf pimf dsigmf psigmf

EEA 1 1 0.9999 1.0001 1 1 1 1

SP (total) 0.799 0.7789 0.7789 0.779 0.7789 0.779 0.7789 0.7789

7. Conclusion and Future Work

This paper evaluates software effort efficiently using ANFIS

based learning techniques. Accurate evaluation of effort leads

to other evaluations efficiently and accurately like cost,

staffing, budget and schedule. Effort component of software

plays a vital role in software project management. By
predicting software effort, proposed ANFIS based technique

may facilitate the software planning stage in making its

decision regarding the evaluation of other resources of the

software. The ANFIS based technique was successfully

implemented to predict software effort. The same was

compared with neural network based technique and other

models which were previously reported. In the basic scheme

three types of ANFIS were used for learning. All three

provided better performance in all performances metric with

respect to the neural network. Conventional ANFIS worked

better in accuracy and RMSE error compared all type neural

networks and other previous methods.

Software effort doesn't only depend on the size of the project,

it may include different other parameters like Intermediate

COCOMO attributes. So ANFIS based technique must be

tuned to predict all these attributes affecting software effort.

So for these different types of attributes hybrid ANFIS must

be explored. In the extended case only the methodology and

size of the project parameters are included but practical

situations also affect effort and other resources. The problem

must be formalized to include other parameters which affect

effort. The prediction was based on an assumed scenario but to
validate and check the robustness of ANFIS more realistic

time series must be considered for training.

1. Analysis can be made for another type of datasets like

ISBSG, IBM etc.

2. Calculation of Pred (25), Spearman‟s rank can lead to
better validation of prediction models.

3. Analysis can also be done using artificially generated data

set.

4. Analyzing the performance of the model by varying the

number of epoch, number of membership functions.

References

[1] Jibitesh Mishra, Ashok Mohanty, (2011) “Software
Engineering”, CH-13, Software Metrics, Pearson Education
India.

[2] Tu Honglei, Sun Wei, and Zhang Yanan, “The research on
software metrics and software complexity metrics”, in Computer

Science-Technology and Applications, 2009. IFCSTA ‟09.
International Forum, volume 1, pages 131 –136, Dec. 2009.

[3] S.R. Chidamber and C.F. Kemerer. “A metrics suite for object
oriented design”, IEEE Transactions on Software Engineering,
20(6):476 –493, Jun. 1994.

[4] M. D‟Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In 7th IEEE Working
Conference on Mining Software Repositories (MSR), 2010,
pages 31 –41, May 2010.

[5] V.R. Basili, L.C. Briand, and W.L. Melo. “A validation of
object-oriented design metrics as quality indicators”, IEEE
Transactions on Software Engineering, 22(10):751 –761, Oct.
1996.

[6] Murali Chemuturi, Delphi Technique for software evaluation.
[7] Putnam, Lawrence H.; Ware Myers (2003). Five core metrics:

the intelligence behind successful software management. Dorset
House Publishing. ISBN 0-932633-55-2.

[8] Putnam, Lawrence H. (1978). "A General Empirical Solution to
the Macro Software Sizing and Estimating Problem". IEEE
transactions on Software Engineering, VOL. SE-4, NO. 4, pp
345-361.

[9] N. Karunanitthi, D. Whitley, and Y. K. Malaiya, (1992), "Using
Neural Networks in Reliability Prediction”, IEEE Software, Vol.
9, no.4, pp. 53-59.

[10] Idri, T. M. Khoshgoftaar, A. Abran, (2002), “Can neural
networks be easily interpreted in software cost evaluation?”
IEEE Trans. Software Engineering, Vol. 2, pp. 1162 – 1167.

[11] Razaz, M. and King, J. (2004)”Introduction to Fuzzy Logic”
Information Systems - Signal and Image Processing Group.
http://www.sys.uea.ac.uk/king/restricted/boards/.

[12] Moon Ting Su1, Teck Chaw Ling, Keat Keong Phang, Chee Sun

Liew, Peck Yen Man, (2007), "Enhanced Software
Development Effort And Cost Evaluation Using Fuzzy Logic
Model", Malaysian Journal of Computer Science, Vol. 20(2), pp
199-207.

[13] R. Gray, S. G. MacDonell, (1997), “Applications of Fuzzy

Logic to Software Metric Models for Development Effort
Evaluation”, Fuzzy Information Processing Society 1997
NAFIPS‟ 97, Annual Meeting of the North American 21 - 14 pp.
394-399.

[14] S. Kumar, B. A. Krishna, and P. S. Satsangi, (1994), “Fuzzy
systems and neural networks” in software engineering project
management, Journal of Applied Intelligence, no. 4, pp. 31-52.

[15] N. E. Fenton, S. L. Pfleeger, (1997),”Software Metrics, a
Rigorous and Practical Approach”, 2nd Edition, PWS

Publishing Company, Thomson Publishing,Boston.

[16] Agustin Gutierrez T., Cornelio Yanez M. and Jerome Leboeuf
Pasquier, (2005), “Software Development Effort Evaluation
Using Fuzzy Logic: A Case Study”, Proceedings of the Sixth
Mexican International Conference on Computer Science

(ENC‟05).

[17] Urkola Leire , Dolado J. Javier , Fernandez Luis and Otero M.
Carmen , (2002), "Software Effort Evaluation: the Elusive Goal
in Project Management", International Conference on Enterprise
Information Systems, pp.412-418.

[18] A.P. Engelbrecht, (2006), Fundamentals of Computational
Swarm Intelligence, John Wiley & Sons, New Jersey.

[19] Prasad Reddy, (2010), “Particle Swarm Optimization in the fine-
tuning of Fuzzy Software Cost Evaluation Models, International
Journal of Software Engineering (IJSE), Volume (1): Issue (1),
pp 12-23.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 249

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[20] Jin-Cherng Lin, Han-Yuan Tzeng (2010), “Applying Particle
Swarm Optimization to Estimate Software Effort by Multiple
Factors Software Project Clustering”, Computer Symposium
(ICS), Proceedings published in IEEE, pp. 1039-1044.

[21] Jin-Cherng Lin, Chu-Ting Chang and Sheng-Yu Huang (2011),
“Research on Software Effort Evaluation Combined with
Genetic Algorithm and Support Vector Regression”,

International Symposium on Computer Science and Society,
Proceedings published in IEEE, pp. 349-352.

[22] Thamarai.I, Dr.S.Murugavalli (December 2012), “Using
Differential Evolution in the Prediction of Software Effort”,
IEEE Fourth International Conference on Advanced Computing

(ICoAC), pp. 1-3.

[23] http://www.mathworks.in/help/fuzzy/anfis-and-the-anfis-editor-
gui.html.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 250

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

