

A speech recognition based approach for development in C++

 Mubbashir Ayub1 , Muhammad Asjad Saleem2

1Faculty of Telecommunication & Information Engineering
University of Engineering & Technology Taxila, Pakistan

2Faculty of Telecommunication & Information Engineering
University of Engineering & Technology Taxila, Pakistan

ABSTRACT
Software development using programming languages
requires keyboard for input and all programming
languages are mostly text oriented. This text oriented
nature of programming languages is a barrier to persons
suffering from arms disability. A person having brilliant
mind and potential for programming skills, but suffering
from arm injuries or being disabled could not become a
programmer. To be a good developer a human must
memorize the syntax and keywords of a programming
language. In our research work we propose a methodology
for C++ programming language where a programmer will
speak and code in C++ will be written accordingly.
Structure of special program constructs will also be created
simultaneously.

Key words:
Automatic speech recognitions, Speech API, Shared Recognizer,
Object Tokens, Text to Speech

1. INTRODUCTION

Programming environments can create frustrating barriers
for the growing numbers of software developers that suffer
from repetitive strain injuries (RSI) and related disabilities
that make typing difficult or impossible. Not only is the
software development process comprised of fairly text-
intensive activities like program composition, editing and
navigation, but the tools used for programming are also
operated textually. This results in a work environment for
Programmers in which long hours of RSI-exacerbating
typing are unavoidable.
Grappling with the syntax of a programming language can
be frustrating for programmers because it distracts from
the abstract task of creating a correct program[1]. Visually
impaired programmers have a difficult time with syntax
because managing syntactic details and detecting syntactic
errors are inherently visual tasks. As a result, a visually
impaired programmer can spend a long time chasing down
syntactic errors that a sighted programmer could have

found instantly. Programmers facing repetitive stress
injuries can have a difficult time entering and editing
syntactically detailed programs from the keyboard. Novice
programmers often struggle because they are forced to
learn syntactic and general programming skills
simultaneously. Even experienced programmers may be
hampered by the need to learn the syntax of a new
programming language.
The primary tool used for programming is a specialized
text editor [2]. Early text editors were manipulated entirely
via keyboard, and leveraged many keyboard shortcuts for
common operations in order to speed the programming
process. Unfortunately, keyboard shortcuts are usually
composed of an alphanumeric key combined with one or
more modifier keys (e.g. Control, Option, Alt), which
contributes to RSI when keyed unergonomically. These
days, text editors are usually embedded in integrated
development environments (IDEs) that provide the
programmer with integrated services, such as compilation
and debugging [1].
One way to reduce the amount of typing while
programming is to use speech recognition. Speech
interfaces may help to reduce the troubles of RSI among
computer programmers. At the other side speech
programming may increase access for those already
suffering motor impairments. Many disabled programmers
are already bootstrapping voice recognition into existing
programming environments [3]. However, speech does not
map well onto the available applications and programming
tasks. Our research uses a principled approach from field
of programming languages to allow developers to use
speech with much more powerful control.
We come up with a solution that addresses the above
mentioned problems. Our solution requires a microphone
attached to the computer. User should have all the basic
understanding of C++ language. He will speak his code
that will be in English language but conforms to C++
syntax and semantics. Our system will only provide code
writing feature. After writing code user will copy and paste

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 52

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

this code to any C++ compiler and will compile code in
that compiler.
2. OVERVIEW
Our system is based on Microsoft platform. System is
developed using Microsoft Visual studio 2010. Windows
speech recognition is used to capture voice and Microsoft
Speechlib is used to convert voice to text. This converted
text is then used to generate C++ code. Section 3 describes
the system architecture in detail. Section 4 states the
system comparison with other existing systems. Section 5
concludes our work with discussion of future directions.

3. SYSTEM ARCHITECTURE

Our system is divided into the five modules as shown in
[Figure.1].

 Graphical User Interface (GUI)
 Voice to Text Converter
 Code Generator

Figure.1 System Architecture

Before getting into the details of the system, let's have a
brief overview of the high level working of our system.
GUI module provides an interface for users to interact with
the system. Voice to text converter is responsible for
converting each listened word to text. A user will speak
code using microphone and text converter will convert this
spoken code to text. For this converted text C++ syntax
and semantics are applied to this text to generate
standardized C++ code.
3.1 Graphical User Interface (GUI)

GUI gives the visual appearance of the virtual file system
to the end user. GUI color schemes, layout, working and
behavior are quite similar to Windows Explorer. Windows
XP style task pane provides easy access to common
operations and gives appealing look. Standard Toolbars,
popup menus and shortcut keys make operation of
software easy for all type of users. Easy to Use, Easy
accessibility to functions and Appealing appearance are the
main features of GUI.

3.2 Voice to Text Converter
The core part of our system is voice to text conversion. We
used Windows Speech Recognition(WSR), which is built
on top of SAPI, for capturing voice and Microsoft
Speechlib API for converting this voice to text.
SAPI version 5.4 is shipped with windows 7 and supports
two distinct types of speech recognition; dictation and
command and control. In our research we used dictation
type of speech recognition. In this type of speech
recognition machine listens to what we say and attempts to
translate it into text. The accuracy of dictation ties directly
to the CPU's speed and the system's available memory. The
more resources, the more contexts that can be considered
in a reasonable amount of time the more likely the
resulting recognition will be accurate.
SAPI 5.4 supports two types of recognizers inprocess
recognizer (SpInprocRecognizer) and shared process
recognizer (SpSharedRecognizer). The inprocess
recognizer claims resources for the application, so, for
example, once an inprocess recognizer claims the system’s
microphone, no other application can use it. A shared
recognizer runs in a separate process from the application
and, as a result, it can be shared with other applications.
This allows multiple applications to share system resources
(like microphone). In our application we are using shared
process recognizer because shared recognizer allows an
application to play nicely with other speech enabled
applications on system.
A recognition context is an object that manages the
relationship between the recognition engine object (the
recognizer) and the application. A single recognizer can be
used by many contexts. For example, a speech enabled
application with 3 forms will likely have a single engine
instance with a separate context of each form. When one
form gets the focus its context becomes active and the
other two forms contexts are disabled. In this way, only
the commands relevant to the one form are recognized by
the engine. A single recognizer can be used by many
contexts. For example, a speech enabled application with 3
forms will likely have a single engine instance with a
separate context of each form. When one form gets the
focus its context becomes active and the other two forms
contexts are disabled. In this way, only the commands
relevant to the one form are recognized by the engine.
SAPI is smart enough to create the shared recognizer
object for us automatically when the
SpSharedRecoContext is created. In our scenario we are
using dictation type of speech recognition. For this
purpose we created a grammar object and load the
grammar with SLOStatic value to set the dictation top of
grammar as static. To set this grammar object to use
dictation type of speech recognition we initialize
SpeechRuleState state property of grammar object to
SGDSActive.

 In recognition event handler the ISpRecoResult interface
is used by our application to retrieve information about the
SR engine's hypotheses, recognitions, and false

GUI

Voice to Text Converter

Code Generator

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 53

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

recognitions. The most common use of the ISpRecoResult
interface is retrieval of text recognized by the Speech
Recognizer. The ISpRecoResult interface also supports the
retrieval of the original audio that the SR engine
recognized. An application can set interest in the SR
engine's failed recognitions by calling
ISpEventSource::SetInterest with
SPEI_FALSE_RECOGNITION. If a false recognition occurs, the
application can examine the audio (or even a partial
recognition result) to reprocess the recognition or attempt
to process the partially recognized text. SAPI does not
require that an SR engine send a phrase with the false
recognition event. ISpPhrase::GetText retrieves elements
from a text phrase. All text recognized is then converted to
lower case for the purpose of code generation because C++
is case sensitive and all reserved words are in lower case.

3.3 Code Generator

Code generator is the module that actually generates C++
code from listened words. As a first step, we find a list of
reserved words of C++. Now for each reserved word we
find words with similar sound. For example “while” have
following words with similar sound. "lloyd", "while",
"white", "wine" and "voice ".
 After this, for each reserved word we developed a
separate list structure of words with similar sound in C#.
When a user speaks a reserved word that word will be
converted to text and this text will be matched to the
elements of list structure. If a match is found converted
text is replaced with that reserved word. If no match is
found text is written as it is. Now if this text is wrong and
user wants to remove that word user will speak “incorrect”.
A list structure is also maintained for same utterances of
“incorrect”. If spoken word is matched with that same
utterance then that word is removed.
At the same time if a match is found and that reserved
word has special program construct then that program
construct is also generated simultaneously.
Input: number sign
Output: #
Input: include
Output: include
Input: iostream
Output :<iostream.h>
Input: void main function
Output: void main(){
}
Input: See out
Ouput: cout<<”
Input: sea in
Output: cin>>
Input: For
Ouput: for
Input: Loop
Ouput: for(; ;){
}
Input: Int I equals to zero;

Output: for(int i=0){
}
Input: I less than ten
Ouput: for (int i = 0; i < 10) {
}
Input: I plus plus
Ouptput: for (int i = 0; i < 10; i++) {
}
This process will continue until user completes his code.
When code is complete, User will speak “select all” to
select whole code. After selecting code user will speak
“copy” and in C++ compiler will speak paste. All code will
be pasted here. Now user will have to debug and compile
this code in C++ compiler.
Figure.2 shows algorithm for the system.

Figure.2 Algorithm

4. COMPARISON

For architectural comparison, we compared our system
with various other voice programming systems available in
literature e.g. VoiceGrip[8] is a programming tool
designed specifically for voice input. The system allows
programmers to dictate code using a pseudo code syntax

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 54

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

that is easier to utter than the native code itself. Later,
these pseudo code statements can be automatically
translated in real time to native code in the appropriate
programming language. For example, to type the below C
statement, you will simply say:
“if one element is less than second element then”
At first, the statement would get typed literally in pseudo
code, but you could later utter a single voice command to
automatically translate it to the appropriate native C code.
This approach to code dictation imposes a lower vocal load
on the user because it is much shorter to utter. When
translating pseudo code to native code in a particular
language, VoiceGrip uses a simple deterministic parsing
algorithm. At each iteration, it translates a substring
starting at the beginning of the remaining pseudo code. It
then removes that substring from the pseudo code and
proceeds with the next iteration. The process continues
until there is no more pseudo code to translate. The
utterance is translated in a single pass with no
backtracking. This translation of each substring to native
code makes translation process too much slow.
SpokenJava [6] system takes the form of a program editor
called SPED and associated program analysis framework
called Harmonia which are both embedded in the Eclipse
IDE. A user begins by speaking some program code in
Spoken Java into the editor. Once it has been processed by
the voice recognizer, it is analyzed by Harmonia.
Harmonia can recognize, handle and support ambiguities
through the syntactic phases of program analysis as well as
execute semantic analyses to disambiguate the myriad
possible interpretations of the input that the first two
phases create. When semantic analysis results in several
legal options, our programming environment defers to the
programmer to choose the appropriate interpretation. Once
the interpretations have been deduced, they are translated
back
into Java, and written into the editor. SpokenJava is a
better system but it is targeted for Java and not for C++.
[9] Consists of adding Java support to VoiceCode. This
implementation consisted mainly of adding commands
(loop templates, etc.) and their spoken forms to the
VoiceCode program. Where possible, I kept the spoken
forms for Java consistent with spoken forms in other
languages. I built in extremely common commands
(println, main method) and set them up to do a lot of
automatic typing for the user. Two major limitations of
VoiceCode are the complexity of installation and the
amount of hand use involved in startup. In order to limit
the amount of typing and mouse use required to start
VoiceCode, I have created a batch file to start Dragon
NaturallySpeaking and VoiceCode.
NaturalJava [1] is a prototype for an intelligent natural-
language based user interface for creating, modifying, and
examining Java programs. The interface exploits three
subsystems. The Sundance natural language processing
system accepts English sentences as input and uses
information extraction techniques to generate case frames
representing program construction and editing directives.

A knowledge-based case frame interpreter, PRISM, uses a
decision tree to infer program modification operations
from the case frames. A Java abstract syntax tree manager,
TreeFace, provides the interface that PRISM uses to build
and navigate the tree representation of an evolving Java
program. The goal of the NaturalJava interface is to allow
programmers to write computer programs by expressing
each command in natural language. But in our case user
will speak native C++ code and not in natural language.

5. CONCLUSION AND FUTURE WORK

Disabled persons or Programmers suffering from repetitive
strange injuries will always find it difficult for adapting to
software development environments that promote long
hours in front of a keyboard. Our work helps make this
easier by enabling programmers to use voice recognition.
In this paper we presented a robust solution for speech
based programming in C++. Implementation mainly
consists of finding words that have similar sound to each
reserved word of C++ programming language e.g “for”
have similar sound to “far”, “four” and “thought”. All code
spoken by the user will be written in an editor. If some
text is written that does not match to user intentions user
will speak “incorrect” and that word will be removed.
Special program constructs (e.g function structure) are also
created for the sake of user and thus freeing user form the
headache of remembering syntax. Our system is very
suitable for disabled persons or persons suffering from
repetitive strange injuries
For future development, this approach can be extended to
all textual programming languages and also to visual
programming languages. Similar approach can also be
helpful for query writing.

Acknowledgments

We would like to acknowledge our chairman Dr.
Tabassam Nawaz and our family members.

References

[1] Price, David, Riloff, Ellen, Zachary, Joseph and Harvey,
Brandon. NaturalJava: A Natural Language Interface for
Programming in Java. In the Proceedings of the International
Conference on Intelligent User Interfaces, January 2000.

[2] Arnold, Stephen, Mark, Leo and Goldthwaite, John.
Programming By Voice, Vocal Programming. In the
Proceedings of the ACM 2000 Conference on Assistive
Technologies. November 2000.

[3] Desilets, Alain. VoiceGrip: A Tool for Programming by
Voice. International Journal of Speech Technology, 4(2):
103-116. June 2001.

[4] Yasuhrio Minami and Sadoki Farui “A large vocabulary
continues speech recognition algorithm and its application to
a multi-modal telephone directory system” NTT Human
Interface Laboratries, Tokyo, Japan

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 55

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[5] George C. Demetriou and Eric S. Atwell “Semantics in
Speech Recognition and Understanding: A Survey”,
Artificial Intelligence Division, School of Computer Studies,
University of Leeds

[6] Begel, A. Programming By Voice: A Domain-specific
Application of Speech Recognition. AVIOS Speech
Technology Symposium–SpeechTek West (2005).

[7] Douglas A. Reynolds “Automatic Speaker Recognition:
Current Approaches and Future Trends” MIT Lincoln
Laboratory, Lexington, MA USA.

[8] A. DESILETS VoiceGrip: A Tool for Programming-by-
Voice INTERNATIONAL JOURNAL OF SPEECH
TECHNOLOGY 4, 103–116, 2001

[9] Java Programming Using Voice Input: Christine Masuoka
University of Maryland, 2008

[10] http://www.c-sharpcorner.com/Forums/Thread/75127/
speech-recognition.aspx

[11] http://www.dreamincode.net/forums/topic/75990-convert-
speech-to-text-and-vice-versa-in-c%23net/

[12] http://msdn.microsoft.com/en-us/library/
ms720151(v=VS.85).aspx#API_Speech_Recognition

Mubbashir Ayub received his B.Sc.
degree in Software Engineering from
University of Engineering &
Technology Taxila, Pakistan in 2007.
Currently he is enrolled in M.Sc degree
of Software Engineering and also
serving as Lecturer in the same
University in the department of
Software Engineering. His areas of
interests are Speech Recognition,

Software Design & Architecture and Software Testing.

Engr. Raja M. Asjad Saleem did his
Bachelors in Software Engineering
from University of Engineering &
Technology Taxila and Masters in
Computer Engineering from the same
in 2005 and 2009 respectively. His
areas of interest are Software
Specification and Design, Information
Systems and Engineering Management.
Engr. Raja has over 05 years teaching

and research experience in University of Engineering and
Technology Taxila. He has worked in different domains of
technology including Computer Networks, Wireless Security. He
is planning to pursue his PhD studies from a foreign university.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 56

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

