

Emulating Trust Zone in Android Emulator with

Secure Channeling

Arun Muthu1, Rahim Rahmani2 and Dinakaran Rajaram3

 1 Department of Information and Communication Technology,
Kungl Tekniska Högskolan (KTH), Stockholm, Sweden

2 Associate Professor, Department of Computer & Systems Sciences (DSV),

 University of Stockholm, Stockholm, Sweden

3 Department of Information and Communication Technology,

 Kungl Tekniska Högskolan (KTH), Stockholm, Sweden

Abstract

There is a raise in penetration of smart phone while using

enterprise application, as most of them are downloaded from the

public market, resulting in challenge for security framework,

causing a threat to lose sensitive user data. To prevent this

ARM introduces the virtualization technique in hardware level,

which prevents processing of trusted application that is

completely isolated from general processing. To improvise this,

we need to understand ARM Architecture; however it is still

black box for users and developers. In this article, we take a

deep look at the hardware architecture of the ARM trust zone to

study and analyze its implementation and also to create its

replica in emulator. Moreover we describe feasibility of various

designs, implementation of trust zone feature in android

emulator; with sample trusted application called secure

channeling and concludes with annotation of suitable design on

future enhancement. The security domain for secure processing

and utility in emulator is to benefit the user and developer

community.

Keywords: Trust zone, Emulator, Android, Virtualization,

Security and secure channeling.

1. Introduction

Technology seeking is expanding widely in all corners of

the world and Smartphone is one among them. Now a

days, we see plenty of smart phone users, progressively

increasing in recent years and is expected to be more,

since using smart phone is easy to access the application

download, compatible and portable compared with laptop

and notebook. However inability design and improper

handling of the security critical functionalities of the

Smartphone shows that no technology is resistant toward

the security leak or attack till now. First android smart

phone was introduced in the year 2008. Soon after the

release, we found lot of security leaks and vulnerability in

security architecture of the android OS. Since, Android

Security Architecture, grants permission to perform any

type of operation and So Google proclaimed that, “We

tried really hard to secure Android. This is definitely a big

bug. The reason why we consider it a large security issue

is because root access on the device breaks our application

sandbox."[1].

To solve this issue, service provider or smart phone

marker adopts the new technology to solve this problem

called trust zone [1]. Trust zone is the technology has

gained wide acceptance and development in recent times.

ARM trust zone is a hardware based system virtualization,

help in handling third party application and security

features in operating system. It consists of two zones

called “Normal World” and “Secure World” [2]. The

application which requires secure process will enter into

secure zone from normal zone. There will be supervisor in

the secure zone who will access the data from the normal

zone and process it in secured way. The main

functionality of the chip (ARM trust zone) will handle

memory management unit, input and output guidance of

the data, handling cryptographic keys and certificates etc.

Since all these functionalities are internally organized,

users and developer not aware of it. Android emulator is

helpful for designing the business processes

functionalities like application, transaction and payment

etc whereas upcoming applications (trusted) for secure

process cannot be resolved by the android emulator since,

any support for software virtualization in it.

In this paper, we propose a design framework for

emulated trust zone for android emulator. Our emulated

trust zone was designed based on the important attributes

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 40

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

used in ARM trust zone design. Furthermore, our

designed system also handles the attributes in same way

like ARM trust zone. So, it works as a replica for

hardware trust zone chip in emulator.

The main contributions of our work can be summarized as:

 Reviewing current practices and theories on

implementation of ARM Trust zone.

 Analysis and design the appropriate model by

comparing the actual working of trust zone in

hardware level with design and idea of emulated

one.

 Create a trusted application of our choice

matches with design criteria.

 Proposing step-by-step approaches to solve the

research tribulations.

2. Problem Statement

In this section, we describe the problem and motivate the

need for information to design the emulated trust zone.

We are primarily concerned on the emulation of trust

zone in virtual emulated world. The main drawback is we

cannot focus on single model or design. So, we have to

compare different entities like real smart phone trust zone

with android emulator functionalities. The practical

difficulties in knowing the attributes of ARM trust zone

and design & develop the software module matching to it.

The list of attributes used in ARM trust zone [2] need to

be replicated:

 Secure memory management

 Monitor mode and supervisor mode

 Interrupts

 User space

 Trusted Application with secure channeling

Table 1. Difference between ARM trust zone and emulated trust zone

 ARM trust zone Emulated trust zone
Secure
Memory
Management

Created during

booting time

Created during

execution after SCM

call

Monitor
mode

NS and S bit value

changes according to

transit between the

worlds

NS and S bit value

changes according to

transit between the

worlds

Interrupts Operating system

takes care of it

Operating system

takes care of it

User space

Application start

from user space and

it enter into kernel

space

Same as ARM trust

zone functionalities

Trusted
Application

Loaded during boot

time and it’s static

Loaded during

execution time and its

dynamic

SCM Call ARM instructions [8] Procedure call

Debugging
We cannot debug

application since it

already compiled

Here, Native C code in

JNI layer user” *.so”

file

Registers ARM registers Variables

Fig. 1. Assumed control flow

By considering all these attributes, we can implement

emulation in two ways.

 Top level emulation (above driver)

 Low level emulation (below driver)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 41

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

2.1 Explanations about these two types of emulation

 We continue with the SMC (Secure monitor call)

emulation track which gives us a clean/empty

secure world that we have to fill with executable

code and help to create our own Trusted

environment (e.g. Global Platform TEE)[2].

 We create our own TZ driver level, to load

trusted application in secure world after SMC

call and exchange between the worlds [7].When

we try to emulate SMC instruction – we need to

replace it with the suitable function (system call)

which is targeting the particular address location

of the trust application (normal C function call)

in the file system.

Problems in Low level emulation:

 Low level emulation is not achievable, due to the

compatibility problem between the ARM board

(phone) and Intel board(host machine).In real

phone there are two different memory unit and

accessing point to prevent and guide the

execution flow, where as in emulator, single

memory strip and single mode operation.

 The trusted code is split into two parts, when

loaded by the boot ROM. The first part is

regarded as trusted application persistent in

secure memory location during the control flow.

The other part is initialized or triggered from

user space (application). This indirect leads to

undefined problem, that is trusted code cannot be

unloaded or reloaded [8].

 Trusted application (TA) uses the functionality of

the Secure ROM API. Secure ROM API is the

main API to be used by trust application (TA) in

ARM. So, it is not possible for dynamic trusted

application to use defined functionality. So TA

should always be static and specifications are

loaded in boot time itself.

 Accessing global variable is difficult. No

firmware is available to execute or support it.

Problems in Top level emulation:

 Main problem is to create our own execution

flow– Android application, Trust zone Driver

(TZ Driver), SCM mocking code and trusted

application.

 We need to create the fake monitor code i.e.

initialization of trusted application and its

properties (key, ID, Data, flag and address etc) is

mocking the boot ROM specification.

 Handling register functionalities are difficult,

since no CP15 register [Appendix] for secure and

non secure banking. So, we need to assume and

design our own apk layers and TA to perform

secure world operation.

 Some verification of trusted application need to

done before calling driver codes. This indicates

that TA is loaded dynamically and led to

problem of in granting permissions to the user.

 Coping TA to specify address (secure memory

region) has no meaning in it. Since, we need to

bring realistic view of ARM processor.

 No details about secure ROM API: so we create

monitor mode as variable or flag status to

indicate the user or programmer that, CPU mode

has been changed and control flow is switched to

secure processing. By reviewing all these entire

problems, we prefer, Top level approach is more

relevant in this case.

3. Various Designs

By considering these problems with both levels, we

suggest top level matches which have feature

specifications for replicating the ARM trust zone [5].

Those are:-

 Supervisor design

 Dual memory design

 Static memory design

3.1 Supervisor Design

In this design, we use two instance of kernel layer (i.e.)

normal and secure. Supervisor is responsible for the

analysing the instruction and then send them into

appropriate world. This shows that, supervisor is

responsible for context switching between the worlds. The

supervisor design is more efficient since it differentiates

the two kernels layer and therefore the two worlds.

However implementing this solution is more difficult,

since one software module will need to understand the

already existing and compiled code [5].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 42

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 2. Supervisor design

3.2 Dual Memory Design

In this design, we create two memory management units

to manage each kernel layers to support previous design

(supervisor design). As like previous design, here two

memory units represent two worlds. The secure memory

unit is responsible for the context switching between the

worlds. The normal memory unit, will access the part of

secure memory unit in order to convey the results between

them. So, this indirectly leads to creation of the shared

memory region.

This design is not so efficient to isolate the two worlds,

even though it solves the supervisor design problem i.e.

creation of software module to the stack. Handling

memory unit makes this implementation of design more

complex [5].

Fig. 3. Dual memory design

3.3 Static Memory Design

By seeing all these complexity in the nature of design, we

will stick to one kernel and memory unit. Isolation of

secure world can be achieved by creating the static

memory in the section of physical memory. The Kernel

will monitor each instruction and will forward it

according to the appropriate memory region. The kernel

is responsible for the context switching. The secure world

can access the data from both world and communicate

results to normal world without any shared memory

concepts [5].

This design is much easier comparatively to other design

mentioned above. However, the main problem is handling

security features (i.e.) making static memory region has

secured one.

Fig. 4. Static memory design

4. Design Framework

In this section we describe the feasibility abstractions that

enable the high level design specification of trust zone in

emulator. By clearly viewing the design specification

problem, we prefer top level approach with static memory

design is more relevant in designing the emulator trust

zone in emulator.

Benefits of top level design:

 working as standalone program

 debugging is quite easy

 Navigation from APK->Driver->SCM_CALL-

>TA is notable.

 We can protect the memory region (secure

memory) using mmap methods.

/* buffer is temporary variable to

store executable codes */

buffer=mmap(NULL,cmd.Size,PROT_EXEC|PRO

T_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS,1,0);

4.1 Design impact of Top level design on attributes of

the emulated trust zone:

Secure memory management.

We followed the same principle and design to develop the

trust zone features in an emulator. But there is slight

modification in the design, when we consider the same

approach in emulator. There is no special hardware

support for the work flow. Since, in real target there is

concept called shared memory between the processor and

memory units, but it is missing in emulator. So, we

redesign the resource utilization as per emulator

accordingly with same NS bit.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 43

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5. Secure memory management design for emulated trust zone

Monitor Mode and supervisor mode.

In case of emulator, SMC can be replaced by the function

or procedure call.SMC is ARM instruction, which will not

work in emulator. SMC function call helps to prevent the

non secure state in accessing region of physical memory,

since each states operates on own memory address space.

Mode changes are captured by the variable values in the

programming logic and tracking them are also be done.

Table 2. Bit Value

Monitor
Mode

Supervisor
Mode

Non Secure bit Secure bit

Application in Non

secure region
0 1 1 0

Application in

Secure region
1 1 0 1

The general purpose registers and processor status register

are not blanked between the secure and the non secure

states. When execution switches between the non secure

and secure states, ARM expects that the values of these

registers are switched by a kernel running mostly in

monitor mode. Whereas, system coprocessor register are

banked between the secure and non secure security states.

A banked copy of a register applies only to execution in

the appropriate security state.

Interrupts.

Many uses of the security extension can be simplified if

the system is designed so that exceptions cannot be taken

in monitor mode. Setting bits in the secure configuration

register causes one or more of external aborts, IRQs and

FIQs to be handled in monitor mode.

Fig. 6. Interrupt handling

If an exception is taken in monitor mode of non secure

state, the Secure Configuration Register (SCR) [Appendix]

bit is set to zero [8]. This indicates the operating system

that exception occurred. However, if an exception is taken

in monitor mode in secure state then, register bit is not set

to zero.

User space.

User space is the main feature of the top level design,

since the control flow start from it. It helps to delegate

operation to an authorized domain. The applications have

specific system call to the operating system kernel. This

include syscall numbers, interfaces etc. In general,

environment for secure world user space application

should be simple system call interface to support C run

time libraries and compiler tool chains.

Fig. 7. Control flow from user space

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 44

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

1. Application enter into the user level (android *.apk to

system interface)

2. System call leads to corresponding driver file

3. These are things are connected by the JNI- Java native

interface.

3a. initially all process start in normal memory

3b. whenever the special treatment is required

during the execution, control will be directed to

secure memory region via driver file when SMC

procedure call is made from application.

4. Transfer the block of data from normal memory to

secure memory which require the special secure

treatment/Process.

5. Once, a process is over, session is closed and returns to

normal memory space to further execution.

This process is repeated until process requires special

treatment/secure computing

Trusted application.

According to our design, trusted application is the place,

where actual business case is introduced to solve and end

of the control flow from Top level (apk). For this paper,

we constructed the application to establish the secure

channel [3] [6] communication between host and external

world (for: server of the business provider). So, by

replacing the code with desired business logic we can

achieve the corresponding significant output.

Why secure channeling?.

In real world application, trust zone works with support of

both internal architecture as well as external world.

Consider an example of banking transaction, mutual

authentication is required by both user and bank server in

order to establish the communication between them. This

is can be achieved by the “challenge response”

mechanism.

Passwords can be reused which may lead to compromise

the entire communication. So challenge response is

transmitting passwords change each time. Encrypting

those passwords with key make the communication more

secure.

Fig. 8. Trusted services

In smart phone, hardware supports comes with, secure

memory region to execute the mechanism (secure

channeling) and application created by external service

provider. So the user treats black box since he unaware

about the mechanism of application. Some of the

mechanisms controlled by phone manufacturers are

 Resource of hardware architecture and

environment for software execution

 Installing additional application requires permits

and assistance

 Billing and usage management are controlled by

network operators

 Service management are controlled by service

providers so subscribers are not in position to

select or change the service

In our case, we use the same principles to design our

trusted application. But due to these entire problems

mentioned above, we stick to the basic authentication with

standard encryption methods to establish the

communication between the host and external world to

supports our design matches with real world mechanism.

We assume in trusted application mechanism of

establishing the secure channel between the mobile and

external world is handled. So, trust zone handle the

mechanism and input data. Secure channel means mutual

authentication between the host (android emulator) and

external world. This can be achieved by two way steps.

 Creation of challenge response

 Comparing cryptograms

Initially, we need to create the mutual authentication

mechanism, which can be understood by the host and

external world. This mechanism is called as challenge

response [4].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 45

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Random block of 8 bytes should be created by both the

host and the external world application called as the host

and external challenge. Derivation challenge data of 16

bytes should be formed by the combining host and

external challenge [3] [7].

Fig. 9. Creation of derivation challenge data [3] [7]

Encrypt the derivation challenge data with Static

encryption key to form session key. By using the session

key, cryptograms are produced. Input data (credentials,

pin numbers etc) are combined with the host challenge

and send to external world application.

Fig. 10. Session key creation

External world application checks host cryptogram and

compares it with his own cryptogram (external) generated

by the same operation with data from host cryptogram.

Secure channel is established if the both the operation

leads the same result. So our assumed of communication

between host and external world with secure channeling

after SCM call will be:

Fig. 11. Communication between host and external world [6]

5. Validating System Model

In this section, we describe our experiments to evaluate

and validate design framework. In order to achieve the

design of emulated trust zone, we have shown the

evidence in analyzing various designs. As mentioned in

earlier chapters, Model consists of two layers.

Apk creation or top layer design, defines only certain set

of android function call which call the native c procedure

which connects the kernel to top layer.

Layer 1: SCM function, actual communicating elements

that include driver and procedure for connecting layer 2

 Secure memory creation

 TA creation

Layer 2: Secure channeling, defines the communication

between the TA and external application.

5.1 State transition

Considering our example, there according to labelled

transition system are 3 stages s0, s1 and s2, where s0 is

normal state, s1 is secure state and s2 is external state

communication. Process implicitly by calling initial state

s0 and follow its successor state S=2T. So the successive

states can be defined as successive state(s) = {(s, a, s1)|(s,

a, s2) T} where T is transition of states. Since SCM call

is the initial state of the process and simple “C” procedure

for implementation make it straightforward verification

algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 46

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 12. Transition states

1 & 4: S0 to s1 – transition from top layer APK to SCM

call or inturns normal world to secure world.

2 & 3:S1 to s2 – secure channelling communication

between host (TA) and external world

5: when interrupt occur in secure processing, control will

be revert back to normal world.

6: when interrupt occur in communication between host

and external world also, lead back to normal world.

Fig. 13. Control flow from user space to SMC call

5.2 Order of algorithm

Order of the algorithm we used in SCM call is very

simple and linear functionalities are used. So the order of

the program will O(n2).

Pseudo code with order O(n2):.

//CPU_common.h

// we need to define the parameter used

by the SRAM

Typedef unsigned long sram_addr_t; //

this way we can create data type of

SRAM

Sram_addr_t size, offset; // this

parameter will be used by SRAM, to

describe its characteristic

/* In same file, we need to create the

definition for the methods/Functions

used by the QEMU, like allocating the

memory, releasing the memory of SRAM */

Void qemu_sram_alloc (sram_add_t size);

Void qemu_sram_free (sram_addr_t size);

// implementation of this methods can

be viewed in android_arm.c file

//Android_arm.c
Void qemu_sram_alloc (sram_add_t size)

{

/*This will allocate the memory (say

for example 512 Mega bytes) other than

memory create by emulator for normal

function*/

}

Void qemu_sram_free (sram_addr_t size)

{

/* whenever, application is shut down/

Close memory used by the SRAM should be

de allocated */

}

// tee_sram_driver.c

/*this file will be core of the SRAM

feature. This only decide to access the

data in the particular memory location

*/

/* Methods used for the Tee

specification to handle the SRAM

function like read, write, open, close

etc */

Tee_sram_open (); // open the driver

Tee_sram_close (); // close the driver

Tee_sram_read (); // for read operation

Tee_sram_write (); //for close

operation

Tee_sram_session (); // for creating

the session

Tee_sram_reset_session (); // reset the

session

Memrefs_normal_to_sram (); // transfer

of data from normal memory to SRAM

memory space

Memrefs_sram_to_normal (); // transfer

of data from SRAM memory to normal

memory space

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 47

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

But in case of secure channeling algorithm, order of the

growth will be larger since we are using hashing, crypto

functionalities. So, the order will be Ω(n2)

Pseudo code with order Ω(n2):.

public boolean establishSecureChannel

() throws Exception {

//host

 byte [] hostChanllenge = new byte[]

{};

//card

 byte[] cardChanllenge = new byte[]

{};

};

//session key creation

sessionKey =

deriveSessionKey1(hostChanllenge,

cardChanllenge, KDC_enc_data);

//Cipher the text

Cipher cipher =

Cipher.getInstance("DES/ECB/NoPadding")

;

5.3 Static analysis

Static analysis is very efficient way for finding some

interaction (in static memory design), may lead to non

determinism state .In simple terms called as overlap

finding. It depends on structure of the design. By manual

examine of the code functions, overlapping makes the

statement divergent.

Table 3. Static analyses

APK Driver SCM

Secure

channeling

APK -- X X X
Driver X -- X
SCM X --

Secure

channeling
X X --

5.4 Dynamic analysis.

Dynamic analysis is process of proving functionalities

(Static memory design) of application in more logical way.

Consider, there are two trusted application A1 and A2

with the functionalities f1 and f2. So, that A1 acquires f1

and A2 have f2.By consider one of the test cases of this

project: “Trust zone can access only one

process/application at a time”.

So, A1f1 = where as A1f1A2f2 , where is the

property of trust zone.

It is easy to understand all this features interact with

property. We are considering only properties associated

with functionalities like f1 and f2 related to 1 and 2.

So we need more selective approach without violating the

proprieties i for (f1…fi)Ai.

5.5 Feasibility study.

By considering all these parameters and factors

mentioned above, with all the three designs of analysis,

we formulate the table to with pros and cons of each

design.

Table 4. Evaluation of design based on Attributies

Factor Supervisor
design

Dual memory
design

Static memory
design

Secure
memory

management

No separate

memory

handling for

accessing two

different kernel

layer

Two isolated

memory area to

handle to two

kernel region

Single strip of

memory which is

divided into

normal and

secure memory

region

Monitor
mode

Supervisor will

handle the

control flow

between two

kernel region

It work same as

Supervisor

design, only

different is

supervisor need to

handle control

flow between two

memory

Supervisor is just

a bit variable.

Trusted
application

It accessed first

in normal

kernel and then

moved to

secure kernel

Here, Application

is accessed by

normal memory

first and then

moved to secure

memory

Trusted

application is

copied from

normal memory

to secure

memory by

changing the bit

value of NS and

S bit

SCM_CALL

Supervisor will

call for secure

processing

Its work same

like supervisor

design

It just the

procedure call to

inform

application

require secure

processing

Interrupts
Handled by

Operating

system

Handled by

Operating system

Handled by

Operating system

Debugging

Since all

process happen

in kernel space.

No chance of

debugging

Since all process

happen in kernel

space. No chance

of debugging

By using NDK,

we can debug the

user space

application but

not in kernel

space

Register

Internal

registers

Internal registers Variables

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 48

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 5. Evaluation of design based on Functionalities

Factor Supervisor
design

Dual memory
design

Static memory
design

Complexity

High :

Since switching

between kernel

is not easy

High :

memory

handling and

switching is

difficult

Low:

since all process

happen on top

level(user

space) switching

and handling

memory are

easy

Reuse

No possibilities

of re use of code

No possibilities

of re use of code

User space

application can

be re used. We

need to change

the kernel driver

according to

user space

program

Implementation

Implementation

is not easy since

two kernel layer

involved

Implementation

is not easy since

two memory

layer involved

Implementation

is easy

Security

Security

features are

difficult to

handle here

Protecting the

memory is

highly difficult

We can use any

security

standard to

encrypt/decrypt

the

communication

between host

and external

world

By seeing above all, Static memory design would more

feasible compare to other two. From various evaluation

and implementation criteria, we found out the actual

working of ARM Trust zone as well as various ways of

implementing replica of trust zone (static memory design)

in emulator.

We designed the emulated trust zone in such a way

to give justification to the real working mode, even trusted

application and secure channeling are also designed to

provide support to the design. Finally, we have

consolidated artefact in descending order, so that reader

can easily follow the flow and idea behind each chapter

and design of it.

6 Conclusions

Our aim is to develop a software implementation of trust

zone in emulator. To achieve this we have analysed the

existing design, understanding the feasibility of

implementation of those design in emulator. After

exploring alternate design of trust zone, we come to the

conclusion that, this research finds the solution to make

an architecture design to implement trust zone in android

emulator with merely justification to real ARM trust zone

design. As the result, various architectural designs of trust

zone are discussed and best one is chosen. So, the main

goal for paper is drawn.

 Handling Memory segment

 Driver files

 Swapping programs to the specific memory

 Handling system call and CP15 [Appendix]

variables

 Sample trusted application – Secure

channeling

On overall design, our framework starts with android

application, navigate to JNI an interface, to provide high

level platform independent experience to the developers.

Based on assumption, we implement the small example

called “secure channeling” that provide the construction

and emulation of trusted application running in secure

memory region. SCM call is made in kernel layer to

communicate with external host (e.g.: server–client

program) to provide mutual authentication mechanism.

 Alternate designs and control flow of framework

will explain the overall feasibility for the

construction of trust zone in android emulator. In

our case, we justify that static memory design is

more feasible comparatively with other designs.

 Since, we choose static memory design for our

case, so separate memory region is created for

secure channeling and context switching is the

navigation of control from normal memory to

secure memory region and vise versa. Meanwhile

other features like interrupts, application

handling also done to support context switching.

 Here secure channeling [3] is the process of

authenticating the host and external world by

using Challenge response. This can be extended

by using cryptography standards in order to

provide more justification to the design.

Future enhancement & significance.

 By bringing Trust zone (static memory design)

into software emulation, have plenty of

significance for secure processing application

and great contribution to Google android

development.

 Environment can be extended to all applications

required secure treatment to process and testing

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 49

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

of hacking methods over the applications

processed in trust zone.

 This project also helps with application of Trust

zone emulation. So, it will avoid hardware

limitation on the security of the application for

open source world.

 Implementing personalized and complied trusted

application – FOTA, Banking application etc.,

 Implementing real ARM SCM call in emulator

 Designing more alternate design for trust zone

 Dependencies on hardware will be reduced

 Help future researcher to work on trust zone and

security feature of it.

 Successor of Wallet project of Google

Appendix

Table 6.CP15 Register

Register Description
C0 Main ID Register (MIDR)

 Cache Type Register (CTR)

 TCM Type Register(TCMTR)

 TLB Type register (TLBTR)

 Multiprocessor Affinity Register (MPIDR)

 Processor Feature Register

 Debug Feature Register (ID_DFR0)

 Auxiliary Feature Register(ID_AFR0)

 Memory Model Feature Register

 Instruction Set Attribute Register

 Cache Size ID Register(CCSIDR)

 Cache Level ID Register(CLIDR)

 Implementation Defined Auxiliary

 ID register(AIDR)

 Cache Size Selection Register(CSSELR)

C1 System Control Register (SCTLR)

 Implementation Defined Auxiliary

Control Register(ACTLR)

 Coprocessor Access Control Register (CPACR)

 Secure Configuration Register (SCR)

 Secure Debug Enable Register(SDER)

 Non Secure Access Control Register(NSACR)

C2 Translation Table Base Register 0(TTBR0)

 Translation Table Base Register 1(TTBR1)

 Translation Table Base Control Register

(TTBCR)

C3 Domain Access Control Register(DACR)

C4 Not used

C5 Data Fault Status Register(DFSR)

 Instruction Fault Status Register(IFSR)

 Auxiliary Data and Instruction

Fault Status Registers (ADFSR and AIFSR)

C6 Data Fault Address Register(DFAR)

 Instruction Fault Address Register(IFAR)

C7 Cache and Branch Predictor

 Maintenance Functions

 Virtual Address to Physical

Address Translation Operations

 Data and Instruction Barrier Operation

 No Operation (NOP)

C8 TLB Maintenance Operation

C9 cache and TCM Lockdown Register

 and Performance Monitor

C10 Memory Mapping and TLB Control Register

 Primary Region Remap Register(PRRR)

 Normal Memory Remap Register(NMRR)

C11 Reserved for TCM DMA Register

C12 Security Extension Register

 Vector Base Address Register(VBAR)

 Monitor Vector Base Register(MVBAR)

 Interrupt Status Register(ISR)

C13 Process Context and Thread ID Register

 FCSE Process ID Register(FCSEIDR)

 Context ID Register(CONTEXTIDR)

 Software Thread ID Register

C14 Not used

C15 Implementation Defined Register

Acknowledgments

The alacrity shown by Ms.Anjani Dubey, Google

Hyderabad & Mr. Karthikeyan S, NAL India, has gone

long way in improving the form and content of this article.

References

[1] David, Kleidermacher. Bringing Security to Android based

System. [Online][Cited: June 10, 2013.]

http://www.iqmagazineonline.com/current/pdf/Pg56-58_IQ_32-

Bringing_Security_to_Android-based_Devices.pdf.

[2] ARM Security Technology. Building a Secure System using

TrustZone Technology. [Online] [Cited: June 13, 2013.]

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

009492c/PRD29-GENC-

009492C_trustzone_security_whitepaper.pdf.

[3] Rajaram, Dinakaran. Secure Over the Air (OTA)

Management of Mobile Applications. ICT, KTH Royal insitute

of Technology. Stockholm : s.n., 2012.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 50

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.iqmagazineonline.com/current/pdf/Pg56-58_IQ_32-Bringing_Security_to_Android-based_Devices.pdf
http://www.iqmagazineonline.com/current/pdf/Pg56-58_IQ_32-Bringing_Security_to_Android-based_Devices.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

[4] C. Newman,A. Menon-Sen, A. Melnikov & N. Williams.
Salted Challenge Response Authentication Mechanism

(SCRAM). [Online] 2010. [Cited: June 17, 2013.]

http://tools.ietf.org/html/rfc5802#page-20.

[5] Alexander M.. Frisvold, Alex Meyer, Nazmus Sakib, Eric
Van Buren. Android Security. Iowa State University: s.n.,

2012.

[6] Zhao, Hao. INTEGRATED SECURITY PLATFORM FOR

MOBILE APPLICATIONS. KTH School of Information and

Communication Technology, KTH Royal institute of

Technology. Stockholm : s.n., 2011.

[7] Global Platform. [Online] [Cited: June 21, 2013.]

http://www.globalplatform.org/showpage.asp?code=specification

s.

[8] Winter, Johannes. Trusted Computing Building Blocks for

Embedded Linux-based ARM TrustZone Platforms. Institute for

Applied Information Processing and Communications (IAIK),

Graz, University of Technology. Graz : s.n.

About Authors

Arun Muthu is an Information Security Manager in Feeders

Technologies, India founded in 2008. He is responsible for providing

security solution to the corporate business and research. He works

closely with feeders leaders in driving the growth & expansion of the

company’s revenue & market. He holds Master degree in Information

& Communication System Security from Kungl Tekniska Högskolan

(KTH), Sweden 2012. His master degree and his earlier background

at Cognizant and Sony Mobile provide him with a solid foundation for

research innovation in recent years. His areas of interest are

Cryptography, Secure Software Engineering, Privacy, and Trusted

Computing.

Dr. Rahim Rahmani is an Associate Professor of Computer Science

and system science in University of Stockholm from 2012, focusing

on QoS and optimization for management of cloud computing

infrastructure and wireless sensor networks, such as OpenFlow. He

earned a technical doctorate in adaptive Active Queue Management

(AQM) algorithms for access routers in heterogeneous networks. He

has served as reviewer and in technical committees of international

conferences. He is a member of the editorial board of International

Journal of Wireless Networking and Communications.

Dinakaran Rajaram joined Feeders Technologies as Researcher in

Information Security as well as IT Security Auditor from April

2013.He obtained his Bachelor of Technology (Information

Technology) degree in 2009 from Thiagarajar College of Engineering,

Madurai and Master of Science degree in Information &

Communication System Security from Kungl Tekniska Högskolan

(KTH) in 2012. He is recipient of “Erasmus Mundus” scholarship for

his master studies. His researches interests are Security Protocol

design, Trusted Computing, Identity Theft, Cryptography and Secure

Channeling.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 51

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://tools.ietf.org/html/rfc5802#page-20
http://www.globalplatform.org/showpage.asp?code=specifications
http://www.globalplatform.org/showpage.asp?code=specifications
http://www.tce.edu/

