

Proposed Software Testing Using Intelligent techniques (Intelligent

Water Drop (IWD) and Ant Colony Optimization Algorithm (ACO))

Laheeb M. Alzubaidy
1
, Baraa S. Alhafid

2

1 Software Engineering, Mosul University, Collage of Computer sc. And Mathematic

Mosul , Iraq

2 Software Engineering, Mosul University, Collage of Computer sc. And Mathematic

Mosul , Iraq

Abstract
This paper proposed software testing system by using artificial

intelligent techniques. And that was conducted through Suggestion

Intelligent Water Drop Algorithm (IWD) with white box testing

for generated basis bath testing and using Ant Colony

Optimization Algorithm (ACO) for test data generation. Correctly

generated Test data helps in reducing the effort while testing the

software. Automatic generation of test data is required to enables

the corporation which develops the program to save time and

costs as well as ensuring the test process quality, which is

estimated by 50% of the product cost.

Keywords: Artificial Intelligent Techniques, Intelligent Water

Drop (IWD), Ant Colony Optimization (ACO), Software Testing,

Path Basis Testing, Test Data Generation.

1. Introduction

Software test is the main approach to find errors and

defects assuring the quality of software. Software testing is

an expensive component of software development and

maintenance. Testing is a complex, labor-intensive, and

time consuming task that accounts for approximately 50%

of the cost of a software system development [16]. Aim of

the software testing is to uncover errors and faults present

in the program, so that customer requirement can be

properly fulfilled. Testing phase includes in the review of

specification, analysis, design, and implementation part of

the Software Development Life Cycle (SDLC). Manual

generation of test data for testing the program, results in

low reliability and high cost [12]. Due to the lack of cost

and reliability, automation of testing process is necessary,

so that the cost of testing can be reduced. Artificial

Intelligence (AI) based techniques can help in removing this

situation. AI based technique helps in solving the problem

by using fast and proper judgments rather than using step

by step deduction [2].

The paper is structured as follows: section 2 introduces

related work, section 3 present testing in software

engineering with the objective and type of software testing,

section 4 describes the intelligent water drop algorithm,

section 5 describes the ant colony optimization algorithm,

section 6 includes the proposed work, section 7 includes

Conclusions.

2. Related work

Various techniques have been proposed for automated
testing to reduce efforts to a remarkable extent.

Andreas W., Stefan W., Joachim W.in (2007) suggested an
empirical comparison of a genetic algorithm and a particle
swarm algorithm applied to evolutionary structural testing.
They selected 25 artificial test objects that cover a broad
variety of search space characteristics (e.g. varying number
of local optima), and 13 industrial test objects taken from
various development project. The results indicate that
particle swarm optimization is well-suited as a search
engine for evolutionary structural testing and tends to
outperform genetic algorithms in terms of code coverage
achieved by the delivered test cases and the number of
needed evaluations [1].

Praveen R. S., Tai-hoon K.in (2009) presents a method for
optimizing software testing efficiency by identifying the
most critical path clusters in a program. They do this by
developing variable length Genetic Algorithms that
optimize and select the software path clusters which are
weighted in accordance with the criticality of the path.
Exhaustive software testing is rarely possible because it
becomes intractable for even medium sized software.
Typically only parts of a program can be tested, but these
parts are not necessarily the most error prone. Therefore,
they are developing a more selective approach to testing by
focusing on those parts that are most critical so that these
paths can be tested first. By identifying the most critical
paths, the testing efficiency can be increased [11].

Surender S. D., Jitender K. C. , Shakti K. in (2010)
presents an artificial bee colony based novel search
technique for automatic generation of structural software

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 91

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

tests. Test cases are symbolically generated by measuring
fitness of individuals with the help of branch distance based
objective function. Evaluation of the test generator was
performed using ten real world programs. Some of these
programs had large ranges for input variables. Results
show that the new technique is a reasonable alternative for
test data generation, but doesn’t perform very well for
large inputs and where constraints are having many equality
constraints [15].

Sanjay S., Dharminder K., H M Rai and Priti S. in (2011)

presents a technique that based on a combination of

genetic algorithm (GA) and particle swarm optimization

(PSO), and is thus called GPSCA (Genetic-Particle Swarm

Combined Algorithm) which is used to generate automatic

test data for data flow coverage with using dominance

concept between two nodes. The performance of the

proposed approach is analyzed on a number of programs

having different size and complexity. Finally, the

performance of GPSCA is compared to both GA and PSO

for generation of automatic test cases to demonstrate its

superiority [16].

3. Testing in software engineering

There are a many definitions of software testing, but one

can shortly define that as: "A process of executing a

program with the goal of finding errors". So, testing

means that one inspects behavior of a program on a finite

set of test cases (a set of inputs, execution preconditions,

and expected outcomes developed for a particular objective

[9].

The objectives of software testing are: [13]

 A good test case is one that has a high

probability of finding an as-yet undiscovered

error.

 A successful test is one that uncovers an as-yet

undiscovered error.

 Testing is a process of executing a program with

the intent of finding an error.

The Testing type in software engineering is:

 Black box Testing

 White box Testing

 Gray box Testing

3.1 White box Testing

In this paper a White box testing is used, White box

testing based on an analysis of internal working and

structure of a piece of software. White box testing is the

process of giving the input to the system and checking how

the system processes that input to generate the required

output as illustrated in Fig 1 .It is necessary for a tester to

have the full knowledge of the source code. White box

testing is applicable at integration, unit and system levels of

the software testing process. In white box testing one can

be sure that all parts through the test objects are properly

executed [10].

Fig. 1 Represent working process of White Box Testing

 The types of white box testing techniques are : [10]

 Control Flow Testing

 Branch Testing

 Basis Path Testing

 Data Flow Testing

 Loop Testing

3.1.1 Basis Path Testing

Basis path testing is a white-box testing technique first

proposed by Tom McCabe [13] and it allows the test case

designer to produce a logical complexity measure of

procedural design and use this measure as an approach for

outlining a basic set of execution path (basic set is the set

of all the execution of a procedure) These are test cases

that exercise basic set will execute every statement at least

once. Basic path testing makes sure that each independent

path through the code is taken in a predetermined order.

For this reason Basis Path Testing is used in this paper.

The method devised by McCabe to carry out basis path

testing has four Steps. These are [5]:

 Compute the program graph.

 Calculate the cyclomatic complexity.

 Select a basis set of paths.

 Generate test cases for each of these paths

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 92

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

a. Flow Graph Notation

Before we consider the basis path method, a simple

notation for the representation of control flow called allow

graph (or program graph) must be introduced, The flow

graph depicts logical control flow using the notation

illustrated in Fig 2, Each structured construct has a

corresponding flow graph symbol [13].

Fig 2 Flow Graph Notation.

Control Flow Graph (CFG) describes the sequence in

which the statements/instructions of a program are

executed. It is representation of flow of control through the

program. CFG is directed graph in which each node is a

program statement/basic block and each edge represents

the flow of control between statement/basic blocks. A basic

block is a sequence of consecutive statements in which

flow of control enters at the beginning and leaves at the end

without halt or possibly of branching except at the end [8].

In a CFG, a node including condition is called a predicate

node as shown in Fig 3, and edges from the predicate node

must converge at a certain node. Area defined by edges and

nodes is referred to as region [13].

Fig 3 Predicate node.

 On a flow Graph as shown in Fig 4 :

 the symbol arrows called as Edges that represent

the flow of control

 Circles are called as nodes, which represent one or

more actions.

 Areas bounded by edges and nodes called regions

Fig4 Flow Graph .

b. Cyclomatic Complexity (CC)

The notion of Cyclomatic complexity was presented by

McCabe. Cyclomatic complexity is software metric that

delivers a quantitative degree of the logical difficulty of a

program. Cyclomatic Complexity (CYC) is derived as the

number of edges of the program’s control-flow graph

minus the number of its nodes plus two times the number

of its linked components. Cyclomatic complexity purely

depends on the Control Flow Graph (CFG) of the program

to be tested [14] complexity is computed in one of three

ways [13]:

 The number of regions of the flow graph

corresponds to the Cyclomatlc complexity.

 Cyclomatic complexity V(G) for a flow graph

G is defined as V(G)=E-N+2

Where E is the number of flow graph edges and N is

the number of flow graph nodes.

 Cyclomatlc complexity V(G) for a flow graph G is

also defined as v(G)=P+1

Where P is the number of predicate nodes contained in

the flow graph G.

c. Determine Independent Paths

The value of V(G) Provides the upper bound on the

number of linearly independent paths through the program

Control structural . Through the Control flow graph in

Fig 5 we expect to specify six Paths:

Path 1: 1-2-10-11-13

Path 2: l-2-10-12-13

Path 3: 1-2-3-10-11-13

Path 4: 1-2-3-4-5-8-9-2

Path 5: 1-2-3-4-5-6-S-9-2

Path 6: 1-2-3-4-5-6-7-8-9-2

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 93

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

It is often worthwhile to Identify predicate nodes as an aid

in the derivation of test cases. In this case, nodes 2,3,5,6,

and 10 are predicate nodes [13].

Fig 5 Control Flow Graph.

d. Deriving Test Cases

Data should be chosen so that conditions at the predicate

nodes are appropriately set as each path is tested. Each

test case is executed and compared to expected results.

Once all test cases have been completed, the tester can be

sure that all statements in the program have been executed

at least once [13].

4. Intelligent Water Drop Algorithm

IWD algorithm [6][7] is a swarm-based optimization

algorithm, simulated from observing natural water drops in

river. IWD has been applied to various problems like

Travelling Salesman Problem (TSP), N-queen puzzle,

Multidimensional Knapsack Problem (MKP (, etc. These

results have proved the significance of IWD algorithm over

other swarm optimization algorithms. Another solution for

TSP using IWD algorithm [7] is introduced where

proposed algorithm converges very fast to the optimum

solution.The improved IWD algorithm [4] has been applied

to solve the air robot path planning in dynamic

environments and results are quite impressive over genetic

algorithm and ACO algorithm Since IWD has not yet been

applied to the area of software testing and the effective

results have been produced for various problems, this paper

tries to derive a solution model for software testing using

IWD in the hope that expected results will be more

significant than the current solutions available for test data

generation. Before moving to the proposed solution of

IWD, general introduction is provided which describes its

strategy along with available metrics in it.

IWD algorithm is a new swarm-based optimization

algorithm inspired from natural rivers. In a natural river,

water drops move towards center of the earth, due to some

gravitational force acting on it. Due to this the water drop

follows the straight and the shortest path to its destination

[6].Pictorial representation of basic IWD is shown in Fig 6.

In ideal conditions it is observed that the optimal path will

be obtained. Water drop flowing in the river has some

velocity which is affected by another actor, i.e., soil.

Fig 6 Pictorial representation of IWD.

Some changes that occurred while transition of water drop

from one point to another point are:

1. Velocity of water drop is increased.

2. Soil content in the water drop is also increased.

3. Amount of soil in the riverbed from source to

destination get decreased.

Water drop in the river picks up some soil in it when its

velocity gets high and it releases the soil content when its

velocity is less [7] Some of the prominent properties of the

natural water drop are taken, based on which IWD is

suggested. IWD has the two following important

properties,

1. The amount of soil the water drop carries, which

is represented by Soil (IWD) (or soil
IWD

(.

2. The velocity of water drop with which it is

moving now, denoted by Velocity (IWD(

)or vel
IWD

)

Value of both the properties may change during the

transition. Environment contains lots of paths from source

to destination [4] which may be known or unknown .When

the destination is known, IWD follows the best path to

reach the destination (best is in terms of cost and any other

desired measure .)When destination is unknown it finds the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 94

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

optimal destination. From the current location to the next

location Velocity (IWD) is increased by an amount ,which

is nonlinearly proportional to the inverse of the amount of

soil between the two locations ,referred to as the change in

velocity. The Soil)IWD), is also increased by extracting

some soil of the path between two locations. The amount

of soil added to the IWD is inversely (and nonlinearly)

proportional to the time needed for the IWD to pass from

its current location to next location. IWD chooses the path

with less soil content. In the proposed approach, IWD is

applied over the Control Flow Graph (CFG) to obtain the

number of paths available in the program .The CFG depicts

the logical control flow of the program [13]. All linearly

independent paths could be obtained by CFG .Independent

path is the path in the program that determines at least one

new set of processing statement. In other words it

introduces at least one new edge in the graph. Number of

available paths can be obtained by finding the Cyclomatic

complexity of the graph [13].

The IWD algorithm as specified by Shah-Hosseini H. in [6]

is as follows:

1. Initialization of static parameters.

2. Initialization of dynamic parameters.

3. Spread the IWDs randomly on the nodes of the

graph.

4. Update the visited node list of each IWD.

5. Repeat Steps a to d for those IWDs with partial

solutions.

a. For the IWD residing in node i, choose the next

node j, which does not violate any constraints of

the problem and is not in the visited node list of

the IWD.

b. For each IWD moving from node i to node j,

Update its velocity.

c. Compute the soil.

d. Update the soil.

6. Find the iteration-best solution from all the

solutions found by the IWDs.

7. Update the soils on the paths that form the current

iteration best solution .

8. Update the total best solution by the current

iteration best solution.

9. Increment the iteration number

10. Stops with the total best solution.

5. Ant colony Optimization Algorithm

The inspiring source of ACO is the food foraging behavior

of real ants. When searching for food, ants initially explore

the area surrounding their nest in a random manner. As

soon as an ant finds a food source, it evaluates the quantity

and the quality of the food and carries some of it back to

the nest. During their return trip, ants deposit a chemical

pheromone trail on the ground. The quantity of pheromone

deposited, which may depend on the quantity and quality of

the food, will guide other ants to the food source. The main

principle behind these interactions is called stigmergy , or

communication through the environment. An example is

pheromone laying on trails followed by ants [3].

Pheromone is a potent form of hormone that can be sensed

by ants while traveling along trails. It attracts ants and

therefore ants tend to follow trails that have high

pheromone concentrations. This causes an autocatalytic

reaction, i.e., one that is accelerated by itself . Ants

attracted by the pheromone will lie more of the same on the

same trail, causing even more ants to be attracted see Fig7.

This characteristic makes swarm intelligence very attractive

for network routing, robotics, optimization etc. A number

of extensions are proposed to the original ant algorithm.

These algorithms performed better producing much

improved results than the original ant algorithm [3].

Fig 7 Optimization by Ant Colony.

Main characteristics of this model are positive feedback,

distributed computation, and the use of a constructive

greedy heuristic. The basic algorithm introduced by Marco

Dorigo is given by following steps [3]:

1. Set parameters, initialize the pheromone trails

2. while (termination condition not met) do

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 95

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

a. Construct ants solutions

b. Apply local search

c. Update pheromones

d. end while

6. Proposed work

In the proposed work, it will be create a parser that used

to convert input program to the corresponding control flow

graph (CFG) for the program, then after knowing the

benefits of intelligent water drop algorithm and their ability

to find optimal solutions efficiently, it will be proposed to

use it in the field of software testing through use in the

generation of independent paths of the program and then,

use ant colony optimization algorithm to generate the best

test data that will be used in order to test all the

independent paths the program and make sure it's have

passed them all, as shown in Fig 8.

Fig. 8 proposed work

7. Conclusions

After a thorough study of swarm intelligence and its

branches in particular IWD algorithm, know the benefits of

IWD in the field of computer science and superiority over

other techniques in this field, where it proved its ability by

testing many of the real problems. So we proposed a

method in the software testing process as they avoided the

consumption of a large number of duplicates and their

ability to reach solutions ideal and efficient manner as well

as having knowledge of the importance of ACO algorithm

and its ability to generate data that are used in software

testing process, for all these reasons it will design a system

that uses an Intelligent Water Drop Algorithm (IWD) to

generate independent paths and test data in order to test all

Independent paths in the program and make sure it's have

passed them and covered efficiently.

References
[1] A. Windisch, S. Wappler, J. Wegener, "Applying Particle

Swarm Optimization to Software Testing", ACM, 2007, pp.
1121-1128.

[2] F. N. Raza, , "Artificial Intelligence Techniques in

Software Engineering"", In Proceedings of the International

Multi Conference of Engineers and Computer Scientists,

Vol.2174,2009, pp.1086-1088 .

[3] H. Afaq1 , S. Saini , " On the Solutions to the Travelling

Salesman Problem using Nature Inspired Computing

Techniques", IJCSI International Journal of Computer

Science Issues, Vol. 8, No. 2,2011, pp. 326-334.

[4] H. Duan, S. Liu, X. Lei," Air Robot Path Planning

Based on Intelligent Water Drops Optimization". IEEE

International Joint Conference on Neural Networks , 2008,

pp. 1397-1401.

[5] H. Schligloff , M. Roggenbach, " Path Testing" ,

Advanced Topics in Computer Science: Testing,

citeseer ,2002.

[6] H. Sh. Hosseini ," The intelligent water drops algorithm:

a nature-inspired swarm-based optimization algorithm",

IJBIC International Journal of Bio-Inspired Computation,

Vol. 1, No. 1/2, 2009,pp. 71-79.

[7] H. Sh. Hosseini, "Problem solving by intelligent water

drops". IEEE Congress on Evolutionary Computation, 2007,

pp. 3226-3231.

[8] H. Tahbildar ,B. Kalita , "AUTOMATED SOFTWARE

TEST DATA GENERATION: DIRECTION OF

RESEARCH", International Journal of Computer Science &

Engineering Survey (IJCSES) Vol.2, No.1, 2011,pp. 99-120.

[9] Jovanovic , Irena," Software Testing Methods and

Techniques",2008,pp.30-41.

[10] M. E. Khan, " Different Forms of Software Testing

Techniques for Finding Errors", IJCSI International Journal

of Computer Science Issues, Vol. 7, No 1, 2010, pp. 11-16.

[11] P. R. Srivastava , T. Kim," Application of Genetic

Algorithm in Software Testing" ,International Journal of

Software Engineering and Its Applications,Vol.3,

No.4,2009,pp.87-96.

[12] R. S. Pressman , "Software Engineering A Practitioner’s

Approach, FIFTH EDITION",5th, McGraw-Hill

Company,2001.

[13] R. S. Pressman , "Software Engineering A Practitioner’s

Approach, Seventh Edition",7th, McGraw-Hill Company

,2010.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 96

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[14] S. Nidhra, J. Dondeti," BLACK BOX AND WHITE

BOX TESTING TECHNIQUES–A LITERATURE

REVIEW" ,International Journal of Embedded Systems and

Applications (IJESA) Vol.2, No.2, 2012,pp.29-50.

[15] S. S. Dahiya, J. K. Chhabra, Sh. Kumar , " Application of

Artificial Bee Colony Algorithm to Software Testin21st

Australian Software Engineering Conference,

IEEE,2010,pp.149-154.

[16] S. Singla, D. Kumar, H M Rai, P. Singla," A Hybrid PSO

Approach to Automate Test Data Generation for Data Flow

Coverage with Dominance Concepts", International Journal

of Advanced Science and Technology, Vol. 37, 2011,pp.15-

26

First Author :Dr. laheeb M. Alzubaidy, have BSc. In 1987,

MSc. In 1992 And PhD in 2002, in computer Sc. From

Dept. of computer Sc, university of Mosul, Iraq. Associative

professor in 2003, Head of Dept of Computer Sc. In 2003,

visiting lecturer in Isra private university in 2004, head of

Dept of Software Engineerinh in 2007, Visiting lecturer in

USM university , NAV6 center in 2009, interested research

fields are in Artificial Intelligent technique, network security

, image processing , pattern recognition, software eng.

Second Author : Baraa S. Alhafid , have BSc. In 2006, in

Software Eng.. From Dept. of Software Eng., university of

Mosul, Iraq. Researcher in 2011, MSc. Student in 2011 Dept.

of Software Eng., university of Mosul, interested research

fields are in Artificial Intelligent technique, software eng.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 97

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

