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Abstract 
In state-of-the-art Pervasive Computing, it is envisioned that 

unlimited access to information will be facilitated for anyone and 

anything. Wireless sensor networks will play a pivotal role in the 

stated vision. This reflects the phenomena where any situation 

can be sensed and analyzed anywhere. It makes heterogeneous 

context ubiquitous. Clustering context is one of the techniques to 

manage ubiquitous context information efficiently to maximize 

its potential. Logical-clustering is useful to share real-time 

context where sensors are physically distributed but logically 

clustered. This paper investigates the network performance of 

logical-clustering based on ns-3 simulations. In particular 

reliability, scalability, and reachability in terms of delay, jitter, 

and packet loss for the logically clustered network have been 

investigated. The performance study shows that jitter 

demonstrates 40 % and 44 % fluctuation for 200 % increase in 

the node per cluster and 100 % increase in the cluster size 

respectively. Packet loss exhibits only 18 % increase for 83 % 

increase in the packet flow-rate. 

Keywords: Pervasive Computing, Wireless sensor networks, 

ubiquitous, context, distributed, logical-clustering, ns-3. 

1. Introduction 

The Wireless Sensor Networks (WSNs) is an integral 

part of today‟s pervasive computing and expected to play a 

pivotal role in the future Networked Society. The primary 

use of sensors is to collect data from physical objects. It is 

foreseen that any situation can be sensed and analyzed 

anywhere which leads to more and more sensors 

deployment in today‟s Internet infrastructure and sensors 

are made available to the services through the distributed 

acquisition and dissemination of sensor data assembled 

from physical objects. Services can access this 

heterogeneous context information anywhere. The use of 

sensors is increasing rapidly. Billions of sensors will be 

used in the foreseeable future [2]. This will play a vital role 

in making context information accessible for anyone and 

anything in the future Networked Society [1]. These 

enormous numbers of sensors deployment in the Internet of 

Things (IoT) will allow gathering information from people, 

places, and objects i.e. from distributed sensor networks. 

Spontaneous human participation which is known as 

crowdsourcing is also envisioned [6]. This implies that 

rapid real-time data will be generated by crowd about the 

circumstances surround [7]. These will produce 

heterogeneous context information. Moreover, a single 

sensor might produce different data. For example, sensors 

carried by human on their smart devices might produce 

different data in different time. This necessitates proper 

management of heterogeneous contexts obtained from 

sensors. Data management should be reliable, and the high 

volume of data should be scaled appropriately in order to 

use efficiently and meaningfully. Clustering the context i.e. 

data is one of the proficient applications. Furthermore, it 

will be advantageous to cluster sensor data based on 

context similarity. In one of our previous papers, logical-

clustering of flow-sensors has been presented [2]. Logical-

clustering implies that sensors might reside remotely 

physically but clustered logically based on context 

similarity. Previous most work on sensors clustering 

concentrated on physical location nearness for energy and 

routing management, and to increase system scalability and 

robustness. Context in sensors clustering has been 

discussed too, but in all cases definition of context is 

specific. Moreover, their solution is limited to neighboring 

sensors. However, the concept of logical-clustering will 

allow resources (data, services) to be shared among 

different physically distributed sensors in distributed 

sensor networks. Sensors can share resources through 

distributed collaboration which was lacking in the existing 

management of context information. Once the clustering is 

done then each cluster is identified through a context-ID 

which is defined based on context similarity and published 

on the internet. Any interested sensor, may be located 

remotely, can subscribe to the context-ID.  

OpenFlow based sensors are known as flow-sensors 

[3]. It has been proven that flow-sensors perform better 

than typical sensors [3]. However, it will be infeasible for a 

single OpenFlow controller to manage the increased 

number of sensors. In order to manage huge amount of 

sensors, more than one OpenFlow controller is desirable. 

HyperFlow addresses the issue and offers multiple 

controllers which are physically distributed but logically 

centralized [2]. The controllers are synchronized and can 

be resilient for network slicing. An important factor that 

was missing in the existing OpenFlow specification is 

interconnection between different OpenFlow networks, 

HyperFlow solves this problem by using the 
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publish/subscribe mechanism. In HyperFlow, each 

controller can make decision locally which minimizes the 

response time. Controllers exchange messages to notify 

about any network-wide changes. These logically 

synchronized controllers are called logical-sink [2].  

Network performance is one of the most researched issues 

in the field of wireless sensor networks. Network 

management becomes an important consideration as the 

number of sensor nodes increases. In future, network will 

encounter thousand times traffic volumes compared to 

today‟s traffic volumes. Latency, reliability, scalability, 

and data reachability are few of the challenges that future 

network would encounter [1]. Therefore, it is essential to 

design network carefully so that network does not incur 

performance degradation. In our previous paper, the 

feasibility and technical presentation of logical-clustering 

have been discussed [2]. In addition, computational 

efficiency of logical-clustering has also been shown in [2]. 

In this paper, the focus will be on investigating few of the 

significant network performance metrics of logical-

clustering. The network has been designed in ns-3 

(network simulator). A performance study has been made 

in terms of delay, jitter and packet loss to verify the 

reliability, scalability and reachability of the designed 

network. Hence, the main focus of this paper will be to: 

 Design a WSN of logical-clustering of flow-

sensors in ns-3 

 Verify the reliability of the designed network in 

terms of packet delay and jitter 

 Verify packet reachability  

 Examine scalability of the network for increased 

number of nodes and groups 

 Provide use cases of logical-clustering 

 

The remainder of the paper is organized as follows: section 

2 presents the related work. Section 3 discusses the 

motivation behind the work. Section 4 outlines the system 

model considered for the proposal. Next, section 5 

describes the model checking of the proposal. Simulation 

results are analyzed in section 6 which is followed by 

section 7 that illustrates few of the possible use cases of the 

proposed concept. Finally section 8 concludes the work 

and a guideline for future work is presented. 

2. Related Work 

There have been many researches about clustering in 

the WSNs. Most of the previous researches have been on 

preserving energy and prolonging the battery for the re-

source-constrained sensor nodes. For example, LEACH [4] 

is the first clustering technique for achieving network 

longevity and energy dissemination reduction. 

Padmanabhan and Kamalakkannan in [5] further modified 

LEACH to prolong the network stability. Kumar et al. in 

[27] also examined different LEACH techniques in a view 

to prolong network lifespan. Literatures in [8 – 10, 24] 

discuss clustering of sensors but for the sake of data-

accumulation. Clustering of sensors helps in reducing 

energy consumption, stabilizing network, efficient routing 

etc. S. Bandyopadhyay et al. in [8] analyzed hierarchical 

clustering and discussed that energy consumption is 

decreased if clustering level of hierarchy is increased. 

Abbasi, Younis and Lotfinezhad, Liang in [9-10] mention 

that inter-cluster communication is only limited to cluster-

heads which results in communication bandwidth saving 

and in reducing message exchanges between sensors. Hyun 

and Hyuk in [28] discussed that efficient cluster-head 

selection prolongs the network life span and saves energy. 

D. Ma et al. in [25] proposed a clustering protocol with 

dual cluster-head concept to further improve network life 

time and more data accumulation to the base station. 

Lombriser et al. in [11] presented distributed 

processing of context for dynamic WSNs. Their proposed 

E-SENSE computes context information from sensor net-

works.  Sensors are clustered based on context-activity but 

limited only to neighboring sensors. It does not solve 

large-scale sensor network issue. Franco in [6] envisioned 

the idea of sensing, actuating and computing of anything 

anywhere for the future pervasive computing. He further 

outlined that spontaneous human participation i.e. 

crowdsourcing is vital for distributed collaboration to 

enrich urban networks. G. Barbier et al. in [7] presented 

maximizing the data obtained through crowdsourcing. 

They portrayed that crowdsourcing is faster and beneficial. 

With crowdsourcing, any event can be detected and 

analyzed. Event in the urban areas are fast changing. 

Moreover, some events are recursive and some are non-

recursive [12]. Scalability, reachability and reliability of 

the obtained data from urban events through 

crowdsourcing become a challenge. Guo and Han in [13] 

discussed the reliability issue in data collection for WSN. 

They discussed the essence of reliable data collection for 

mobile nodes. The importance of latency in reliability for 

mobile WSNs has been discussed by Y. Rao et al. in [26]. 

They proposed a clustering based routing protocol for 

reliable data packet delivery in real-time. Ericsson in [1] 

further outlined the significance of reliability, latency, 

delay, maximum service (data) delivery i.e. reachability etc. 

for the future Networked Society. 

Luca and Gian in [14] introduced logical-neighborhood of 

sensor nodes which replaced physical neighborhood 

concept. This idea more or less resembles our proposal. 

However, their solution is a programming language 

abstraction where nodes are said to be in the logical 

neighborhood if certain attributes are satisfied. A 

programmer defines the nodes‟ attributes and the data 
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segment that can be part of a neighborhood. Therefore, it 

does not explicitly solve the real-time context sharing issue 

which is the prime objective of our proposal. In this paper, 

our focus is to examine the network performance of the 

logical-clustering of flow-sensors. 

3. Motivation 

Traditionally, sensors are used to obtain data from 

physical objects. Sensors also collaborate to achieve 

common goals. With the technological advancement, 

sensing devices have become more intelligent and 

affordable. Hence, the applicability of sensors is always 

rising, and it is believed that billions of sensors will be 

deployed in the future. Moreover, sensors are fundamental 

in the Internet of Things (IoT) deployment for any kind of 

urban event detection. These are used for different 

purposes and to obtain heterogeneous data from distributed 

sensor networks. Sensors deployment can be both 

deterministic (fixed) and random (mobile). Therefore, real-

time context sharing will be a big challenge to existing and 

later distributed WSNs applications. Earlier solutions do 

not provide proper management of context information; 

hence current context information management does not 

support real-time sharing of context and do not scale well 

for heterogeneous interoperability. This necessitates proper 

management of the obtained data i.e. context information 

from sensors in order to use in an efficient and useful way. 

Most researches thus far concentrated on decreasing 

energy consumption so that sensors longevity is ensured. 

Several researchers have worked on clustering sensor 

nodes too, but again largely for sensor nodes stability. 

There have been some proposals for sensors data-

management, but their proposals restrict to a certain area 

for adjacent sensors. It is also important that context 

generated by the sensors should be used meaningfully to 

take its full advantages.  Real-time context sharing will be 

beneficial when clustered based on context similarity. The 

idea of clustering the sensors logically based on context 

similarity would allow resources (data, services) to be 

shared. Furthermore, the idea will provide topological 

sensor networks with scalability, reliability and high 

reachability in terms of delay, latency and packet loss. 

4. System Model 

Some of the definitions that have been used for 

modeling the system are presented below. 

Sensor-ID: Sensors should have unique IDs. A sensor-ID 

can be obtained in different ways, e.g. the ID can be 

chosen randomly or can be obtained by hashing the sensor 

IP or MAC address [15].   

Flow-ID: Flow-ID is the logical identification of the flow. 

According to [16], a flow could be defined based on 

capabilities of a particular implementation. The flow-ID is 

the flow packets from a particular sensor to the sink. As 

long as the sensor is interested in the same flow packets, 

the flow-ID remains same. But if sensor changes the flow 

of packets, the flow-ID is also changed. OpenFlow flow-

tables consist of match-fields (i.e. packet header), action 

sets and statistics. The packet header defines the flow and 

action defines the flow-ID.  

Context-ID: The context-ID is the identifier of a cluster. 

This can be compared to the idea that of a hashtag. As 

hashtag groups the similar messages, context-ID has the 

same objective. Context-ID is a mean of clustering similar 

data. The context-ID is published to the internet through 

the logical-sink and any interested entity i.e. sensor can 

subscribe to the context-ID.  

Context flow-table: OpenFlow specification implies that 

match fields can be defined according to the research 

requirement [16]. A new flow-table for flow-sensor has 

been defined which includes flow-sensor‟s sensor-ID, 

flow-ID and context-ID. This flow-table is named context 

flow-table.  

4.1 Network 

A two-tier H-DHT system model has been considered. 

Controlling the ever-increasing number of sensors would 

be infeasible for single logically centralized controller 

(current OpenFlow standard), and in order to scale well for 

enormous number of sensors, the idea of HyperFlow (HF) 

has been exploited. This implies that multiple numbers of 

controllers (sinks) in the network has been used. The sinks 

are physically distributed but logically synchronized, hence 

this idea has been defined as logical-sink [2]. Another 

advantage of utilizing logical-sink is that each sink can do 

processing locally. And then other sinks get notified of the 

local changes and thereby synchronized. The network is 

divided into two-tier hierarchy (fig. 1). In the top-level 

overlay, CHORD concept is applied. And in the bottom-

level hierarchy, the flow-sensors are clustered in single-

connection manner. Flow-sensors communicate with the 

logical-sink. Sink that is part of a cluster virtually acts as a 

flow-sensor with very high-computational capabilities. 

This eliminates the burden of choosing or electing a 

cluster-head. This virtual flow-sensor can be thought as the 

cluster-head (one for each cluster). These virtual flow-

sensors i.e. cluster-heads are organized in the top-tier 

overlay as CHORD. In fig. 1, there are three clusters that 

communicate with the logical-sink. And, for each cluster 

there is a virtual flow-sensor. A flow-sensor does not need 

to concern about the physical sink the communication 
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takes place as all the physical sinks are synchronized and 

aware of any change inside the network. 

 

 

Fig. 1. The two-tier Network  

 

Fig. 2. Communication 

4.2 Communication 

The communication is shown in fig. 2 and is of three kinds: 

logicalsink-to-sensor, sensor-to-logicalsink and sink-to-

sink. Logicalsink-to-sensor communication takes place in 

the forward path. This communication is straight forward 

in a sense that sink has better communication capabilities 

and can communicate with flow-sensors directly. For any 

exception, the communication can still take place through 

distributed collaboration. In the reverse path, sensors 

communicate with logical-sink via overlay hop [15]. Those 

sensors that are not part of a particular cluster collaborate 

with other sensors so that sensors can reach nearby logical-

sink. Sink-to-sink (inside a HF network) communication 

can further be divided into two: physical and virtual sink-

to-sink. The physical communication among sinks follows 

the same procedure as in HF. And, the virtual 

communication implies the communication between virtual 

flow-sensors and a CHORD top-level overlay is formed by 

the virtual flow-sensors. Hence, this communication 

follows the idea of CHORD. 

 

4.3 Implementation 

Both fixed and mobile flow-sensors have been assumed. 

Flow-sensors traffic are controlled and managed by 

logical-sink. The flow-sensor usually has flow-tables in the 

hardware layer [3]. Each flow-table contains flow-entries 

and an action for each flow-entry which decides flow 

routing. Each flow-entry has match-fields that define the 

flow, instructions correspond the way packets should be 

routed, and statistics takes care of packet updating. Packets 

from flow-sensors are matched in each flow-entry, 

instruction set defines the flow-ID if already not available, 

and statistics updates the packets. Statistics checks if the 

current packet matches the old packets, otherwise a new 

flow-ID is defined for any mismatch. Flow packets are 

then forwarded to the nearby physical sink in the reverse 

path. The flow packets include the flow-ID. The logical-

sink maps flow-ID and returns the corresponding context-

ID in the forward path, a sensor-ID is also returned to the 

flow-sensor if already not assigned. The sensor-ID is 

unique and unchanged for a flow-sensor. In case the 

context-ID is not available with the contacted physical sink, 

this sink contacts other physical sinks and the 

corresponding context-ID is returned. Search will follow 

the CHORD look-up mechanism. Viewed this way, the 

context-ID search will also follow the similar procedure. 

The logical-sink modifies the context flow-table with the 

context-ID along with sensor-ID and flow-ID. Logical-sink 

also updates the group table with the context-ID. By the 

mean time, other sinks get notified about all the changes in 

each sink and get updated thereby. In case the received 

flow-ID does not match any existing context-ID, then 

logical-sink defines a new context-ID. This context-ID is 

then published to other HF networks. When any sensor is 

interested in the context-ID in other network, then sensors 

subscribe to the context-ID. The algorithm for above is as 

follows: 

 

 Flow-sensor match-fields define the flow and the 

action defines the flow-ID 

 Flow-ID is sent to the nearby physical sink S1 

 S1 resolves flow-ID and returns corresponding 

context-ID 

 S1 returns the sensor-ID if already not assigned  

 S1 forwards the request from flow-sensor to other 

physical sinks (S2, S3… Sn) if no match found 

for the request in S1 

 If no context-ID found in the logical-sinks then a 

new context-ID is defined and published to other 

networks 
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 Logical-sink returns the context-ID to the 

requested flow-sensor 

 Regular and context flow-tables are updated by 

the logical-sink 

 Statistics check for new and old packet mismatch, 

new flow-ID is defined in case of any mismatch  

4.4 Example Scenario 

Fig. 3 shows an example of MATLAB implementation. 

There are 4 H-DHT HF net-works with 50 sensors. Some 

are fixed (16) and some are mobile (34). The sensors have 

been clustered based on context-similarity. Different 

cluster is represented by different color. As seen that 

sensors might be resided in different networks but they are 

logically clustered and belong to same context-ID. Each 

HF network has been facilitated by four sinks („+‟ signs). 

Their positions are fixed and act as single logical-sink for 

single HF network. It is assumed that sinks are placed 

carefully so that all the flow-sensors are covered. This 

explains how logical clustering of sensors can be achieved. 

 

Fig. 3. An example scenario 

 

Fig. 4. Sensors joining 

4.5 Sensors Joining 

Fig. 4 shows 10 sensors (depicted by 1 to 10) joining. It 

can be seen that sensors (1, 9) have joined an existing 

cluster; while sensors (2, 4 and 8) and rest of the sensors 

have formed two new clusters respectively. These can be 

distinguished by different colors. When new sensors join 

the network, they send their flow-IDs to the nearby sinks. 

Context-IDs are shared by all the logical-sinks, and all the 

logical-sinks have the knowledge of existing context-IDs. 

Therefore, when sensors send their flow-IDs, then logical-

sink checks the existing context-IDs. If match found, then 

new sensors are said to have subscribed to the existing 

context-ID. Otherwise, logical-sink defines new context-ID 

based on the received flow-IDs and context similarity. And, 

the sensors form new clusters. 

 

Fig. 5. Flow chart 

5. Model Checking of the Concept 

The combination of PROMELA and SPIN has been used 

for simulation and verification of system model in [17-19]. 

It provides versatility and is very useful for model 

checking. The combination has been used extensively for 
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modeling and verifying communication protocols [3]. The 

proposed model of this paper has been examined using the 

PROMELA and SPIN combination. First, fig. 5 shows the 

flow chart of the proposed model. The explanation of the 

flow chart has been described already (see 4.3).   

5.1 Context-ID Match Algorithm 

The following algorithm defines the mechanism for 

communication between sensor nodes and sinks. The first 

process (proctype node) defines sensor nodes flow send 

and receive method, and the second process (proctype 

sink) defines the mechanism for logical sink. 

/*Algorithm for context-ID definition 

or matching*/ 

 

bool flow_id, sensor_id, context_id; 

proctype node(chan in, out) { 

#define node_add  /*define address of 

the sensor node*/ 

int pkt; /*packet*/ 

bool chk;  

xs src_node; /*send channel of source 

node*/ 

xr sink_add; /*receive channel of 

sink*/ 

in?input_port,dst_add; /*Channel sends 

input port number and destination 

address*/ 

if 

:: (src_node == node_add && pkt! =Null) 

-> out!pkt; goto pkt_match; /*if 

address is authenticated and packet is 

not empty, send packet to check for 

packet matching*/ 

fi; 

pkt_match: in?pkt 

if  

:: (chk = true) -> goto 

pkt_send2flowtable; /*if packet is for 

matching, send to flow table*/ 

:: (chk = false) -> goto pkt_drop; 

/*check if packet is to be dropped*/ 

fi; 

pkt_drop: in?pkt 

if 

:: (chk = true) -> skip; /*Packet is 

dropped*/ 

:: (chk = false) -> pkt_send2sink; 

/*Packet is forwarded to the nearby 

physical sink*/ 

fi; 

pkt_send2flowtable: in?pkt 

if 

:: (input_port == 1) -> 

write(match_fields); /*If Packet is not 

empty, update the match fields*/ 

:: (input_port == 2) 

write(instructions_set); /*Update 

instructions set and define the flow-

ID*/ 

:: (input_port == 3) write(stat); 

/*Update Statistics- store packet 

information*/ 

:: goto pkt_send2sink; /*Packet is 

ready to be sent to the nearby sink*/ 

else -> skip; /*Drop Packet, if empty*/ 

fi; 

pkt_send2sink: in?pkt 

read(sink_add); /*Get the address of 

the nearby sink*/ 

read(match_fields); /*Check the match 

fields for flow*/ 

read(instructions_set); /*Check for 

flow-ID*/ 

read(stat); /*Check for any packet 

mismatch*/ 

if 

:: (flow_id = true) -> goto 

context_flowtable; /*If flow_id is 

found then insert to the context flow 

table*/ 

fi; 

context_flowtable: 

read(instructions_set);/*Update the 

context flow table’s flow-ID field*/ 

end; /*End the process*/ 

} 

proctype sink(chan in,out) { 

#define dst_add /*Define the current 

sink address*/ 

if(dst_add == sink_add && pkt! =Null) -

> goto flow_match; /*If the sink 

address is authenticated and packet is 

not empty, then check for flow 

matching*/ 

fi; 

flow_match: in?pkt 

read(match_fields); /*Check the match 

fields for flow*/ 

read(instructions_set); /*Check for 

flow-ID*/ 

read(stat); /*Check for any packet 

mismatch*/ 

if 
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:: (flow_id = true) -> out!context_id 

/*If flow-ID matches any existing 

context, send the context-ID*/ 

:: (sensor_id = false) -

>write(sensor_id) /*If no sensor-ID is 

assigned, assign the sensor-ID*/ 

:: out!sensor_id; /*Send the sensor-

ID*/ 

:: goto context_flowtable; /*Go to the 

context flow table to update the table 

fields*/ 

:: goto publish; /*Go to publish if 

context-ID is ready to be published*/ 

::else goto sink_n; /*If flow does not 

match any context-ID in the current 

sink, go to other sinks*/ 

fi; 

sink_n: in?flow_id 

if 

:: (flow_id = true) -> out!context_id 

/*If flow-ID matches any existing 

context, send the context-ID*/ 

:: goto context_flowtable; /*Go to the 

context flow table to update the table 

fields*/ 

:: goto publish; /*Go to publish if 

context-ID ready to be published*/  

::else write(context_id); /*If no 

context-ID found for the flow, define a 

new context-ID*/ 

fi; 

context_flowtable: 

in?flow_id,sensor_id,context_id 

write(stat); /*Update the statistics 

with IDs*/ 

publish: in?context_id  

if 

:: (context_id = false) -> 

write(context_id); /*If context-ID is 

not yet published, publish the ID*/ 

fi; 

end; /*End the process*/ 

} 

init { /*Initialize the processes*/ 

 chan send = [2] of {int, bool}; 

/*Send channel would carry two 

different type of messages*/ 

 chan rcv = [2] of {int, bool}; 

/*Receive channel would carry two 

different type of messages*/ 

 

 run node(send,rcv); /*run the node 

process*/ 

 run sink(send,rcv); /*run the sink 

process*/ 

} 

6. Simulation Results 

Table 1: Simulation parameters 

Parameter Value 

Number of Networks 3 

Number of Nodes 60 

Number of Groups 3* 

Nodes per Group 9* 

Packet Flow Rate (per second) 8* 

Packet Size 512* bytes 

Routing Static 

Propagation Path Loss Model Fixed RSS Loss Model 

Delay Model Constant Speed Propagation 

Delay Model 

Error Model ns-3 YANS Error Model 

Sensors Mobility Model Random Walk 2d Mobility 

Model 

Receiver Noise Factor 10.25 dB 

Received Signal Strength 

(RSS) 

-95 dBm 

Total Number of Transmitted 

Packets 

2000 

Physical Model IEEE 802.11b 

Data Rate 1 Mbps 

 = varies in different simulations 

 

A network has been designed and simulated in the 

ns-3 simulator. Simulation parameters are tabulated in 

table 1. The focus of this paper was not to verify the 

physical layer behaviors, hence the sensor node 

reachability, interferences, received signal strength (RSS), 

energy consumption, and signal-to-noise ratio impacts 

have not been explored. These are beyond the scope of this 

work. The focus largely lies on the behavior of the system 

with regard to real-time context sharing. Therefore, the 

simulation has been carried on constant values of RSS, 

receiver noise factor, etc. 

6.1 Simulated Network 

Fig. 6 shows the network that was designed and simulated 

in the ns-3. Although our proposal makes use of multiple 

distributed and synchronized OpenFlow controllers 

(logical-sink), but ns-3 as of now does not allow external 

controller for OpenFlow [20]. Hence, we stick to the 
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current ns-3 implementation. As for H-DHT for sensor 

nodes and context-IDs management, this is also left for the 

upcoming paper as no working model of H-DHT is 

available right now in ns-3 [21]. In the designed network, 

there are three wireless sensor networks as seen in fig. 6. 

Sensor nodes in network 1 are fixed while sensor nodes in 

both network 2 and 3 are mobile (randomly moving). Each 

network has one gateway and gateways are connected by 

the OpenFlow controller. Each network has 20 sensor 

nodes. Other parameter values can be found in table no. 1.  

 

 

Fig. 6. Simulated Network 

6.2 Performance Measurement 

In this section, performance measurement for various 

scenarios has been presented. For the evaluation, 

reliability, scalability and reachability metrics have been 

chosen and the proposed approach has been highlighted 

with respect to these metrics. The importance of reliability 

and scalability has been suggested by the earlier 

researches. As for reachability, we believe that packet 

reachability would be an important performance metrics in 

the real-time context sharing e.g. in urban event detections. 

6.2.1 Effect of Varying Flow-Rate 

Firstly, the performance has been measured for different 

flow rate i.e. number of packet per second (p/s). The 

number of node per group and the group size has been kept 

unchanged for this particular evaluation. There are total 3 

groups for this scenario and each group has 9 nodes. The 

packet size for this scenario has been kept to be 512 bytes. 

Mean Delay Performance  

Fig. 7 shows mean delay performance for the simulated 

network of each group for different flow of packet. Packet 

flow varies between 6 and 11 p/s. X-axis shows the packet 

flow rate and y-axis shows the mean delay of each group. 

It can be seen from the figure that at the start, i.e. for 

packet flow of 6 p/s, each group more or less demonstrates 

similar results with respect to delay. All groups 

qualitatively demonstrate similar performance for packet 

flow rate up to 10 p/s.  While the packet flow is increased 

to 11 p/s, all groups show increase in the delay for 11 p/s. 

It can be seen that delay is increased with the increase in 

the packet flow rate, however, it does not incur high 

increase up to 10 p/s. Group 1, 2 and 3 mean delay 

increase by 0.3172s, 0.2629s and 0.2166s respectively for 

11 p/s i.e. 83 % increase in the packet flow rate. 

 

Fig. 7. Mean Delay Performance 

Mean Jitter Performance  

Mean jitter performance for each group for different flow 

of packet can be seen in fig. 8. Mean jitter performance 

demonstrates similar pattern like mean delay. At the 

beginning, all groups show similar jitter performance. Like 

mean delay of the packet, jitter does not encounter a 

performance degradation when packet flow is increased. 

Jitter for 11 p/s increases by only 0.0347s, 0.0327s and 

0.0313s for group 1, 2 and 3 respectively compared to 6 

p/s. The increase is very minimal. Therefore, from fig. 7 & 

8 it can be concluded that packet delivery is reliable with 

minimum delay and jitter.  

Packet delivery with minimum delay and jitter is very 

significant issue in crowdsourcing paradigm and for any 
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urban event detection. When crowd generate data, it 

should be delivered swiftly. Service requesters would want 

to access data in the shortest possible time. Moreover, 

reliability of packet delivery in real-time context sharing 

largely depends on how quickly service is delivered. 

Another important characteristic scalability can be seen 

from fig. 10 &11. As for the packet flow rate, packet size 

plays an important role defining flow rate. Fig. 16 shows 

the impact of changing packet size. 

 

Fig. 8. Mean jitter performance 

 

Fig. 9. Packet Loss Ratio 

Packet Loss Ratio 

Reachability of packet principally depends on number of 

packet loss. Fig. 9 shows packet loss ratio of each group. 

Although each group demonstrates similar pattern in 

packet loss for packet flow rate up to 10 p/s. Group 1 

shows a rise in the packet loss for flow rate 11 p/s. Packet 

loss ratio increases with the increase in the flow rate. For 

the packet size of 512 bytes, packet loss ratio does not 

incur a high fluctuation for flow rate up to 10 p/s.  This 

assures high reachability of packet. Group 1, 2 and 3 

incurs packet loss ratio increase by 0.0635, 0.0285 and 

0.0205 respectively compared to flow rate of 6 p/s. In 

terms of percentage, the increase is 55 %, 25% and 18% 

compared to flow rate of 6 p/s. This increase of packet loss 

is for 83 % increase in the flow rate. From this, it is clear 

that our proposal assures rich packet reachability. In the 

real-time urban event detection, this high reachability of 

packet would be very beneficial. This will ensure sharing 

rich amount of urban event detections. 

6.2.2 Effect of Increasing Nodes per Group and 

Group Size 

In the previous section, reliability and reachability have 

been discussed for variant flow of the packets. Although in 

the urban event detection packet flow rate would always be 

fluctuating, however, at the same time the participants in 

data acquisition i.e. sensor nodes in this case would also 

vary. This implies that different context would be 

generated which leads to different clustering of contexts 

i.e. group of data. Scalability becomes a significant 

consideration with respect to increasing number of nodes 

and groups for real-time context management. Here, effect 

of increasing nodes per group and group size is discussed.  

Mean Delay Performance 

Fig. 10 shows the mean delay performance for variant 

number of nodes per group. As seen earlier that 

performance degrades from 11 p/s, and packet flow rate 

has been kept constant at 10 p/s for this evaluation. As 

expected, delay increases with the increase in the node per 

group. If the node per group is doubled then mean delay 

increases by 17 %, 18 % and 15 % respectively for group 

1, 2 and 3. And, if the node per group is tripled i.e. 

increase by 200% then group 1, 2 and 3 incurs mean delay 

increase by 25 %, 20 % and 22 % respectively. This 

clearly shows that the proposed concept scales well for 

increased number of node per group. Figure 11 shows 

impact of increasing the number of groups. The figure 

illustrates only results for group 1 and node per group has 

been kept steady (9 node per group). It has been evaluated 

for different packet flow rate. As seen from figure 11, 

mean delay increases nominally with increase in size of the 

groups. For instance, for the packet flow rate of 5 p/s, 

group size of 6 incurs 6 % delay increase compared to 

group size of 3. For the packet flow rate of 8 p/s, the delay 

increased to 19 %. It is seen that only 13% delay fluctuated 

when flow rate is increased by 60 % and group size is 

doubled. However, it is observed that for group size of 6 

with flow rate 9 p/s, mean delay decreased. This is due to 

the fact that packet loss for this scenario is higher due to 

probable wireless interferences and random nodes‟ 

movement. It can be concluded that the proposed concept 
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provides scalability for delay in terms of increased node 

per group and increased group size. 

Mean Jitter Performance  

Mean jitter performance for scalability is shown in next 

two figures. Fig. 12 shows the effect of changing node per 

group on jitter. As was the case with the mean delay, jitter 

also understandably increases with raise in the node per 

group. If node per group is doubled (100 % increase) then 

jitter increases by 33 %, 35 % and 33% for group 1, 2 and 

3 respectively compared to 6 nodes per group. And if the 

node per group is increased by 200% then group 1, 2 and 3 

encounter jitter increase by 41 %, 40 % and 35 % 

respectively compared to 6 nodes per group. This clearly 

shows the proposed concept scales well in terms of jitter 

too. Figure 13 further shows mean jitter performance while 

keeping node per group constant (9 node per group), and 

varying the size of the group and flow rate. The figure 

evidently demonstrates that jitter fluctuates nominally for 

the aforementioned scenario. For the flow rate of 8 p/s, 

jitter demonstrates only 44 % fluctuation for 100 % 

increase in the group number. Due to packet loss it is 

observed that jitter decreases for flow rate of 9 p/s. This 

packet loss depends on the flow rate and packet size. 

Figure 16 clarifies effect of packet size variation. This low 

jitter fluctuation will particularly provide advantage in 

crowdsourcing paradigm, when there would be different 

number of clusters of context generated by crowd. 

Different clusters of context imply different types of urban 

events detection. Therefore, our proposal can cope in terms 

of reliability with reliable real-time context sharing for 

changeable number of nodes and clusters.  

Packet Loss Ratio 

Along with the reliable context delivery it is also 

imperative that context delivery ratio is high and scalable 

at the same time. Figure 14 shows the packet loss ratio 

performance for variant number of node per group. As 

seen from the figure 14, when node per group is increased 

by 100% then group 1, 2 and 3 respectively have packet 

loss increased by 22 %, 22 % and 41 %. And, if the node 

per group is increased by 200% i.e. to the full capacity of 

the designed network, packet loss ratio increases by 71 %, 

48 % and 102 % for group 1, 2 and 3 respectively. Group 

1 and 3 exhibited higher packet loss compared to group 2. 

Also seen from the figure, for packet flow rate of 9 p/s, 

group 1 has a leap in the packet loss for group size of 5 

and 6. This higher ratio is due to random movement of the 

nodes and wireless interferences. Compensating these 

effects is beyond the scope of this work. It can further be 

seen from figure 15 that group size of 6 exhibits packet 

loss ratio degradation only by 26 % and 33 % compared to 

group size of 3 (100 % increase in the group size) for flow 

rate of 5 p/s and 8 p/s respectively. This confirms that the 

proposed idea is scalable for packet reachability as well. 

 

Fig. 10. Mean delay performance for different number of nodes 

per group 

 

Fig. 11. Mean delay for variant size of groups 

 

Fig. 12. Mean jitter for alternate number of node per group 
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Fig. 13. Mean jitter for variant size of groups 

 

Fig. 14. Packet loss ratio for different number of node per group 

 

Fig. 15. Packet loss ratio for variant number of groups 

 

Fig. 16. Packet size impact on packet flow rate 

6.2.3 Different Packet Size 

The above results have been evaluated for a particular 

packet size of 512 bytes. It is clear that for this packet size, 

performance metrics shows better results if packet flow 

rate is below or equal to 10 p/s. Now fig. 16 shows how 

packet size affects the packet flow rate. It can be seen that 

if the packet size is halved then packet flow rate increases 

by 338 %. However, mean delay also increases by 642 %. 

As for mean jitter and packet loss ratio, these metrics 

decreased by 98 % and 15 % respectively. From this it can 

be concluded that in the crowdsourcing paradigm or in the 

urban event detection, if the generated data i.e. context is 

small then packet flow rate will be high. However, this 

might result in high delay but jitter and packet loss ratio 

would be lower. Therefore, with high packet flow rate, the 

idea can scale well for jitter and packet loss ratio but delay 

performance might degrade.  

7. Use Cases of the Concept 

The proposed approach would be useful for 

heterogeneous interoperability of physical objects, thereby 

heterogeneous contexts. In our opinion, this logical-

clustering will be advantageous to many sensor network 

applications; for example, medical science, agriculture 

system, security surveillance, disaster management etc. 

Two probable scenarios are portrayed below. 

7.1 Animal Tracking 

The use of WSN for animal tracking is gaining tremendous 

attention recently [22]. The animal tracking can be further 

divided into two: wildlife and farming monitoring. Our 

proposed approach can be applied in both of them. One 
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probable application, for example, farmers can optimize 

their business by means of WSN for feeding and growing 

conditions of the animals [22]. This will provide benefit 

for monitoring meat, milk production and to observe how 

good animal racing results. Hence, animal tracking would 

be easier by applying our proposed logical-clustering 

approach. This implies that animals that produce similar 

desired context would be clustered together. In a large 

farm, it is often difficult to manage the animals efficiently; 

it would require incredible manpower to monitor all the 

animals. Therefore, animals‟ location and conditions can 

be monitored by clustering. The farmers can find the 

groups of animal ready for meat and milk production 

through the context-ID. This will reduce human labor to 

find out the animals for the above mentioned purposes. 

7.2 Medical Healthcare 

The approach can be applied in the medical healthcare too. 

One possible application scenario can be that medical 

researchers can conduct a research in real-time on a 

recently spread disease from remote places and provide 

prompt solutions simultaneously. Normally in medical 

healthcare, patients are outfitted with wireless wearable 

sensors [23]. If there is any outbreak of a disease, then 

people can be outfitted with wearable sensors. Medical 

team can observe the severity of the disease by means of 

clustering different symptoms and different level of 

patients. For example, patients might not have same level 

of severity and they would need different level of 

attentions. Hence, medical assistance can be provided 

faster and efficiently by clustering patients based on the 

different context of severity. Patients that show similar 

symptoms would be clustered together and would have 

same context-ID. This will eliminate burden of individual 

attention for a patient. Thus medical services can be 

maximized. Moreover, if the situation gets worse and out 

of control then medical personnel can seek help from other 

specialists in the respective field from remote places. In the 

traditional way, this can be done by gathering data from 

people and then forwarding to others. However with our 

proposed logical-clustering, medical researchers from 

distant places can instantly access the data by subscribing 

to the context-ID. 

 

However, our proposal is not limited to these scenarios 

rather this shows two of the many possible solutions our 

proposal can offer. 

8. Conclusions 

Real-time context sharing would be an important 

challenge in state-of-the-art ubiquitous computing. The 

enormous data that are expected to be generated by the 

billions of sensors would require efficient management. 

These huge heterogeneous data would need to be 

processed reliably, and reachability should also be assured 

to take its full advantage. Location agnostic clustering of 

flow-sensors i.e. logical clustering is one of the possible 

solutions for efficient context management. In this paper, 

performance of logical-clustering in terms of delay, jitter 

and packet loss ratio has been examined and backed up by 

ns-3 simulations. These parameters have been evaluated 

for different scenarios such as: variant packet flow rate, 

different number of node per group and different group 

size.  

The results suggest that the proposal is reliable and 

scalable. For a 200 % increase in the node per cluster, 

delay increases by around 20 %. For the same increased 

node per cluster, latency demonstrates around 40 % 

increase. Delay and latency exhibit 13 % and 44 % 

fluctuation respectively when the cluster size is doubled. 

This clearly illustrates efficiency of reliability and 

scalability of the proposed concept. Furthermore, the 

proposed approach shows rich packet reachability. Only 

18 % increase in the packet loss for a flow rate increase of 

83 %, packet loss increases by merely 44 % for 200 % 

increase in the node per cluster. Moreover, packet loss 

demonstrates no more than 33 % increase for 100 % 

increase in the cluster size for high flow rate.  

The proposed approach in particular can perform 

more efficiently for smaller packet size as suggested by the 

result. Flow rate increased by 338 % when packet size is 

halved. Latency and packet loss ratio further decreased by 

98 % and 15 % respectively. Two tangible use cases have 

also been portrayed. Therefore, our proposed idea will be 

of great interest for the future Networked Society where 

instantaneous and reliable accesses to context are two of 

the big challenges. Our approach can adopt quickly and 

share real-time data reliably to the service requestors. The 

vision of detecting any urban event via crowdsourcing 

paradigm will be made easier through the adoption of our 

proposal. 

 However, the approach can perform better than the results 

obtained in this paper through real implementation of 

logical-sink and H-DHTs in ns-3. The logical-sink would 

outperform the current packet reachability; reliability and 

response time would also be minimal. Future work 

includes designing the system with logical-sink and 

inclusion of H-DHTs. An investigation into routing 

protocol for the logical-clustering would also be explored.  
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