

On Performance of Logical-Clustering of Flow-Sensors

Rahim Rahmani, Hasibur Rahman and Theo Kanter

Department of Computer and Systems Sciences, Stockholm University

Kista, Stockholm SE-164 40, Sweden

Abstract
In state-of-the-art Pervasive Computing, it is envisioned that

unlimited access to information will be facilitated for anyone and

anything. Wireless sensor networks will play a pivotal role in the

stated vision. This reflects the phenomena where any situation

can be sensed and analyzed anywhere. It makes heterogeneous

context ubiquitous. Clustering context is one of the techniques to

manage ubiquitous context information efficiently to maximize

its potential. Logical-clustering is useful to share real-time

context where sensors are physically distributed but logically

clustered. This paper investigates the network performance of

logical-clustering based on ns-3 simulations. In particular

reliability, scalability, and reachability in terms of delay, jitter,

and packet loss for the logically clustered network have been

investigated. The performance study shows that jitter

demonstrates 40 % and 44 % fluctuation for 200 % increase in

the node per cluster and 100 % increase in the cluster size

respectively. Packet loss exhibits only 18 % increase for 83 %

increase in the packet flow-rate.

Keywords: Pervasive Computing, Wireless sensor networks,

ubiquitous, context, distributed, logical-clustering, ns-3.

1. Introduction

The Wireless Sensor Networks (WSNs) is an integral

part of today‟s pervasive computing and expected to play a

pivotal role in the future Networked Society. The primary

use of sensors is to collect data from physical objects. It is

foreseen that any situation can be sensed and analyzed

anywhere which leads to more and more sensors

deployment in today‟s Internet infrastructure and sensors

are made available to the services through the distributed

acquisition and dissemination of sensor data assembled

from physical objects. Services can access this

heterogeneous context information anywhere. The use of

sensors is increasing rapidly. Billions of sensors will be

used in the foreseeable future [2]. This will play a vital role

in making context information accessible for anyone and

anything in the future Networked Society [1]. These

enormous numbers of sensors deployment in the Internet of

Things (IoT) will allow gathering information from people,

places, and objects i.e. from distributed sensor networks.

Spontaneous human participation which is known as

crowdsourcing is also envisioned [6]. This implies that

rapid real-time data will be generated by crowd about the

circumstances surround [7]. These will produce

heterogeneous context information. Moreover, a single

sensor might produce different data. For example, sensors

carried by human on their smart devices might produce

different data in different time. This necessitates proper

management of heterogeneous contexts obtained from

sensors. Data management should be reliable, and the high

volume of data should be scaled appropriately in order to

use efficiently and meaningfully. Clustering the context i.e.

data is one of the proficient applications. Furthermore, it

will be advantageous to cluster sensor data based on

context similarity. In one of our previous papers, logical-

clustering of flow-sensors has been presented [2]. Logical-

clustering implies that sensors might reside remotely

physically but clustered logically based on context

similarity. Previous most work on sensors clustering

concentrated on physical location nearness for energy and

routing management, and to increase system scalability and

robustness. Context in sensors clustering has been

discussed too, but in all cases definition of context is

specific. Moreover, their solution is limited to neighboring

sensors. However, the concept of logical-clustering will

allow resources (data, services) to be shared among

different physically distributed sensors in distributed

sensor networks. Sensors can share resources through

distributed collaboration which was lacking in the existing

management of context information. Once the clustering is

done then each cluster is identified through a context-ID

which is defined based on context similarity and published

on the internet. Any interested sensor, may be located

remotely, can subscribe to the context-ID.

OpenFlow based sensors are known as flow-sensors

[3]. It has been proven that flow-sensors perform better

than typical sensors [3]. However, it will be infeasible for a

single OpenFlow controller to manage the increased

number of sensors. In order to manage huge amount of

sensors, more than one OpenFlow controller is desirable.

HyperFlow addresses the issue and offers multiple

controllers which are physically distributed but logically

centralized [2]. The controllers are synchronized and can

be resilient for network slicing. An important factor that

was missing in the existing OpenFlow specification is

interconnection between different OpenFlow networks,

HyperFlow solves this problem by using the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 1

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

publish/subscribe mechanism. In HyperFlow, each

controller can make decision locally which minimizes the

response time. Controllers exchange messages to notify

about any network-wide changes. These logically

synchronized controllers are called logical-sink [2].

Network performance is one of the most researched issues

in the field of wireless sensor networks. Network

management becomes an important consideration as the

number of sensor nodes increases. In future, network will

encounter thousand times traffic volumes compared to

today‟s traffic volumes. Latency, reliability, scalability,

and data reachability are few of the challenges that future

network would encounter [1]. Therefore, it is essential to

design network carefully so that network does not incur

performance degradation. In our previous paper, the

feasibility and technical presentation of logical-clustering

have been discussed [2]. In addition, computational

efficiency of logical-clustering has also been shown in [2].

In this paper, the focus will be on investigating few of the

significant network performance metrics of logical-

clustering. The network has been designed in ns-3

(network simulator). A performance study has been made

in terms of delay, jitter and packet loss to verify the

reliability, scalability and reachability of the designed

network. Hence, the main focus of this paper will be to:

 Design a WSN of logical-clustering of flow-

sensors in ns-3

 Verify the reliability of the designed network in

terms of packet delay and jitter

 Verify packet reachability

 Examine scalability of the network for increased

number of nodes and groups

 Provide use cases of logical-clustering

The remainder of the paper is organized as follows: section

2 presents the related work. Section 3 discusses the

motivation behind the work. Section 4 outlines the system

model considered for the proposal. Next, section 5

describes the model checking of the proposal. Simulation

results are analyzed in section 6 which is followed by

section 7 that illustrates few of the possible use cases of the

proposed concept. Finally section 8 concludes the work

and a guideline for future work is presented.

2. Related Work

There have been many researches about clustering in

the WSNs. Most of the previous researches have been on

preserving energy and prolonging the battery for the re-

source-constrained sensor nodes. For example, LEACH [4]

is the first clustering technique for achieving network

longevity and energy dissemination reduction.

Padmanabhan and Kamalakkannan in [5] further modified

LEACH to prolong the network stability. Kumar et al. in

[27] also examined different LEACH techniques in a view

to prolong network lifespan. Literatures in [8 – 10, 24]

discuss clustering of sensors but for the sake of data-

accumulation. Clustering of sensors helps in reducing

energy consumption, stabilizing network, efficient routing

etc. S. Bandyopadhyay et al. in [8] analyzed hierarchical

clustering and discussed that energy consumption is

decreased if clustering level of hierarchy is increased.

Abbasi, Younis and Lotfinezhad, Liang in [9-10] mention

that inter-cluster communication is only limited to cluster-

heads which results in communication bandwidth saving

and in reducing message exchanges between sensors. Hyun

and Hyuk in [28] discussed that efficient cluster-head

selection prolongs the network life span and saves energy.

D. Ma et al. in [25] proposed a clustering protocol with

dual cluster-head concept to further improve network life

time and more data accumulation to the base station.

Lombriser et al. in [11] presented distributed

processing of context for dynamic WSNs. Their proposed

E-SENSE computes context information from sensor net-

works. Sensors are clustered based on context-activity but

limited only to neighboring sensors. It does not solve

large-scale sensor network issue. Franco in [6] envisioned

the idea of sensing, actuating and computing of anything

anywhere for the future pervasive computing. He further

outlined that spontaneous human participation i.e.

crowdsourcing is vital for distributed collaboration to

enrich urban networks. G. Barbier et al. in [7] presented

maximizing the data obtained through crowdsourcing.

They portrayed that crowdsourcing is faster and beneficial.

With crowdsourcing, any event can be detected and

analyzed. Event in the urban areas are fast changing.

Moreover, some events are recursive and some are non-

recursive [12]. Scalability, reachability and reliability of

the obtained data from urban events through

crowdsourcing become a challenge. Guo and Han in [13]

discussed the reliability issue in data collection for WSN.

They discussed the essence of reliable data collection for

mobile nodes. The importance of latency in reliability for

mobile WSNs has been discussed by Y. Rao et al. in [26].

They proposed a clustering based routing protocol for

reliable data packet delivery in real-time. Ericsson in [1]

further outlined the significance of reliability, latency,

delay, maximum service (data) delivery i.e. reachability etc.

for the future Networked Society.

Luca and Gian in [14] introduced logical-neighborhood of

sensor nodes which replaced physical neighborhood

concept. This idea more or less resembles our proposal.

However, their solution is a programming language

abstraction where nodes are said to be in the logical

neighborhood if certain attributes are satisfied. A

programmer defines the nodes‟ attributes and the data

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 2

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

segment that can be part of a neighborhood. Therefore, it

does not explicitly solve the real-time context sharing issue

which is the prime objective of our proposal. In this paper,

our focus is to examine the network performance of the

logical-clustering of flow-sensors.

3. Motivation

Traditionally, sensors are used to obtain data from

physical objects. Sensors also collaborate to achieve

common goals. With the technological advancement,

sensing devices have become more intelligent and

affordable. Hence, the applicability of sensors is always

rising, and it is believed that billions of sensors will be

deployed in the future. Moreover, sensors are fundamental

in the Internet of Things (IoT) deployment for any kind of

urban event detection. These are used for different

purposes and to obtain heterogeneous data from distributed

sensor networks. Sensors deployment can be both

deterministic (fixed) and random (mobile). Therefore, real-

time context sharing will be a big challenge to existing and

later distributed WSNs applications. Earlier solutions do

not provide proper management of context information;

hence current context information management does not

support real-time sharing of context and do not scale well

for heterogeneous interoperability. This necessitates proper

management of the obtained data i.e. context information

from sensors in order to use in an efficient and useful way.

Most researches thus far concentrated on decreasing

energy consumption so that sensors longevity is ensured.

Several researchers have worked on clustering sensor

nodes too, but again largely for sensor nodes stability.

There have been some proposals for sensors data-

management, but their proposals restrict to a certain area

for adjacent sensors. It is also important that context

generated by the sensors should be used meaningfully to

take its full advantages. Real-time context sharing will be

beneficial when clustered based on context similarity. The

idea of clustering the sensors logically based on context

similarity would allow resources (data, services) to be

shared. Furthermore, the idea will provide topological

sensor networks with scalability, reliability and high

reachability in terms of delay, latency and packet loss.

4. System Model

Some of the definitions that have been used for

modeling the system are presented below.

Sensor-ID: Sensors should have unique IDs. A sensor-ID

can be obtained in different ways, e.g. the ID can be

chosen randomly or can be obtained by hashing the sensor

IP or MAC address [15].

Flow-ID: Flow-ID is the logical identification of the flow.

According to [16], a flow could be defined based on

capabilities of a particular implementation. The flow-ID is

the flow packets from a particular sensor to the sink. As

long as the sensor is interested in the same flow packets,

the flow-ID remains same. But if sensor changes the flow

of packets, the flow-ID is also changed. OpenFlow flow-

tables consist of match-fields (i.e. packet header), action

sets and statistics. The packet header defines the flow and

action defines the flow-ID.

Context-ID: The context-ID is the identifier of a cluster.

This can be compared to the idea that of a hashtag. As

hashtag groups the similar messages, context-ID has the

same objective. Context-ID is a mean of clustering similar

data. The context-ID is published to the internet through

the logical-sink and any interested entity i.e. sensor can

subscribe to the context-ID.

Context flow-table: OpenFlow specification implies that

match fields can be defined according to the research

requirement [16]. A new flow-table for flow-sensor has

been defined which includes flow-sensor‟s sensor-ID,

flow-ID and context-ID. This flow-table is named context

flow-table.

4.1 Network

A two-tier H-DHT system model has been considered.

Controlling the ever-increasing number of sensors would

be infeasible for single logically centralized controller

(current OpenFlow standard), and in order to scale well for

enormous number of sensors, the idea of HyperFlow (HF)

has been exploited. This implies that multiple numbers of

controllers (sinks) in the network has been used. The sinks

are physically distributed but logically synchronized, hence

this idea has been defined as logical-sink [2]. Another

advantage of utilizing logical-sink is that each sink can do

processing locally. And then other sinks get notified of the

local changes and thereby synchronized. The network is

divided into two-tier hierarchy (fig. 1). In the top-level

overlay, CHORD concept is applied. And in the bottom-

level hierarchy, the flow-sensors are clustered in single-

connection manner. Flow-sensors communicate with the

logical-sink. Sink that is part of a cluster virtually acts as a

flow-sensor with very high-computational capabilities.

This eliminates the burden of choosing or electing a

cluster-head. This virtual flow-sensor can be thought as the

cluster-head (one for each cluster). These virtual flow-

sensors i.e. cluster-heads are organized in the top-tier

overlay as CHORD. In fig. 1, there are three clusters that

communicate with the logical-sink. And, for each cluster

there is a virtual flow-sensor. A flow-sensor does not need

to concern about the physical sink the communication

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 3

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

takes place as all the physical sinks are synchronized and

aware of any change inside the network.

Fig. 1. The two-tier Network

Fig. 2. Communication

4.2 Communication

The communication is shown in fig. 2 and is of three kinds:

logicalsink-to-sensor, sensor-to-logicalsink and sink-to-

sink. Logicalsink-to-sensor communication takes place in

the forward path. This communication is straight forward

in a sense that sink has better communication capabilities

and can communicate with flow-sensors directly. For any

exception, the communication can still take place through

distributed collaboration. In the reverse path, sensors

communicate with logical-sink via overlay hop [15]. Those

sensors that are not part of a particular cluster collaborate

with other sensors so that sensors can reach nearby logical-

sink. Sink-to-sink (inside a HF network) communication

can further be divided into two: physical and virtual sink-

to-sink. The physical communication among sinks follows

the same procedure as in HF. And, the virtual

communication implies the communication between virtual

flow-sensors and a CHORD top-level overlay is formed by

the virtual flow-sensors. Hence, this communication

follows the idea of CHORD.

4.3 Implementation

Both fixed and mobile flow-sensors have been assumed.

Flow-sensors traffic are controlled and managed by

logical-sink. The flow-sensor usually has flow-tables in the

hardware layer [3]. Each flow-table contains flow-entries

and an action for each flow-entry which decides flow

routing. Each flow-entry has match-fields that define the

flow, instructions correspond the way packets should be

routed, and statistics takes care of packet updating. Packets

from flow-sensors are matched in each flow-entry,

instruction set defines the flow-ID if already not available,

and statistics updates the packets. Statistics checks if the

current packet matches the old packets, otherwise a new

flow-ID is defined for any mismatch. Flow packets are

then forwarded to the nearby physical sink in the reverse

path. The flow packets include the flow-ID. The logical-

sink maps flow-ID and returns the corresponding context-

ID in the forward path, a sensor-ID is also returned to the

flow-sensor if already not assigned. The sensor-ID is

unique and unchanged for a flow-sensor. In case the

context-ID is not available with the contacted physical sink,

this sink contacts other physical sinks and the

corresponding context-ID is returned. Search will follow

the CHORD look-up mechanism. Viewed this way, the

context-ID search will also follow the similar procedure.

The logical-sink modifies the context flow-table with the

context-ID along with sensor-ID and flow-ID. Logical-sink

also updates the group table with the context-ID. By the

mean time, other sinks get notified about all the changes in

each sink and get updated thereby. In case the received

flow-ID does not match any existing context-ID, then

logical-sink defines a new context-ID. This context-ID is

then published to other HF networks. When any sensor is

interested in the context-ID in other network, then sensors

subscribe to the context-ID. The algorithm for above is as

follows:

 Flow-sensor match-fields define the flow and the

action defines the flow-ID

 Flow-ID is sent to the nearby physical sink S1

 S1 resolves flow-ID and returns corresponding

context-ID

 S1 returns the sensor-ID if already not assigned

 S1 forwards the request from flow-sensor to other

physical sinks (S2, S3… Sn) if no match found

for the request in S1

 If no context-ID found in the logical-sinks then a

new context-ID is defined and published to other

networks

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 4

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 Logical-sink returns the context-ID to the

requested flow-sensor

 Regular and context flow-tables are updated by

the logical-sink

 Statistics check for new and old packet mismatch,

new flow-ID is defined in case of any mismatch

4.4 Example Scenario

Fig. 3 shows an example of MATLAB implementation.

There are 4 H-DHT HF net-works with 50 sensors. Some

are fixed (16) and some are mobile (34). The sensors have

been clustered based on context-similarity. Different

cluster is represented by different color. As seen that

sensors might be resided in different networks but they are

logically clustered and belong to same context-ID. Each

HF network has been facilitated by four sinks („+‟ signs).

Their positions are fixed and act as single logical-sink for

single HF network. It is assumed that sinks are placed

carefully so that all the flow-sensors are covered. This

explains how logical clustering of sensors can be achieved.

Fig. 3. An example scenario

Fig. 4. Sensors joining

4.5 Sensors Joining

Fig. 4 shows 10 sensors (depicted by 1 to 10) joining. It

can be seen that sensors (1, 9) have joined an existing

cluster; while sensors (2, 4 and 8) and rest of the sensors

have formed two new clusters respectively. These can be

distinguished by different colors. When new sensors join

the network, they send their flow-IDs to the nearby sinks.

Context-IDs are shared by all the logical-sinks, and all the

logical-sinks have the knowledge of existing context-IDs.

Therefore, when sensors send their flow-IDs, then logical-

sink checks the existing context-IDs. If match found, then

new sensors are said to have subscribed to the existing

context-ID. Otherwise, logical-sink defines new context-ID

based on the received flow-IDs and context similarity. And,

the sensors form new clusters.

Fig. 5. Flow chart

5. Model Checking of the Concept

The combination of PROMELA and SPIN has been used

for simulation and verification of system model in [17-19].

It provides versatility and is very useful for model

checking. The combination has been used extensively for

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 5

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

modeling and verifying communication protocols [3]. The

proposed model of this paper has been examined using the

PROMELA and SPIN combination. First, fig. 5 shows the

flow chart of the proposed model. The explanation of the

flow chart has been described already (see 4.3).

5.1 Context-ID Match Algorithm

The following algorithm defines the mechanism for

communication between sensor nodes and sinks. The first

process (proctype node) defines sensor nodes flow send

and receive method, and the second process (proctype

sink) defines the mechanism for logical sink.

/*Algorithm for context-ID definition

or matching*/

bool flow_id, sensor_id, context_id;

proctype node(chan in, out) {

#define node_add /*define address of

the sensor node*/

int pkt; /*packet*/

bool chk;

xs src_node; /*send channel of source

node*/

xr sink_add; /*receive channel of

sink*/

in?input_port,dst_add; /*Channel sends

input port number and destination

address*/

if

:: (src_node == node_add && pkt! =Null)

-> out!pkt; goto pkt_match; /*if

address is authenticated and packet is

not empty, send packet to check for

packet matching*/

fi;

pkt_match: in?pkt

if

:: (chk = true) -> goto

pkt_send2flowtable; /*if packet is for

matching, send to flow table*/

:: (chk = false) -> goto pkt_drop;

/*check if packet is to be dropped*/

fi;

pkt_drop: in?pkt

if

:: (chk = true) -> skip; /*Packet is

dropped*/

:: (chk = false) -> pkt_send2sink;

/*Packet is forwarded to the nearby

physical sink*/

fi;

pkt_send2flowtable: in?pkt

if

:: (input_port == 1) ->

write(match_fields); /*If Packet is not

empty, update the match fields*/

:: (input_port == 2)

write(instructions_set); /*Update

instructions set and define the flow-

ID*/

:: (input_port == 3) write(stat);

/*Update Statistics- store packet

information*/

:: goto pkt_send2sink; /*Packet is

ready to be sent to the nearby sink*/

else -> skip; /*Drop Packet, if empty*/

fi;

pkt_send2sink: in?pkt

read(sink_add); /*Get the address of

the nearby sink*/

read(match_fields); /*Check the match

fields for flow*/

read(instructions_set); /*Check for

flow-ID*/

read(stat); /*Check for any packet

mismatch*/

if

:: (flow_id = true) -> goto

context_flowtable; /*If flow_id is

found then insert to the context flow

table*/

fi;

context_flowtable:

read(instructions_set);/*Update the

context flow table’s flow-ID field*/

end; /*End the process*/

}

proctype sink(chan in,out) {

#define dst_add /*Define the current

sink address*/

if(dst_add == sink_add && pkt! =Null) -

> goto flow_match; /*If the sink

address is authenticated and packet is

not empty, then check for flow

matching*/

fi;

flow_match: in?pkt

read(match_fields); /*Check the match

fields for flow*/

read(instructions_set); /*Check for

flow-ID*/

read(stat); /*Check for any packet

mismatch*/

if

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 6

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

:: (flow_id = true) -> out!context_id

/*If flow-ID matches any existing

context, send the context-ID*/

:: (sensor_id = false) -

>write(sensor_id) /*If no sensor-ID is

assigned, assign the sensor-ID*/

:: out!sensor_id; /*Send the sensor-

ID*/

:: goto context_flowtable; /*Go to the

context flow table to update the table

fields*/

:: goto publish; /*Go to publish if

context-ID is ready to be published*/

::else goto sink_n; /*If flow does not

match any context-ID in the current

sink, go to other sinks*/

fi;

sink_n: in?flow_id

if

:: (flow_id = true) -> out!context_id

/*If flow-ID matches any existing

context, send the context-ID*/

:: goto context_flowtable; /*Go to the

context flow table to update the table

fields*/

:: goto publish; /*Go to publish if

context-ID ready to be published*/

::else write(context_id); /*If no

context-ID found for the flow, define a

new context-ID*/

fi;

context_flowtable:

in?flow_id,sensor_id,context_id

write(stat); /*Update the statistics

with IDs*/

publish: in?context_id

if

:: (context_id = false) ->

write(context_id); /*If context-ID is

not yet published, publish the ID*/

fi;

end; /*End the process*/

}

init { /*Initialize the processes*/

 chan send = [2] of {int, bool};

/*Send channel would carry two

different type of messages*/

 chan rcv = [2] of {int, bool};

/*Receive channel would carry two

different type of messages*/

 run node(send,rcv); /*run the node

process*/

 run sink(send,rcv); /*run the sink

process*/

}

6. Simulation Results

Table 1: Simulation parameters

Parameter Value

Number of Networks 3

Number of Nodes 60

Number of Groups 3*

Nodes per Group 9*

Packet Flow Rate (per second) 8*

Packet Size 512* bytes

Routing Static

Propagation Path Loss Model Fixed RSS Loss Model

Delay Model Constant Speed Propagation

Delay Model

Error Model ns-3 YANS Error Model

Sensors Mobility Model Random Walk 2d Mobility

Model

Receiver Noise Factor 10.25 dB

Received Signal Strength

(RSS)

-95 dBm

Total Number of Transmitted

Packets

2000

Physical Model IEEE 802.11b

Data Rate 1 Mbps

 = varies in different simulations

A network has been designed and simulated in the

ns-3 simulator. Simulation parameters are tabulated in

table 1. The focus of this paper was not to verify the

physical layer behaviors, hence the sensor node

reachability, interferences, received signal strength (RSS),

energy consumption, and signal-to-noise ratio impacts

have not been explored. These are beyond the scope of this

work. The focus largely lies on the behavior of the system

with regard to real-time context sharing. Therefore, the

simulation has been carried on constant values of RSS,

receiver noise factor, etc.

6.1 Simulated Network

Fig. 6 shows the network that was designed and simulated

in the ns-3. Although our proposal makes use of multiple

distributed and synchronized OpenFlow controllers

(logical-sink), but ns-3 as of now does not allow external

controller for OpenFlow [20]. Hence, we stick to the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 7

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

current ns-3 implementation. As for H-DHT for sensor

nodes and context-IDs management, this is also left for the

upcoming paper as no working model of H-DHT is

available right now in ns-3 [21]. In the designed network,

there are three wireless sensor networks as seen in fig. 6.

Sensor nodes in network 1 are fixed while sensor nodes in

both network 2 and 3 are mobile (randomly moving). Each

network has one gateway and gateways are connected by

the OpenFlow controller. Each network has 20 sensor

nodes. Other parameter values can be found in table no. 1.

Fig. 6. Simulated Network

6.2 Performance Measurement

In this section, performance measurement for various

scenarios has been presented. For the evaluation,

reliability, scalability and reachability metrics have been

chosen and the proposed approach has been highlighted

with respect to these metrics. The importance of reliability

and scalability has been suggested by the earlier

researches. As for reachability, we believe that packet

reachability would be an important performance metrics in

the real-time context sharing e.g. in urban event detections.

6.2.1 Effect of Varying Flow-Rate

Firstly, the performance has been measured for different

flow rate i.e. number of packet per second (p/s). The

number of node per group and the group size has been kept

unchanged for this particular evaluation. There are total 3

groups for this scenario and each group has 9 nodes. The

packet size for this scenario has been kept to be 512 bytes.

Mean Delay Performance

Fig. 7 shows mean delay performance for the simulated

network of each group for different flow of packet. Packet

flow varies between 6 and 11 p/s. X-axis shows the packet

flow rate and y-axis shows the mean delay of each group.

It can be seen from the figure that at the start, i.e. for

packet flow of 6 p/s, each group more or less demonstrates

similar results with respect to delay. All groups

qualitatively demonstrate similar performance for packet

flow rate up to 10 p/s. While the packet flow is increased

to 11 p/s, all groups show increase in the delay for 11 p/s.

It can be seen that delay is increased with the increase in

the packet flow rate, however, it does not incur high

increase up to 10 p/s. Group 1, 2 and 3 mean delay

increase by 0.3172s, 0.2629s and 0.2166s respectively for

11 p/s i.e. 83 % increase in the packet flow rate.

Fig. 7. Mean Delay Performance

Mean Jitter Performance

Mean jitter performance for each group for different flow

of packet can be seen in fig. 8. Mean jitter performance

demonstrates similar pattern like mean delay. At the

beginning, all groups show similar jitter performance. Like

mean delay of the packet, jitter does not encounter a

performance degradation when packet flow is increased.

Jitter for 11 p/s increases by only 0.0347s, 0.0327s and

0.0313s for group 1, 2 and 3 respectively compared to 6

p/s. The increase is very minimal. Therefore, from fig. 7 &

8 it can be concluded that packet delivery is reliable with

minimum delay and jitter.

Packet delivery with minimum delay and jitter is very

significant issue in crowdsourcing paradigm and for any

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

urban event detection. When crowd generate data, it

should be delivered swiftly. Service requesters would want

to access data in the shortest possible time. Moreover,

reliability of packet delivery in real-time context sharing

largely depends on how quickly service is delivered.

Another important characteristic scalability can be seen

from fig. 10 &11. As for the packet flow rate, packet size

plays an important role defining flow rate. Fig. 16 shows

the impact of changing packet size.

Fig. 8. Mean jitter performance

Fig. 9. Packet Loss Ratio

Packet Loss Ratio

Reachability of packet principally depends on number of

packet loss. Fig. 9 shows packet loss ratio of each group.

Although each group demonstrates similar pattern in

packet loss for packet flow rate up to 10 p/s. Group 1

shows a rise in the packet loss for flow rate 11 p/s. Packet

loss ratio increases with the increase in the flow rate. For

the packet size of 512 bytes, packet loss ratio does not

incur a high fluctuation for flow rate up to 10 p/s. This

assures high reachability of packet. Group 1, 2 and 3

incurs packet loss ratio increase by 0.0635, 0.0285 and

0.0205 respectively compared to flow rate of 6 p/s. In

terms of percentage, the increase is 55 %, 25% and 18%

compared to flow rate of 6 p/s. This increase of packet loss

is for 83 % increase in the flow rate. From this, it is clear

that our proposal assures rich packet reachability. In the

real-time urban event detection, this high reachability of

packet would be very beneficial. This will ensure sharing

rich amount of urban event detections.

6.2.2 Effect of Increasing Nodes per Group and

Group Size

In the previous section, reliability and reachability have

been discussed for variant flow of the packets. Although in

the urban event detection packet flow rate would always be

fluctuating, however, at the same time the participants in

data acquisition i.e. sensor nodes in this case would also

vary. This implies that different context would be

generated which leads to different clustering of contexts

i.e. group of data. Scalability becomes a significant

consideration with respect to increasing number of nodes

and groups for real-time context management. Here, effect

of increasing nodes per group and group size is discussed.

Mean Delay Performance

Fig. 10 shows the mean delay performance for variant

number of nodes per group. As seen earlier that

performance degrades from 11 p/s, and packet flow rate

has been kept constant at 10 p/s for this evaluation. As

expected, delay increases with the increase in the node per

group. If the node per group is doubled then mean delay

increases by 17 %, 18 % and 15 % respectively for group

1, 2 and 3. And, if the node per group is tripled i.e.

increase by 200% then group 1, 2 and 3 incurs mean delay

increase by 25 %, 20 % and 22 % respectively. This

clearly shows that the proposed concept scales well for

increased number of node per group. Figure 11 shows

impact of increasing the number of groups. The figure

illustrates only results for group 1 and node per group has

been kept steady (9 node per group). It has been evaluated

for different packet flow rate. As seen from figure 11,

mean delay increases nominally with increase in size of the

groups. For instance, for the packet flow rate of 5 p/s,

group size of 6 incurs 6 % delay increase compared to

group size of 3. For the packet flow rate of 8 p/s, the delay

increased to 19 %. It is seen that only 13% delay fluctuated

when flow rate is increased by 60 % and group size is

doubled. However, it is observed that for group size of 6

with flow rate 9 p/s, mean delay decreased. This is due to

the fact that packet loss for this scenario is higher due to

probable wireless interferences and random nodes‟

movement. It can be concluded that the proposed concept

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

provides scalability for delay in terms of increased node

per group and increased group size.

Mean Jitter Performance

Mean jitter performance for scalability is shown in next

two figures. Fig. 12 shows the effect of changing node per

group on jitter. As was the case with the mean delay, jitter

also understandably increases with raise in the node per

group. If node per group is doubled (100 % increase) then

jitter increases by 33 %, 35 % and 33% for group 1, 2 and

3 respectively compared to 6 nodes per group. And if the

node per group is increased by 200% then group 1, 2 and 3

encounter jitter increase by 41 %, 40 % and 35 %

respectively compared to 6 nodes per group. This clearly

shows the proposed concept scales well in terms of jitter

too. Figure 13 further shows mean jitter performance while

keeping node per group constant (9 node per group), and

varying the size of the group and flow rate. The figure

evidently demonstrates that jitter fluctuates nominally for

the aforementioned scenario. For the flow rate of 8 p/s,

jitter demonstrates only 44 % fluctuation for 100 %

increase in the group number. Due to packet loss it is

observed that jitter decreases for flow rate of 9 p/s. This

packet loss depends on the flow rate and packet size.

Figure 16 clarifies effect of packet size variation. This low

jitter fluctuation will particularly provide advantage in

crowdsourcing paradigm, when there would be different

number of clusters of context generated by crowd.

Different clusters of context imply different types of urban

events detection. Therefore, our proposal can cope in terms

of reliability with reliable real-time context sharing for

changeable number of nodes and clusters.

Packet Loss Ratio

Along with the reliable context delivery it is also

imperative that context delivery ratio is high and scalable

at the same time. Figure 14 shows the packet loss ratio

performance for variant number of node per group. As

seen from the figure 14, when node per group is increased

by 100% then group 1, 2 and 3 respectively have packet

loss increased by 22 %, 22 % and 41 %. And, if the node

per group is increased by 200% i.e. to the full capacity of

the designed network, packet loss ratio increases by 71 %,

48 % and 102 % for group 1, 2 and 3 respectively. Group

1 and 3 exhibited higher packet loss compared to group 2.

Also seen from the figure, for packet flow rate of 9 p/s,

group 1 has a leap in the packet loss for group size of 5

and 6. This higher ratio is due to random movement of the

nodes and wireless interferences. Compensating these

effects is beyond the scope of this work. It can further be

seen from figure 15 that group size of 6 exhibits packet

loss ratio degradation only by 26 % and 33 % compared to

group size of 3 (100 % increase in the group size) for flow

rate of 5 p/s and 8 p/s respectively. This confirms that the

proposed idea is scalable for packet reachability as well.

Fig. 10. Mean delay performance for different number of nodes

per group

Fig. 11. Mean delay for variant size of groups

Fig. 12. Mean jitter for alternate number of node per group

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 10

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 13. Mean jitter for variant size of groups

Fig. 14. Packet loss ratio for different number of node per group

Fig. 15. Packet loss ratio for variant number of groups

Fig. 16. Packet size impact on packet flow rate

6.2.3 Different Packet Size

The above results have been evaluated for a particular

packet size of 512 bytes. It is clear that for this packet size,

performance metrics shows better results if packet flow

rate is below or equal to 10 p/s. Now fig. 16 shows how

packet size affects the packet flow rate. It can be seen that

if the packet size is halved then packet flow rate increases

by 338 %. However, mean delay also increases by 642 %.

As for mean jitter and packet loss ratio, these metrics

decreased by 98 % and 15 % respectively. From this it can

be concluded that in the crowdsourcing paradigm or in the

urban event detection, if the generated data i.e. context is

small then packet flow rate will be high. However, this

might result in high delay but jitter and packet loss ratio

would be lower. Therefore, with high packet flow rate, the

idea can scale well for jitter and packet loss ratio but delay

performance might degrade.

7. Use Cases of the Concept

The proposed approach would be useful for

heterogeneous interoperability of physical objects, thereby

heterogeneous contexts. In our opinion, this logical-

clustering will be advantageous to many sensor network

applications; for example, medical science, agriculture

system, security surveillance, disaster management etc.

Two probable scenarios are portrayed below.

7.1 Animal Tracking

The use of WSN for animal tracking is gaining tremendous

attention recently [22]. The animal tracking can be further

divided into two: wildlife and farming monitoring. Our

proposed approach can be applied in both of them. One

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 11

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

probable application, for example, farmers can optimize

their business by means of WSN for feeding and growing

conditions of the animals [22]. This will provide benefit

for monitoring meat, milk production and to observe how

good animal racing results. Hence, animal tracking would

be easier by applying our proposed logical-clustering

approach. This implies that animals that produce similar

desired context would be clustered together. In a large

farm, it is often difficult to manage the animals efficiently;

it would require incredible manpower to monitor all the

animals. Therefore, animals‟ location and conditions can

be monitored by clustering. The farmers can find the

groups of animal ready for meat and milk production

through the context-ID. This will reduce human labor to

find out the animals for the above mentioned purposes.

7.2 Medical Healthcare

The approach can be applied in the medical healthcare too.

One possible application scenario can be that medical

researchers can conduct a research in real-time on a

recently spread disease from remote places and provide

prompt solutions simultaneously. Normally in medical

healthcare, patients are outfitted with wireless wearable

sensors [23]. If there is any outbreak of a disease, then

people can be outfitted with wearable sensors. Medical

team can observe the severity of the disease by means of

clustering different symptoms and different level of

patients. For example, patients might not have same level

of severity and they would need different level of

attentions. Hence, medical assistance can be provided

faster and efficiently by clustering patients based on the

different context of severity. Patients that show similar

symptoms would be clustered together and would have

same context-ID. This will eliminate burden of individual

attention for a patient. Thus medical services can be

maximized. Moreover, if the situation gets worse and out

of control then medical personnel can seek help from other

specialists in the respective field from remote places. In the

traditional way, this can be done by gathering data from

people and then forwarding to others. However with our

proposed logical-clustering, medical researchers from

distant places can instantly access the data by subscribing

to the context-ID.

However, our proposal is not limited to these scenarios

rather this shows two of the many possible solutions our

proposal can offer.

8. Conclusions

Real-time context sharing would be an important

challenge in state-of-the-art ubiquitous computing. The

enormous data that are expected to be generated by the

billions of sensors would require efficient management.

These huge heterogeneous data would need to be

processed reliably, and reachability should also be assured

to take its full advantage. Location agnostic clustering of

flow-sensors i.e. logical clustering is one of the possible

solutions for efficient context management. In this paper,

performance of logical-clustering in terms of delay, jitter

and packet loss ratio has been examined and backed up by

ns-3 simulations. These parameters have been evaluated

for different scenarios such as: variant packet flow rate,

different number of node per group and different group

size.

The results suggest that the proposal is reliable and

scalable. For a 200 % increase in the node per cluster,

delay increases by around 20 %. For the same increased

node per cluster, latency demonstrates around 40 %

increase. Delay and latency exhibit 13 % and 44 %

fluctuation respectively when the cluster size is doubled.

This clearly illustrates efficiency of reliability and

scalability of the proposed concept. Furthermore, the

proposed approach shows rich packet reachability. Only

18 % increase in the packet loss for a flow rate increase of

83 %, packet loss increases by merely 44 % for 200 %

increase in the node per cluster. Moreover, packet loss

demonstrates no more than 33 % increase for 100 %

increase in the cluster size for high flow rate.

The proposed approach in particular can perform

more efficiently for smaller packet size as suggested by the

result. Flow rate increased by 338 % when packet size is

halved. Latency and packet loss ratio further decreased by

98 % and 15 % respectively. Two tangible use cases have

also been portrayed. Therefore, our proposed idea will be

of great interest for the future Networked Society where

instantaneous and reliable accesses to context are two of

the big challenges. Our approach can adopt quickly and

share real-time data reliably to the service requestors. The

vision of detecting any urban event via crowdsourcing

paradigm will be made easier through the adoption of our

proposal.

 However, the approach can perform better than the results

obtained in this paper through real implementation of

logical-sink and H-DHTs in ns-3. The logical-sink would

outperform the current packet reachability; reliability and

response time would also be minimal. Future work

includes designing the system with logical-sink and

inclusion of H-DHTs. An investigation into routing

protocol for the logical-clustering would also be explored.

References
[1] [online] 5G Radio Access, Research and Vision:

http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf

[Accessed: 15-July-2013]

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 12

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[2] R. Rahmani, H. Rahman, and T. Kanter: Context-Based

Logical Clustering of Flow-Sensors - Exploiting HyperFlow

and Hierarchical DHTs, In Proceeding(s) of 4th International

Conference on Next Generation Information Technology,

2013 ICNIT, June 2013.

[3] A. Mahmud., R. Rahmani: Exploitation of OpenFlow in

Wireless Sensor Networks, IEEE ICCSNT, volume 1, pages

594-600, 2011.

[4] W. R. Heinzelman, J. Kulik, and H. Balakrishnan: Adaptive

Protocols for Information Dissemination in Wireless Sensor

Networks, Proc. ACM MobiCom ‟99, Seattle, WA, 1999, pp.

174–185.

[5] K. Padmanabhan, Dr. P. Kamalakkannan, ” Energy Efficient

Adaptive Protocol for Clustered Wireless Sensor Networks”,

IJCSI International Journal of Computer Science Issues, Vol.

8, Issue 5, No 1, September 2011.

[6] Franco Zambonelli: Pervasive urban crowdsourcing: Visions

and Challenges, 2011 IEEE (PERCOM Workshops), Pages

578-583, March 2011.

[7] G. Barbier, R. Zafarani, H. Gao, G. Fung, H. Liu:

Maximizing benefits from crowdsourced data,

Computational and Mathematical Organization Theory,

September 2012, Volume 18, Issue 3, pp 257-279.

[8] S. Bandyopadhyay, E. J. Coyle: An Energy Efficient

Hierarchical Clustering Algorithm for Wireless Sensor

Networks, IEEE (INFOCOM), Volume 3, Pages 1713-1723,

April 2003.

[9] A. Abbasi, M. Younis: A survey on clustering algorithms for

wireless sensor networks, Journal of Computer

Communications, 2007, 30, pp. 2826–2841.

[10] M. Lotfinezhad and B. Liang: Energy efficient clustering in

sensor networks with mobile agents, in Proceedings of the

IEEE (WCNC '05), pp. 1872–1877, usa, March 2005.

[11] C. Lombriser, M. Marin-Perianu, R. Marin-Perianu, D.

Roggen, P. Havinga, G. Troster: Organizing Context

Information Processing in Dynamic Wireless Sensor

Networks,”Proc. ISSNIP,pp. 67-72,December 2007.

[12] T. Thomas, E.C. van Berkum: Detection of incidents and

events in urban networks, IET Intelligent Transport Systems,

September 2008.

[13] Lin Guo and Qi Han: Reliable Data Collection from Mobile

Users with High Data Rates in Wireless Sensor Networks,

2012 IEEE International Symposium on a World of Wireless,

Mobile and Multimedia Networks (WoWMoM), Pages 1-6,

June 2012.

[14] L. Mottola and G. P. Picco: Logical Neighborhoods: A

Programming Abstraction for Wireless Sensor Networks,

Distributed Computing in Sensor Systems, Volume 4026,

2006, pp 150-168.

[15] G. Fersi, W. Louati, M.B. Jemaa: Distributed Hash table-

based routing and data manage-ment in wireless sensor

networks: a survey, Wireless Networks, Volume 19, Issue 2,

Pages 219-236, February 2013.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, J. Turner: OpenFlow:

Enabling Innovation in Campus Networks, ACM SIGCOMM

Computer Communication. Rev., Volume 38 issue 2, pages

69-74, April 2008.

[17] Gerard J. Holzmann: The Model Checker SPIN, IEEE

Transaction on soft ware Engi-neering ,23(5): 1-17, May

1997.

[18] Gerard 1. Holzmann, SPIN Online Reference. Bell Labs,

http://cm.bell­labs.com/cm/cs/what/spin/Man

lindex.html)August 1997.

[19] Rob Gerth: Concise Promela Refence. Technical report,

Eindhoven University, (htt p://cm.bell-

labs.com/cm/cs/what/spiniManiQuick.html) June1997.

[20][online]

http://www.nsnam.org/docs/release/3.13/models/html/openfl

ow-switch.html [Accessed: June-13-2013]

[21][online]

http://www.nsnam.org/wiki/index.php/Current_Development

[Accessed: June-21-2013]

[22] [online] http://www.tfe.umu.se/english/research/embedded-

systems-lab/projects/animal-sensor-networks/ [Accessed:

July-26-2013]

[23] V. Shnayder, BR. Chen, K. Lorincz,Thaddeus R. F. Fulford-

Jones, and M. Welsh, : Sensor Networks for Medical

Care,Technical Report TR-08-05, Division of Engineering

and Applied Sciences, Harvard University, 2005.

[24] B. Zarei, M. Zeynali and V.M. Nezhad, “Novel Cluster

Based Routing Protocol in Wireless Sensor Networks”. IJCSI

International Journal of Computer Science Issues, Vol. 7,

Issue 4, No 1, July 2010.

[25] D. Ma, J. Ma, B. Huang, P. Xu: Energy-aware Clustering

Protocol with Dual Cluster Heads using Niching Particle

Swarm Optimization for Wireless Sensor Networks,

International Journal of Advancements in Computing

Technology(IJACT) Volume5,Number5,March 2013.

[26] Y. Rao, C. Yuan, Z. Jiang, L. Fu, J. Zhu: Latency and

Reliability-aware Geographic Routing for Mobile Wireless

Sensor Networks, Advances in information Sciences and

Service Sciences(AISS), Volume5, Number8, April 2013.

[27] V. Kumar, S. Jain and S. Tiwari, “Energy Efficient

Clustering Algorithms in Wireless Sensor Networks: A

Survey”, IJCSI International Journal of Computer Science

Issues, Vol. 8, Issue 5, No 2, September 2011.

[28] O.S. Hyun, L.S. Hyuk: An Energy-Efficient Cluster-Head

Selection Algorithm for Wireless Sensor Networks,

International Journal of Digital Content Technology and its

Applications (JDCTA), Volume7, Number2, January 2013.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 13

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

