

Mapping Wireless Sensor Network Applications Requirements to

Existing Operating Systems

Tarek M.Salem1, Sherine M. Abd El-kader2

 1 Assistant Research at Electronics Research Institute, Computers and Systems Dept, Cairo, Egypt

2 Associate Professor at Electronics Research Institute, Computers and Systems Dept, Cairo, Egypt

Abstract
The design of operating system for Wireless Sensor Network

(WSN) deviates from traditional operating system design due to

significant and specific characteristics like constrained resources,

high dynamics and inaccessible deployment. The purpose of this

work is to classify existing operating systems according to the

important Operating System (OS) features and to propose the

suitable OSs for different categories of WSN applications.

Architecture, execution model, scheduling, routing protocols,

hardware support, and application support are the important OS

features that are chosen to classify the existing WSN operating

systems. This classification helps in understanding the

contrasting differences between the existing operating systems

and lays the foundation for designing an ideal operating system.

To help the application developer in choosing the right OS, based

on the application requirement, hardware type, also WSN

applications have been classified. This classification gives insight

in choosing the best suitable operating systems that fits for

different categories of applications.

Keywords: Wireless sensor network, Operating systems,

Embedded operating system, Real-time operating system,

Application requirements.

1. Introduction

A wireless sensor node is a good example for a System on

Chip (SoC) that has communication, computation, sensing

and storage capabilities. These miniaturized nodes have

stringent constraints in terms of available resources like

processing power, battery power, program memory,

available bandwidth. Basically, each node comprises of a

micro-controller, power source, Radio Frequency (RF)

transceiver, external memory, and sensors. These sensor

nodes collectively form a Wireless Sensor Network, which

is used in wide variety of applications now days [1] [2]. A

WSN typically consists of hundreds or thousands of sensor

nodes. These nodes have the capability to communicate

with each other using multi-hop communication. Typical

applications of these WSN include but not limited to

monitoring, tracking, and controlling.

The basic functionality of an operating system is to hide

the low-level details of the sensor node by providing a

clear interface to the external world. Processor

management, memory management, device management,

scheduling policies, multi-threading, and multitasking are

some of the low level services to be provided by an

operating system. In addition to the services mentioned

above, the operating system should also provide services

like support for dynamic loading and unloading of

modules, providing proper concurrency mechanisms,

Application Programming Interface (API) to access

underlying hardware, and enforce proper power

management policies.
Though some of these are similar to the services provided

by traditional operating systems, the realization of those

services in WSN is a non-trivial problem, due to the

constraints on the resource capabilities. Hence a suitable

operating system is required for WSN to provide these

functionalities to facilitate the user in writing applications

easily with little knowledge of the low-level hardware

details.

Due to the significance of an operating system for WSNs

and the availability of a significant body of literature on it,

study of search becomes necessary and useful at this stage.

Also analyzing different applications, their characteristics

and suggesting an ideal OS for those applications will help

an application developer to choose an operating system

and therefore select best sensor hardware for specific

application. Although there are many papers that surveys

the characteristics, applications, and communication

protocols of WSNs [3], prior to this there are no studies

that survey the operating systems of WSN for specific

application.

 The rest of this paper is organized as follows. In Section

2, describes related work for this work. Section 3 describes

design requirements of an operating system for WSNS. A

classification framework and a comprehensive survey of

existing operating systems against this framework are

presented in Sections 4, 5 respectively. Comparative

analysis between different operating systems is tabulated

in section 6. Conclusions and future work are introduced

in Section 6, 7 respectively.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 258

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

2. Related Work

Muhammad Omer, Thomas Kunz [4] have been

investigated the most widely used operating systems for

WSNs. Also understand the characteristics of popular OSs

for WSN in particular and embedded devices in general

without any studies about the relation between the OS and

specific application.

Wei Dong, Xue Liu [5] have been examined the

challenges of the OS design space. Then introduce

constitutes a sensornet OS by describing its major

components. Next, they provide an overview of the

existing work, present a taxonomy of state-of-the-art

sensornet OSes, and discuss various approaches to address

the design challenges.

D. Manjunath [6] has been presented a well-rounded

review of four popular operating systems proposed for

WSNs: TinyOS, SOS, MANTIS, and Contiki. Inspired by

the engineering approach, he has been identified the

fundamental challenges involved in designing each

component/feature of a typical sensorOS, and then

described how these fundamental challenges have been

approached by different sensor operating systems.

Hyunhak kim, Seongki [7] have been proposed an

evolvable operating system for WSNs. Each component in

this architecture is designed to perform its functionality

concerned with power consumption, highly limited

resources.

Margi, C.B, Escola de Artes [8] have been developed a

comparison between two different operating systems

which are Contiki and TinyOS that are running on the

same hardware platform Crossbow TelosB. Using a set of

tasks, which includes sensing, communication and security

mechanisms, they have been evaluated their behavior in

terms of energy consumption and execution time.

Ramon Serna, Ivan Shcherbakov, and others [9] have been

presented an Operating System Abstraction Layer (OSAL)

to reduce the portability efforts of software applications

between platforms, independent of the running OS. They

claimed that such design reduces dramatically the required

efforts related to portability of application code, and

effectively enables the re-utilization of software

components in later deployments.

In this paper, mapping wireless sensor network

applications requirements to existing operating systems

will be introduced.

3. Design Issues and Challenges

WSN operates at two levels [10]. One is at the network

level and the other is at node level. Network level interests

are connectivity, routing, communication channel

characteristics, and protocols. Node level interests are

hardware, radio, CPU, sensors and limited energy. At a

higher level OS for WSN can also be classified as node-

level (local) and network-level (distributed). The important

issues related to node-level are limited resource

management, concurrency handling, power management

and memory management where as issues related to both

are inter-node communication, failure handling,

heterogeneity and scalability.

This section discusses the important issues of both node

and network-level to be considered while designing an

operating system for WSN. These issues discuss the

challenges and motivate the design requirements of an

operating system needed for WSN.

3.1 Restricted Resource

A typical sensor node shown in figure 1 is constrained by

the resources available to it. It is constrained by limited

battery power, processing capability, memory and

bandwidth.

Transceiver

Micro-controller

External

Memory

P
o

w
er

S
o

u
rce

Sensor 1

Sensor 2

ADC

 Sensor Node

Fig. 1 Sensor Node Architecture

Figure 2 depicts, where operating system stands in the

software layers of the WSN. Middleware and application

layers are distributed across the nodes. Core kernel of the

operating system sits at each individual node. On top of it,

middleware and applications run as interacting modules

across nodes.

Fig. 2 Software Layers

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 259

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Margi,%20C.B..QT.&searchWithin=p_Author_Ids:38470726800&newsearch=true

3.1.1 Battery power

Power consumption is crucial to the life span of WSN

based applications. Most of the applications in WSN are

long lived ranging from days to years. So a typical node

with a limited power supply has to live mostly for months

to years. Unlike conventional systems where the power is

not at all a constraint factor in building the system,

operating systems for sensor nodes have to consider power

as one of the available resources like processor and

memory.

3.1.2 Processing Power

Sensor nodes will have a processing power in the order of

a few MIPS. Computation intensive operations should be

properly scheduled; otherwise high priority tasks get

delayed/starved. Computation models like event driven

will follow run-to-completion model. This takes more

processor time if the task is running for long time and

preventing other jobs to wait for longer time irrespective

of their priorities. Hence operating system should properly

schedule the processor according to the priority of jobs.

3.1.3 Memory

The current generation of micro-controllers family such as

Mica [11], its successors and some microcontrollers (e.g.

nymph, EYES etc) specific to various research projects

have nearly 128kbytes of program memory. One of the

main constraints for the developer is this available

program memory and operating system developed for

WSN should fit within this memory. The system software

such as operating system, virtual machine, middleware,

and application algorithms have to fit into this memory.

Optimal usage of this memory should start from lower

level (i.e. Operating System).

3.1.4 Bandwidth

A typical sensor node uses RF channel to communicate

with other sensor nodes in the network. ZigBee [12] is the

emerging standard to define the communication protocol

stack based on the existing physical and data-link layers of

IEEE 802.15.4 Personal Area Network (PAN) standard.

Data rate supported by PANs is 256kbps. Whereas

Bluetooth standard supports data rate up to 3Mbps.

CC1000 is another standard that has been widely used in

sensor networks. Its data rate is around 39kbps.

3.2 Portability

The hardware platforms in WSN are evolving day-by-day.

Portability is an important issue to be considered as

everyone is working on their customized hardware

platforms. Portability is one of the main concerns for the

developer to make the software work on different

hardware platforms. The operating system should be

written in such a way that it is easily portable to different

hardware platforms with minimal changes.

3.3 Customizability

Applications in WSN are spread over different disciplines.

Specific applications of WSN include but not limited to

monitoring environment, surveillance, target tracking etc.

Survey of some of these applications can be found in [12]

[13] [14]. Most of the software platforms developed for

WSN are application specific. Different applications

demand different requirements from operating system.

These requirements may be reconfigurability, real-time

guarantees. The design of OS should be in such a way that

it should be easily customizable and extensible to various

applications.

3.4 Multicasting

At a given point of time, nodes in the WSN could be doing

more than one task. For example, consider a typical

application where in the sensed data from the environment

is collected, aggregated based on some filtering conditions,

encrypted/decrypted and passed it towards the sink node

through other nodes. In this application the sensor node

has to do the following tasks at a given point of time:

- Sense the data.

- Collect data from other neighborhood sensor

nodes.

- Aggregate the data based on the certain

conditions provided.

- Route the data to the sink node.

3.5 Network Dynamics

Mobility, failure of communication channels/nodes

constitutes the dynamics in WSN. Topologies are more

prone to changes due to these dynamics which may result

in network partitions. Link failures and the interferences in

the RF communication channel deviates the behavior of

the WSN from its normal operation. Operating system

should adapt the application according to the context of

different dynamics of the environment. This helps in

providing transparency from network dynamics to the

application.

3.6 Distributed Nature

There is a clear distinction between the services that

should be supported by middleware and OS in traditional

systems. This is masked in WSN due to cross layer

interaction support which is a prominent feature for these

kinds of systems. Sensor nodes in WSN are loosely

coupled and sometimes deployed across a large

geographical area. The scale of the network sometimes is

in the order of thousands of sensor nodes. Each individual

node has its own processing power, system software to run

and the co-operation among the nodes happen through

exchange of messages.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 260

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.6.1 Heterogeneity

Heterogeneity in the network arrives due to varying level

of node capabilities. This causes different nodes to be

present in the network with different capabilities. These

capabilities can be in terms of memory, sensing modality

or residual energy, software components residing at the

node. Many of the practical sensor networks are

heterogeneous [14] in their sensing capability.

3.6.2 Scalability

Scalability here refers to the size of the network [15]. As

the system is composed of large number of nodes, the

system algorithms should work with acceptable

performance degradation with increase in the number of

nodes. In WSN there are subtle differences related to

some issues in designing middleware and operating

system. Some of the above issues seems to look like

middleware issues but virtual machine approaches [12]

and distributed operating systems [16] in WSN did

concerned about them in designing.

4. Designed Characteristics

The following are the important design characteristics to

be considered while designing an operating system for

WSN.

4.1 Architecture

The organization of an OS constitutes its structure. The

architecture of an OS has an influence on the size of the

OS kernel as well as on the way it provides services to the

application programs. Some of the well known OS

architectures are the monolithic architecture, the micro-

kernel architecture, the virtual machine architecture and

the layered architecture.

A monolithic architecture [9] in fact does not have any

structure. Services provided by an OS are implemented

separately and each service provides an interface for other

services. Such an architecture allows bundling of all the

required service together into a single system image, thus

results in a smaller OS memory footprint. An advantage of

the monolithic architecture is that the module interaction

costs are low.

An alternate choice is a microkernel architecture [9] in

which minimum functionality is provided inside the

kernel. Thus, the kernel size is significantly reduced. Most

of the OS functionality is provided via user-level servers

like a file server, a memory server, a time server, etc. If

one server fails, the whole system does not crash. The

microkernel architecture provides better reliability, ease of

extension and customization.

A virtual machine [9] is another architectural choice. The

main idea is to export virtual machines to user programs,

which resemble hardware.

4.2 Efficient Execution Model

The execution model provides the abstraction of

computational unit and defines services like

synchronization, communication, and scheduling. These

abstractions are used by the programmer for developing

applications. Communication service defines the way the

computational units communicate. They communicate to

exchange data, delegation of functionalities and signaling.

While communicating there can be data that is shared.

Accessing shared data requires proper synchronization

mechanisms to avoid race conditions.

4.3. Communication Protocol Support

In the OS context, communication refers to inter-process

communication within the system as well as with other

nodes in the network. WSNs operate in a distributed

environment, where senor nodes communicate with other

nodes in the network. All WSN OSs provide an

Application Programming Interface (API) that enables

application program to communicate. It is possible that a

WSN is composed of heterogeneous sensor nodes,

therefore the communication protocol provided by the OS

must also consider heterogeneity.

4.4. Programming Model

The programming model supported by an OS has a

significant impact on the application development. There

are two popular programming models provided by typical

WSN OSs, namely: event driven programming and

multithreaded programming. Multithreading is the

application development model most familiar to

programmer, but in its true sense rather resource intensive,

therefore not considered well suited for resource constraint

devices such as sensor nodes. Event driven programming

is considered more useful for computing devices equipped

with scarce resource but not considered convenient for

traditional application developers. Therefore researchers

have focused their attention on developing a light-weight

multithreading programming model for WSN Oss.

4.5. Scheduling

The Central Processing Unit (CPU) scheduling determines

the order in which tasks are executed on a CPU. In

traditional computer systems, the goal of a scheduler is to

minimize latency, to maximize throughput and resource

utilization, and to ensure fairness. The selection of an

appropriate scheduling algorithm for WSNs typically

depends on the nature of the application. For applications

having real-time requirements, real-time scheduling

algorithm must be used. For other applications, non-real-

time scheduling algorithms are sufficient. WSNs are being

used in both real-time [17] [18] and non-real-time [19]

environments; therefore a WSN OS must provide

scheduling algorithms that can accommodate the

application requirements.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 261

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.6 Resource Management

One of the fundamental tasks of an operating system is to

manage the system resources efficiently. Resources

available in a typical sensor node are processor, program

memory, battery, and sensors etc. Efficient use of

processor involves using a scheduler with optimal

scheduling policy. Usage of memory involves memory

protection, dynamic memory allocation, etc. Battery

should be treated as a special resource. Sleep modes help

in power management of battery. Managing sensors

include controlling sensing rate.

5. Classification framework for WSN

Operating Systems

Architecture, execution model, scheduling, routing

protocols, hardware support, and application support have

been chosen as the important design features that forms

basis for our classification framework.

A different type of each feature is depicted in the figure 3.

Based on each feature certain operating system, suitable

hardware, and suitable routing protocol could be suggested.

Miscellaneous features shown in the figure are explained

for each operating system. These features are simulation

support and programming language. Below is an overview

of the design features.

5.1. Classification According to Architecture

Architecture of the kernel influences the way it provides

services as described in section 4.1.

Operating systems which fall under monolithic is TinyOS

[16]. Also suitable hardware for monolithic is Mica2.

Suitable routing protocol for monolithic is Sensor Protocol

for Information Negotiation (SPIN). While operating

systems which fall under modular is LiteOS [20].

Also suitable hardware for modular is Micaz. Suitable

routing protocol for modular is MAC protocol. Operating

systems which fall under VM is ContikiVM [21]. Also

suitable hardware for VM is MSP430. Suitable routing

protocol for it is multi-hop mesh routing as shown in

figure 3. Architecture for different OS described in figure

4.

5.2 Classification According to Execution Model

Operating systems which fall under event-based is SOS

[10]. Also suitable hardware for it is Tmote-sky. Suitable

routing protocol for event-based execution model is

directed diffusion. While operating systems which fall

under thread-based is MantisOS [22]. Also suitable

hardware for it is Mica2. Suitable routing protocol for

thread-based is Sequential Assignment Routing (SAR).

Operating systems which fall under Hybrid is Contiki [21].

Also suitable hardware for Hybrid is Avr MCU. Suitable

routing protocol for it is Gradient-Based Routing (GBR) as

shown in figure 3. Execution model of different Oss

described in figure5.

Operating

System

Application

Support

Scheduling

Hardware

Support

Execution

Model

Routing

Protocols

Architecture

Monolithic

Modular

VM

LiteOS

Event-based

Thread-based

Hybrid

SOS

Real time

Non real time TinyOS

Event-based

Thread-based

Hybrid

SPIN

Contiki

Mica2

Mica2

Suitable OS Suitable H/W Suitable RP
Simulation

Support

AVRORA

Cooja

SPIN TOSSIM

Programming

Language

MicaZ

Mica2

Mica2

Nes

C

C

Nesc

C

C

AVRORA

TinyOS

MantisOS

Contiki

Nano-RK

Nano-RK

MicaZ

Not-available

Lite C++

Avr MCU

MantisOS Mica2

Avr MCU

Directed

Difusion

C

C

NesCTOSSIM

ContikiVM CCooja MSP 430

MCU

CTmote-sky AVRORA

AVRORA

Cooja

APTEEN

SAR

GBR

CADR

GBR

CADR

Multihop mesh

routing

MAC

Mica2

Telos

Tmote

SOS

PEGASIS

Directed

Difusion Cooja

AVRORA

TOSSIM NesC

C

C

Smart Home

Health

Military

Traffic Load

Agriculture

Tmote SkyTinyOS APTEEN

TelosMantisOS LEACH

MicaZNano-RK GAF

MicaZNano-RK PEDAMACS

SoilDCOS CTP

TOSSIM

AVRORA

Not-available

Not-available

Not-available

NesC

C

C

C

C

Not-available

TinyOS

MantisOS

APTEEN

Fig. 3 Classification Framework for WSN operating system

 Architecture OS

 Fig. 4 Architecture of Different OSs

5.3. Classification According to Scheduling

Operating systems which fall under real time scheduling is

Nano-RK [17]. Also suitable hardware for it is MicaZ.

Suitable routing protocol for real time scheduling is

Threshold Sensitive Energy Efficient Sensor Network

Protocol (APTEEN). While operating systems which fall

under non-real time scheduling is TinyOS[16]. Also

suitable hardware for it is Mica2. Suitable routing protocol

for non-real time scheduling is Constrained Anisotropic

Monolithic Modular VM

TinyOS [16]

MagnetOS [27]

KOS[29]

SOS [10]

Contiki [21]

MantisOS [22]

CORMOS [30]

VMSTAR [26]

Mate [26]

MagnetOS [27]

ContikiVM [21]

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 262

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

diffusion routing (CADR) as shown in figure 3. Read time

and non-real time OS classification described in figure 6.

 OS Classification

 Fig. 5 Execution Model of Different OSs

OS Classification

Fig. 7 Real-time and Non-real-time OS Classification

5.4. Classification According to Routing Protocols

Routing protocols can be classified into event based

routing protocols [37], thread based routing protocols [38],

and hybrid routing protocols [39]. The Example for event

based is directed diffusion where the network will be

active only when an event occur, otherwise the network is

idle. The example for thread based is CADR. Example for

hybrid routing protocol is GBR. Figure 3 presents the

suitable hardware and operating system for each type of

routing protocol.

Operating systems which fall under event-based is Nano-

RK [17]. Also suitable hardware for it is Mica2. Suitable

routing protocol for event-based is Sensor Protocol for

Information Negotiation (SPIN). While operating systems

which fall under thread-based is MantisOS [22]. Also

suitable hardware for it is Mica2. Suitable routing protocol

for thread-based is CADR. Operating systems which fall

under Hybrid is Contiki [21]. Also suitable hardware for

Hybrid is Avr MCU. Suitable routing protocol for it is

GBR as shown in figure 3.

 5.5. Classification According to Hardware Support.

 There are many types of hardware WSN. Each type of

hardware has suitable operating system. So the first thing

to design any application is choose suitable sensor for

application target. For example in real application the type

of hardware differs from non-real applications.

Operating systems which fall under Mica2 hardware is

TinyOS [10]. Also suitable routing protocol for it is

APTEEN. While operating systems which fall under Telos

hardware is MantisOS [22]. Suitable routing protocol for it

is Power efficient Gathering Sensor Information System

(PEGASIS).Operating systems which fall under Tmote

hardware is SOS [10]. Also suitable routing protocol for it

is directed diffusion as shown in figure 3. The lists of

platforms supported as of now are shown in figure 7.

 Sensor Hardware

Fig. 7 Hardware Platforms Supported by different OS

5.6.Classification According to Application Support

Classification of applications depends on the nature of the

purpose they are used for. In environment monitoring, the

application can be broadly classified into indoor and

outdoor monitoring [14]. While in Health application

Involves monitoring patients and alerting doctors. Here

sensors measure the recent actions of the patients and the

Remind the doctors about the behavior of the patient.

Real time Non-real time

Nano-RK [17]

CORMOS [30]

T-kernel [26]

Nano-Qplus [26]

PEEROS [26]

DCOS [28]

TinyOS [16]

SOS [10]

Contiki [21]

MantisOS [22]

EYES [26]

MagnetOS [27]

Event-based Thread-based Hybrid

d

Others

TinyOS [16]

SOS [10]

CORMOS [30]

EYES [26]

PEEROS [26]

MantisOS [22] Contiki [21]

KOS [29]

SenOS[26]

Nano-RK [17]

Eyes

Mica2Dot

Mica

Telos

Mica2

Contiki TinyOS SOS

Mica

Mica2

Mica2Dot

Telos

iMote

MicaZ

Eyes

Tmote Sky

Mantis nymph

MicaZ

Mica2

Telos

MSP 430MCU

6502

X86

Avr MCU

iMote

MicaZ

Tmote Sky

MantisOS

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 263

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Another application might be tracking patients, doctors,

and drug usage in the hospitals. In military application,

Sensor nodes are well suited to the need of military

applications. Interesting of them are information

collection, enemy tracking, battlefield surveillance, target

classification, perimeter security, border patrol. Other

applications are smart home [23], Agriculture [24], and

Traffic Load [32].

Characteristics of applications are evaluated against the

categories of applications, suitable hardware, suitable

operating system, suitable routing protocol, type of

topology and programming language as shown in Table 1.

Suitable hardware which falls under environment

application is Tmote. Also suitable OS for it is TinyOS.

Suitable routing protocol for it is Directed Diffusion (DD).

Type of topology for this application is multi-hop. Suitable

hardware which falls under health application is Telos.

Also suitable OS for it is MantisOS. Suitable routing

protocol for it is LEACH. Type of topology for this

application is cluster-head. Suitable hardware which falls

under military application is MicaZ. Also suitable OS for

it is DCOS [26]. Suitable routing protocol for it is

Geographic Adaptive Fidelity (GAF). Type of topology

for this application is multi-hop as shown in Table 1.
Suitable hardware which falls under agriculture

application is Soil sensor. Also suitable OS for it is Nano-

RK. Suitable routing protocol for it is Collection Tree

Protocol (CTP). Type of topology for this application is

tree-topology.

Suitable hardware which falls under smart home

application is Tmote. Also suitable OS for it is TinyOS.

Suitable routing protocol for it is Adaptive Threshold

Sensitive Energy Efficient Sensor Network Protocol

(APTEEN). Type of topology for this application is three-

tier.

Suitable hardware which falls under traffic load

application is MicaZ. Also suitable OS for it is T-kernel

[26]. Suitable routing protocol for it is Power Efficient and

Delay Aware Medium Access Protocol (PEDAMACS).

Type of topology for this application is multi-hop.

Suitable hardware which falls under habitat application is

Mica2. Also suitable OS for it is SOS. Suitable routing

protocol for it is SPAN. Type of topology for this

application is cluster-head.

Suitable hardware which falls under production

application is Telos. Also suitable OS for it is TinyOS.

Suitable routing protocol for it is SAR. Type of topology

for this application is three-tier as shown in Table 1.

6. Comparative analysis of Operating Systems

Summary of the existing operating systems such as

TinyOS, SOS, Contiki, Mantis, and others presented in

Table 2. The supported Features by them such as

execution model, real time guarantee, dynamic

programming, priority-based scheduling, and application

supported are shown in Table 2.

Execution model which fall under TinyOS is component-

based. Which no have real time guarantee, priority

scheduling, and dynamic programming. Suitable

application for it is smart home.

In another type, Execution model which fall under SOS is

module-based. Which have priority scheduling, and

dynamic programming. Suitable application for it is

habitat monitoring. Also, Execution model which fall

under Contiki is Hybrid. Which no have real time

guarantee, and priority-based scheduling. Suitable

application for it is temperature and humidity.

Category Suitable

H/W

Suitable

OS

Suitable

RP

Topology Programming

Language

Environment

Monitoring

Tmote TinyOS DD Multi-hop nesC

Health Telos MantisOS LEACH Cluster-head C

Military MicaZ Nano-RK

DCOS

GAF Multi-hop C

Agriculture Soil sensor Nano-RK CTP Tree-topology C

Smart Home Tmote Sky TinyOS APTEEN Three tier nesC

Traffic Load MicaZ T-kernel PEDAMACS Multi-hop C

Habitat

Monitoring

Mica2 SOS SPAN Cluster-head C

Production/

Commercial

Telos TinyOS SAR Three tier nesC

Table 1: Application Characteristics and Suitable OSs

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 264

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In MantisOS, Execution model which fall under it is

thread-based. Which no have real time guarantee, and

dynamic programming.

Suitable application for it is health. In EYES, Execution

model which fall under it is event-based. Which no have

real time guarantee, and priority-based scheduling.

Suitable application for it is light. Execution model which

fall under Nano-RK is task-based. Which have real time

guarantee, and dynamic programming. Suitable application

for it is agriculture.

In another type, Execution model which fall under DCOS

is data-centric. Which have priority scheduling, and

dynamic programming. Suitable application for it is

military. In MagnetOS, Execution model which fall under

it is VM-based. Which no have dynamic programming,

and priority-based. Suitable application for it is

biomedical. Finally, Execution model which fall under

SenOS it is state-based. Which no have real time

guarantee, and priority-state. Suitable application for it is

time-critical.

7. Conclusions

This paper studies in depth the different operating systems

related to WSN, then it maps between the WSN

applications and the suitable OS according to the

application's requirements. The contribution of this work is

two-fold, the first contribution of this work is deriving and

forming a classification framework for the existing OSs

According to a lot of noteworthy important OS features,

such as, architecture, Execution Model, Scheduling, and

Routing Protocols, this classification helped in

understanding the contrasting differences among existing

operating systems, and lays a foundation to design an ideal

WSN OS. The second contribution is offering a guide for

selecting the appropriate OS to the desired WSN

application where also the existing WSN applications have

been classified and the applications categories have been

mapped to the OS features. For example operating system

which falls under agriculture application is Nano-RK,

Whereas, the suitable OS for the time critical application is

SOS. This helps the application developer in choosing the

appropriate OS, based on the application requirements.

8. Future Work

Because of the potential applications of WSN, and

growing interest on WSNs enforced to deploy multiple

applications simultaneously on the same network. It gives

an advantage of reducing infrastructure deployment cost.

But, it is an interesting research challenge. Till now, there

are not any OSs that facilitate running multiple

applications. Though other desirable characteristics like

low memory foot print and portability are mandatory, the

above are the important objectives to be considered while

designing new OS for an embedded WSN systems.

OS Execution

Model

Real Time

Guarantee

Dynamic

Reprogramming

Priority-based

Scheduling

 Application

TinyOS [16] Component

Based

No No No Smart Home [23]

SOS[10] Module

based

No Yes Yes Habitat monitoring

[33]

Contiki [21] Hybrid No Yes No Temperature and

humidity [35]

Mantis [22] Thread

based

No Yes No Health [31]

EYES [26] Event

Based

No No Yes Light [25]

Nano-RK [17] Task

Based

Yes Yes Yes Agriculture [24]

DCOS [28] Data

centric

Yes Yes No Military [34]

MagnetOS [27] VM

based

Yes No No Biomedical [36]

SenOS [26] State

based

No Yes No Time-critical

application [34]

T-kernel Task

Based

Yes Yes Yes Traffic Control [32]

Table 2: Summary of Operating Systems

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 265

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References

[1] Zhang, Junqi, Varadharajan, and others, “Wireless

sensor network key management survey and taxonomy”,

Journal of network and computer applications, Vol. 33,

Issue 2, pp.63-75, 2010.

[2] Basma M. Mohammad El-Basioni, Sherine M. Abd El-

kader, Hussein S. Eissa, and Mohammed M. Zahra,

“Clustering in Wireless Sensor Network: A Study on

Three Well-known Clustering Protocols” Accepted as a

book chapter in Developments in Wireless Network

Prototyping, Design and Deployment: Future Generations,

M. A. Matin (Ed.), IGI Global, 2013.

 [3] Basma M. Mohammad, Sherine M. Abd El-kader, and

Hussein S. Eissa, “Designing a local path repair algorithm

for directed diffusion protocol”, Egyptian Informatics

Journal, Vol. 13, No. 3, pp. 155–169, November 2012.

[4] Muhammad Omer Farooq, and Thomas Kunz,

“Operating Systems for Wireless Sensor Networks: A

Survey “, MDPI Open Access Information and Policy,

Vol. 11, No. 6, 2011.

[5] Wei Dong, and Xue Liu, “Providing OS Support for

Wireless Sensor Networks: Challenges and Approaches”,

IEEE Communication Surveys and Tutorials, Vol. 12, No.

4, November 2010.

[6] D. Manjunath, “A Review of Current Operating

Systems for Wireless Sensor Networks”, In Proceedings of

the 3th European Conference on Wireless Sensor

Networks, Vol. 2, No. 1, pp. 293-308, January 2006

[7] Thu-Thuy, Do, Daeyoung Kim, Tomás Sánchez

López, and Hyunhak Kim, “An Evolvable Operating

System for Wireless Sensor Networks“, International

Journal of Software Engineering and Knowledge

Engineering, Vol. 15, No. 1 , 2009.

[8] Margi, Escola de Artes, Cienc. E Humanidades, and

others, “Impact of Operating Systems on Wireless Sensor

Networks (Security) Applications and Testbeds”, In

Proceedings of the 19
th

 International Conference on

Computer Communications and Networks, Vol. 6, No. 2, ,

2010.

 [9] Ramon Serna, van Shcherbakov, and Gerhard Fohler,

“An Operating System Abstraction Layer for Portable

Applications in Wireless Sensor Networks”, SAC

„10 Proceedings of the 2010 ACM Symposium on Applied

Computing, Vol. 10, No. 1, 2010.

[10] Shripad V Deshpande, and P. R. Devale, “Recent

Trends in Using Wireless Sensor Networks in Industrial

Environment”, International Journal of Computer

Networking, Vol. 3, No. 3, 2013.

[11] Hyoseung, and Hojung Cha, “Multithreading

Optimization Techniques for Sensor Network Operating

Systems”. In Proceedings of the 4
th

 European Conference

on Wireless Sensor Networks, Vol. 4, No. 2, pp. 293-308,

January 2007.

[12] M. Hussnain, M. Sharjeel, S. R. Chaudhry, S. A.

Hussain, and others, “Investigating Multi-Topological

ZigBee Based Wireless Sensor Network in Precision

Agriculture”, Journal of Basic and Applied Scientific

Research, Lahore, Pakistan, Vol.3, No. 2, 2013.

[13] Basil Hamed, “Design and Implementation of Smart

House Control Using Lab VIEW”, International Journal of

Soft Computing and Engineering (IJSCE), Vol. 1, No. 6,

January 2012.

[14] Mohammed A. Hussein, “A Novel Approach for

Indoor Outdoor Air Pollution Monitoring”; IJCSI

International Journal of Computer Science Issues, Vol. 9,

No. 4, University of Sulaimani, July 2012.

[15] Chris Karlof, Naveen Sastry , and David, “TinySec:

A Link Layer Security for Wireless Sensor Networks”, In

Proceedings of the 2th ACM SenSys, Baltimore, MD,

Vol.3, No. 5, November 2004.

[16] Cooprider, Archer, Eide, and others, “Efficient

Memory Safety for Tinyos”. In Proceedings of the 5
th

International Conference on Embedded Networked Sensor

Systems (SenSys‟07), Vol.4, No. 3, pp. 205-218, New

York, NY, USA, November 2007.

[17] Eswaran, Rowe, Rajkumar, and others, “Nano-RK:

An Energy-Aware Resource-Centric RTOS for Sensor

Networks”. In Proceedings of the 26
th

 IEEE Real-Time

Systems Symposium, Miami, USA, Vol. 2, No. 1,

December 2005.

[18] Rowe, Mangharam, Rajkumar, and R. FireFly, “A

Time Synchronized Real-Time Sensor Networking

Platform”. In Proceedings of the 28
th

 IEEE Real-Time

Systems Symposium, Tucson, USA, Vol. 3, No. 7, 2007.

[19] Rowe, Lakshmanan, and Yhu, Rajkumar, “Rate-

Harmonized Scheduling for Saving Energy”. In

Proceedings of the 29
th

 IEEE Real-Time Systems

Symposium, Barcelona, Spain, Vol.2, No. 2, 2008.

[20] Cao, Abdelzaher, Stankovic, and others “The LiteOS

Operating System: Towards UNIX like Abstraction for

Wireless Sensor Networks”. In Proceedings of the 7
th

International Conference on Information Processing in

Sensor Networks (IPSN), USA, Vol. 5, No. 2, April 2008.

[21] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt,

“Contiki – A Lightweight and Flexible Operating System

for Tiny Networked Sensors”, In Proceedings of the 29
th

Annual IEEE International Conference on Local Computer

Networks, Vol.2 No. 1, 2004.

[22] Bhatti, Carlson, Dai, Deng, and others, “Mantis OS:

An Embedded Multithreaded Operating System for

Wireless Micro Sensor Platforms”, Mobile Network.

Appicationl, Vol. 10, Issue 2, pp. 563-579, 2005.

[23] Basma M. Mohammad , Sherine M. Abd El-kader,

and Mahmoud Abdelmonim Fakhreldin, “Smart Home

Design using Wireless Sensor Network and Biometric

Technologies”, International Journal of Application or

Innovation in Engineering and Management (IJAIEM),

Volume 2, Issue 3, pp. 413–429, March 2013.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 266

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.researchonline.mq.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Varadharajan%2C+Vijay%22
http://www.sciencedirect.com/science/journal/11108665/13/3
https://www.researchgate.net/researcher/69559326_Thu-Thuy_Do/
https://www.researchgate.net/researcher/7880771_Daeyoung_Kim/
https://www.researchgate.net/researcher/70437316_Tomas_Sanchez_Lopez/
https://www.researchgate.net/researcher/70437316_Tomas_Sanchez_Lopez/
https://www.researchgate.net/researcher/70437316_Tomas_Sanchez_Lopez/
https://www.researchgate.net/researcher/70555253_Hyunhak_Kim/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Margi,%20C.B..QT.&searchWithin=p_Author_Ids:38470726800&newsearch=true
http://researchr.org/publication/icccn-2010
http://researchr.org/publication/icccn-2010
http://www.acm.org/conferences/sac/sac2010
http://www.acm.org/conferences/sac/sac2010
http://www.acm.org/conferences/sac/sac2010
http://dl.acm.org/author_page.cfm?id=81100648059&CFID=348421653&CFTOKEN=93804806
http://dl.acm.org/author_page.cfm?id=81100612717&CFID=348421653&CFTOKEN=93804806
http://dl.acm.org/author_page.cfm?id=81100383091&CFID=348421653&CFTOKEN=93804806

[24] Sherine M. Abd El-kader and Basma M. Mohammad

El-Basioni, “Precision Farming Solution in Egypt Using

the Wireless Sensor Network Technology”, Egyptian

Informatics Journal, Volume 14, Issue 3, July 2013.

[25] A. Mason1, L. E. Cordova Lopez, and A. Shaw,

“Road traffic management using GIS and WSN”, Built

Environment and Sustainable Technologies, Liverpool

John Moores University, Liverpool, UK, Vol.4, Issue 2,

2011.

[26] A. K. Dwivedi, M. K. Tiwari, and O. P. Vyas,

“Operating Systems for Tiny Networked Sensors: A

Survey”, International Journal of Recent Trends in

Engineering, Vol. 1, Issue 2, May 2009.

[27] J.Radhika, and S.Malarvizhi, “Middleware

approaches for Wireless Sensor Networks: An overview”,

IJCSI International Journal of Computer Science Issues,

Vol. 9, Issue 6, No 3, November 2012.

[28] T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M.

Havinga. “Dcos, a real-time light-weight data centric

operating system”. Int. Conf. on (ACST), St. Thomas,

Virgin Islands, USA, pp. 259-264, Calgary, Canada,

November 2004.

[29] Yan Liang; Jiannong Cao; Zhang, D.; Rui Wang;

Quan Pan “A Biologically Inspired Sensor Wakeup

Control Method for Wireless Sensor Networks”, Systems,

Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, On pp. 525 – 538 Volume: 40,

Issue: 5, Sept. 2010.

[30] J. Yannakopoulos and A. Bilas. Cormos: A

communication-oriented runtime system for sensor

networks. In The Second European Workshop on Wireless

Sensor Networks (EWSN 2005), February 2005.

[31] J. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R.

Kiran, S. Lin, S. Son, R. Stoleru, and A. Wood. “Wireless

sensor networks for in-home healthcare: Potential and

challenges”. In High Confidence Medical Device Software

and Systems (HCMDSS) Workshop, Philadelphia, PA,

June 2005.

[32] Maha Mohamed Nabeel, Mahmoud Fakher el Deen,

Sherine Abd El-Kader, “Intelligent Vehicle Recognition

based on Wireless Sensor Network,” International Journal

of Computer Science Issues (IJCSI), Volume 10, Issue

4, July 2013

[33] Tomasz Naumowicz, Robin Freeman, and others,

“Wireless Sensor Network for habitat monitoring on

Skomer Island”, In proceeding of: The 35
th
 Annual IEEE

Conference on Local Computer Networks, LCN 2010, 10-

14 October 2010, Denver, Colorado, USA.

[34] Tian He, John A. Stankovic, and others, “Energy-

efficient surveillance system using wireless sensor

networks”, In Proceedings of the 2
nd

 international

conference on Mobile systems, applications, and services,

pp.270-283, ACM New York, NY, USA, 2004.

[35] Kshitij Shinghal 1, Arti Noor, and others, “Intelligent

Humidity Sensor for Wireless Sensor Network Agriculture

Application”, International Journal of Wireless and Mobile

Networks (IJWMN) Vol. 3, No. 1, February 2011.

[36] Loren Schwiebert, Sandeep K.S, and others,

“Research challenges in wireless networks of biomedical

sensors”, In Proceedings of the 7th annual international

conference on Mobile computing and networking, pp. 151-

165, ACM New York, NY, USA, 2001.

[37] Anar A. Hady *, Sherine M. Abd El-kader, Hussein S.

Eissa, “Intelligent Sleeping Mechanism for wireless sensor

networks”, Egyptian Informatics Journal, ISSN 1110-

86652013, April 2013.

[38] T.salem, Salah.Abd-Elmagied, and others “Improving

the Routing Mechanism of Clusters Sensor Networks”,

International Journal of Intelligent Computing and

Information Science, Vol.10, Issue 3, July 2012.

[39] Venugopalan Ramasubramanian , Zygmunt J. Haa,

“SHARP: A Hybrid Adaptive Routing Protocol for Mobile

Ad Hoc Networks”, In Proceedings of the 4th ACM

international symposium on Mobile ad hoc networking &

computing, pp. 303-314, ACM New York, USA, 2003.

AUTHOR

Tarek M. Salem is an assistant researcher in Computers and

Systems Department at the Electronics Research Institute (ERI)

in Egypt. In May 2013, he completed her B.S. in Computers and

Systems department, Faculty of Engineering, Al-Azhar

University. During the 2005-2012 year, he joined the Arabic

Organization for Industrialization. In 2013 year, he occupied the

position of research assistant at Electronics Research Institute.

He is a Lecturer, at Aljazeera Institute for information

technology from 2011 till now. Now, he is studying for Ph.D.

degree.

S. Abd El-kader has her MSc, & PhD degrees from the

Electronics & Communications Dept. & Computers Dept.,

Faculty of Engineering, Cairo University, at 1998, & 2003. Dr.

Abd El-kader is an Associate Prof., Computers & Systems Dept.,

at the Electronics Research Institute (ERI). She is currently

supervising 3 PhD students, and 10 MSc students. Dr. Abd El-

kader has published more than 25 papers, 4 book chapters in

computer networking area. She is working in many computer

networking hot topics such as; Wi-MAX, Wi-Fi, IP Mobility,

QoS, Wireless sensors Networks, Ad-Hoc Networking, realtime

traffics, Bluetooth, and IPv6. She is an Associate Prof., at Faculty

of Engineering, Akhbar El Yom Academy from 2007 till 2009.

Also she is a technical reviewer for many international Journals.

She is heading the Internet and Networking unit at ERI from

2003 till now. She is also heading the Information and Decision

making support Center at ERI from 2009 till now. She is

supervising many automation and web projects for ERI. She is

supervising many Graduate Projects from 2006 till now. She is

also a technical member at both the ERI projects committee and

at the telecommunication networks committee.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 267

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

https://www.researchgate.net/researcher/70041744_Tomasz_Naumowicz/
https://www.researchgate.net/researcher/12671485_Robin_Freeman/
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81100420846&coll=DL&dl=ACM&trk=0&cfid=354303803&cftoken=75974360
http://www.acm.org/publications
callto:+1110-8665
callto:+1110-8665
http://www.acm.org/publications

