
Neighborhood Crossover Operator：A new operator in

Gravitational Search Algorithm

 Zhongping shang [1]
• 1 School of Continuing Education, Yanshan University , Qinhuangdao Hebei 066004,

China

Abstract

 In order to improve exploration and exploitation of the

Gravitational Search Algorithm (GSA) for solving more

complicated problems, Neighborhood Crossover Operator

(NCO) is applied to GSA. In GSA, the gravitational force

guides the masses. As the force absorbs the masses into each

other, if premature convergence happens, there will not be any

recovery for the algorithm, the NCO help the GSA recover

from premature convergence and improve the local search

ability. The improve GSA has been evaluate on 23 functions,

compared with the GSA, the obtained results confirm the high

performance of the proposed method in solving various

nonlinear functions.

Keyword: Optimization; Gravitational search
algorithm; Neighborhood crossover operator;
Heuristic search algorithm; nonlinear functions.

1. Introduction

Optimization is an old problem, the pursuit of the

optimal target has been a human ideal, Some scholars

have proposed a lot of feasible effective optimization

methods on the problem of the exploration and

exploitation, the exploration is the ability of expanding

search space and investigating the search space for

finding new and better solutions, the exploitation is the

ability of finding the optima around a good one. In most

heuristic algorithm, the abilities of exploration and

exploitation are applied with special operator, the special

operator can improve the local search ability.

Heuristic algorithms simulate physical or

biological processes，such as, Genetic Algorithms [1-4],

Simulated Annealing Algorithm [5-7], Artificial Immune

Algorithm [8, 9], Ant Colony Algorithm [10-12], Particle

Swarm Optimization [13-16], Gravitational Search

Algorithm[17,18]. Those methods have made great

successful.

Xun et al. [1] indicates the importance of the two

new genetic operators is designed to overcome the defect

of genetic algorithm in local searching, which combines

with uniform crossover. New operator has turned for

other heuristic algorithm. For example, Wu et al. [7] add

mutation operator to a hybrid simulated annealing

algorithm solving the manufacturing cell formation

problem. An improved artificial immune algorithm with

a dynamic threshold is presented; the calculation for the

affinity function in the real-valued coding artificial

immune algorithm is modified through considering the

antibody's fitness and setting the dynamic threshold

value [8]. Two new efficient and robust ant colony

algorithms are proposed [10]. It is two new and

reasonable local updating rules that make them more

robust and efficient. While going forward from start

point to end point of a tour, the ants’ freedom to make

local changes on links is gradually restricted. Chen et al.

[13] used a local search to improve the Particle swarm

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 116

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:shangzhongping1@163.com

optimization. For increasing the diversity of particles,

Jiang et al. [14] utilized a mutation operator. Groenwold

et al. [15] divided the population to sub-divisions,

applies particle swarm optimization to them separately

and then combines the results of the sub-divisions to

transfer the information. In the improved particle swarm

optimization [16], a new velocity strategy equation with

a scaling factor is proposed, and the Constriction Factor

Approach (CFA) utilizes the value analysis to control the

system behavior.

GSA [17] is the newest algorithm introduced by

Rashedi et al in 2009. It is inspired by the law of gravity

and mass interactions. In this algorithm, the gravitational

force guides the masses. As this force absorbs the masses

into each other, if premature convergence happens, the

algorithm loses its ability to explore and then becomes

inactive. Therefore, the Neighborhood Crossover

Operator should be added to GSA in order to increase its

flexibility for solving more complicated problems.

 This paper is organized as follows. In the first

section, some Heuristic optimums are introduced, In the

second section, “Gravitational Search Algorithm”

provides a brief review. In the third section,

Neighborhood Crossover Operator is described. A

comparative study is presented in “Experimental

Results” and finally in the last section, the paper is

concluded.

2. Gravitational search algorithm

The GSA is a novel meta-heuristic stochastic

optimization algorithm introduced by Rashedi et al. in

2009. It bases on the metaphor of gravitational

interaction between masses and is inspired by the

Newton theory. Every particle attracts every other

particle with a gravitational force that is directly

proportional to the product of their masses and inversely

proportional to the square of the distance between them

in the universe. The heavy masses are good solutions of

the problem. In other words, each mass correspond to a

solution,and the heuristic algorithm is navigated by

properly adjusting the masses and gravitational. With the

passage of time, the masses will be attracted by the

heaviest mass which it corresponds to an optimum

solution in the search space, the heaviest mass which it

represents an optimum solution in the search space.

In GSA, consider a system with N agents

(masses) in which the position of the agent i is defined

by:

()1 2, n
i i i iX x x x= L L , 1, ,i N= L L (1)

Where
n
ix presents the position of agent i in

dimension. n is the search space dimension.

After evaluating the current population fitness,

the mass of agent is calculated for a minimization m ,

as follows:

() () ()
() ()

i

i

fit t worst t
m t

best t worst t

−
=

−
 (2)

() ()
()

1

i

i N

j
j

m t
M t

m t
=

=
∑

 (3)

Where ()ifit t defined the fitness value of agent i at

time t , ()best t and ()worst t are the best and worst

fitness of all agents

()
{ }

()
1,

min jj N
best t fit t

∈
=

L
 (4)

()
{ }

()
1,

max j
j N

worst t fit t
∈

=
L

 (5)

To evaluate the acceleration of an agent i at time
t in direct d th, the next velocity of an agent is
considered as a fraction of its current velocity added to

its acceleration, velocity and position of the agent i at

time t .Therefore, ()t
ia t , ()1d

iv t + ， ()1d
ix t + is

given as follows:

() ()
() ()

()

()
() ()()

,

2

1

d
n

id
i j

j k best j ii

j d d
j in

d d
i j

d

F t
a t rand G t

M t

M t
x t x t

X X ε

= ≠

=

= =

× −
− +

∑

∑
(7)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 117

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

() () ()1d d d
i i i iv t rand v t a t+ = × + (8)

() () ()1 1d d d
i i ix t x t v t+ = + + (9)

Where irand and jrand are two uniformly

distributed random numbers in the range of [] 0, 1 , ε
is a small value to avoid division by zero, n is the
dimension of the search space, The set of first K agents

with the best fitness value and biggest mass is bestK .

 bestK is a function of time, initialized to 0 K at the

beginning and decreasing with time. 0 K is set to N
(total number of agents) and is linearly decreased to1.
 G is a decreasing function of time that is set to 1 at the
beginning and decreases linearly towards zero with lapse

of time. It is noted that ()1, , ,d n
i i i iX x x x= L L indicates

the position of agent i in the search space, which is a
candidate solution. The different steps of the proposed
algorithm are given by Figure 1.

We compare IGSA with GSA, in all cases,

population size is set to 50N = . The dimension is

30N = and maximum iteration (maxt) is 1000 for

functions of the Tables 1- 3.

In both forms of IGSA with GSA, G is set using Eq.

(10), where 0G is set to 100, α is set 20 and T is the

total number of iterations

0

t
G G

T
α = − ÷

 (10)

Furthermore, 0 K is set to N (total number of

agents) and is decreased linearly to 1.

3. Neighborhood crossover operator

In GSA, as the gravitational force absorbs the

masses into each other, if premature convergence

happens, the algorithm loses its ability to explore and is

inactive. So a new operator is added to GSA in order to

improve its flexibility to solve complex problems.

()(1,1) , 1,2,3i i i i i iX rand X U rand X X i= × + − × × − = L (10)

iX is the position of ith agent, (1,1)U − is a random

number in the interval (1,1)− . irand is a random

number in the interval [0, 1],

We take into account the global search ability of the

gravitational search algorithm and the local search ability

of the neighborhood crossover operator. To achieve both

the advantages of complementary, we introduce a factor,

()max max min max/w w t w w t= − × − (11)

maxw and minw are the maximum and the minimum of the

scale factor respectively, t is the current number of

iterations and maxt is the maximum number of iterations.

w is a scale factor, r is a random number in the

interval [0,1], where r w< , the gravitational search

algorithm is used to search the space , where r w≥ , the

neighborhood crossover operator is used to generate

some individuals. In the early stages of searching,

considering the search efficiency of the solution space,

global search ability of the gravitational search algorithm

should be fully utilized, the gravitation optimization

algorithm guide the neighborhood crossover operator

searches near the front end, with the depth of searching,

the algorithm should be gradually change into the depth

from breadth, to ensure that the solutions converge to the

front.

The different steps of the algorithm are the

followings:

(a) Search space identification, 0t = ;

(b) Randomized initialization

(c) ()X t for 1,i N= L ;

(d) Fitness evaluation of agents;

(e) Update , ()Best t , ()worst t

(f) and ()iM t for 1,i N= L ;

(g) Calculation of acceleration and

velocity;
(h) Updating agents’ position to yield

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 118

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

(i) ()1iX t + and

1, , 1i N t t= = +L ;

(j) Neighborhood Crossover Operator

is

(k) on the ()iX t ;

(l) Repeat steps c to g until the

(m) stop criteria is reached;

(n) End;

Fig.1 :Pseudo code of the IGSA

4. Experimental results

To evaluate the performance of the IGSA, we

apply it to 23 standard benchmark functions [17]. The

standard functions are presented in the nest section.

Table1:Unimodal test functions.

Test function s

() 2
1

1

n

i
i

f x x
=

= ∑r []100,100
n−

()2
1 1

nn

i i
i i

f x x x
= =

= +∑ ∏r []10,10
n−

()
2

3
1 1

n i

j
i j

f x x
= =

= ÷

∑ ∑r []100,100

n−

() { }4 max ,1i
i

f x x i n= ≤ ≤r
[]100,100

n−

() ()
()

221
1

5 2
1

100

1

n
i i

i
i

x x
f x

x

−
+

=

 − =
 + −

∑r []30,30
n−

() []() 2

6
1

0.5
n

i
i

f x x
=

= +∑r []100,100
n−

() [)4
7

1

0,1
n

i
i

f x ix random
=

= +∑r []1.28,1.28
n−

Table2:Multimodal test functions.

Test function s

() ()8
1

sin
n

i i
i

f x x x
=

= −∑r []500,500
n−

() ()()2
9

1

10cos 2 10
n

i i
i

f x x xπ
=

= − +∑r []5.12,5.12
n−

()

()

2
10

1

1

1
20 0.2

1
cos 2 20

n

i
i

n

i
i

f x exp x
n

exp x e
n

π

=

=

= − − ÷ ÷

 − + + ÷

∑

∑

r []32,32
n−

() 2
11

1 1

1
cos

4000

nn
i

i
i i

x
f x x

i= =

= − ÷

∑ ∏r 5.12,

5.12

n−

() (){
() () () }

()

12 1

1 2 22
1

1

1

10sin

1 1 10sin 1

,10,100, 4

n

i i n
i

n

i
i

f x y
n

y y y

u x

π π

π
−

+
=

=

= +

 − × + + −

+

∑

∑

r

1
1

4
i

i

x
y

+
= + ;

()
()

()
, , , 0

m

i i

i i

m

i i

k x a x a

u x a k m a x a

k x a x a

 − >
= − < <

− − < −

[]50,50
n−

() (){ ()

() () }
()

22
13 1

1

22

1

0.1 sin 3 1

1 sin 3 1 1

,5,100, 4

n

i
i

i n

n

i
i

f x x x

x x

u x

π

π

=

=

= + −

 × + + + −

+

∑

∑

r []50,50
n−

Table3:Mutimodal test functions with

fix dimension

Test function s

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 119

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

()
()

1

25

14 2 6
1

1

1 1

500 j
i j

i

f x
x a

−

=

=

 ÷
 ÷= +
 ÷− ÷

∑
∑

r 2

[65.53,

65.53]

−

() () 2
211

1 2

15 2
1 3 4

i i

i
i i i

x b b x
f x a

b b x x=

 +
 ÷= −
 ÷+ +

∑r
[] 45,5−

() 2 4 6
16 1 1 1

2 4
1 2 2 2

1
4 2.1

3

4 4

f x x x x

x x x x

= − +

+ − +

v [] 25,5−

()
2

2
17 2 1 12

1

5.1 5
6

4

1
10 1 cos 10

8

f x x x x

x

π π

π

 = − + − ÷
 + − + ÷

r [5,10]

[0,15]

− ×

() ()
()

()

2

18 1 2

2 2
1 1 2 1 2 2

2
2 1 1

1 2 2
2 1 2 2

1 1

19 14 3 14 6 3

18 32 12
30 2 3

48 36 27

f x x x

x x x x x x

x x
x x

x x x x

= + + + ×
− + − + + ×

 − + +
 ÷+ − × ÷− +

r []5,5−

() ()
4 3 2

19
1 1

expi ij j ij
i j

f x c a x p
= =

= − − − ÷

∑ ∑r [] 3

0,1

() ()
4 6 2

20
1 1

expi ij j ij
i j

f x c a x p
= =

= − − ÷

∑ ∑r [] 61,0

() () ()
5 1

21
1

T

i i i
i

f x x a x a c
−

=

 = − − + ∑r r r [] 410,0

() () ()
7 1

22
1

T

i i i
i

f x x a x a c
−

=

 = − − + ∑r r r [] 410,0

() () ()
10 1

23
1

T
i i i

i

f x x a x a c
−

=

 = − − + ∑r r r [] 410,0

0 200 400 600 800 1000
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

 F1

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

10
10

10
15

 F2

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-30

10
-20

10
-10

10
0

10
10

 F3

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

 F4

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 120

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

0 200 400 600 800 1000
10

0

10
2

10
4

10
6

10
8

10
10

 F5

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

 F6

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-6

10
-4

10
-2

10
0

10
2

10
4

 F7

 Iteration

 A
ve

ra
g

e
B

es
t-s

o-
fa

r

 GSA
 IGSA

Fig.2.Comparison of performance of IGSA and GSA for

minimization with n = 30

Table4: Minimization result of

benchmark functions, with n=30,

tmax=1000.

Average Best-so-far

IGSA GSA

F1 7.3275e-022 2.0527e-017

F2 1.1859e-010 2.3129e-008

F3 3.0936e-021 261.7802

F4 1.0986e-011 3.3463e-009

F5 28.7738 30.1717

F6 4.3930 2.0821e-017

F7 3.3941e-005 0.0234

Median Best-so-far

IGSA GSA

2.5578e-022 2.0172e-017

7.0418e-011 2.2862e-008

3.7860e-022 252.2580

5.0181e-012 3.2572e-009

28.7873 25.9890

4.3602 2.0705e-017

1.9619e-005 0.0220

Functions of the table1 are unimodal functions. In

this case, the convergence rate of the search algorithm is

more important than the final results for functions F1 to

F7, because there are other methods particularly

designed to optimize F1 to F7 functions. The results are

averaged over 30 runs under different random seeds , the

average best-so-far solutions and median of the best

solutions are reported for unimodal functions in Table 4.

In Functions 1, 2, 3，4 and 7, IGSA has a very powerful

ability to explore and exploit the search space and also

has a high convergence rate. So, these characteristics

significantly cause good results. In Function5, both

algorithms could find the optimum, IGSA is a little better

than GSA in exploiting. In Table 4, the progress of the

average best-so-far solution of IGSA and GSA over 30

runs, for F1，F3, F4, F6 and F7. The good convergence

rate of GSA could be concluded from Fig.2. According

to these figures, IGSA tends to find the global optimum

faster than GSA and hence has a higher convergence rate.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 121

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

0 200 400 600 800 1000

-10
6

-10
4

-10
2

 F8

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

 F9

 Iteration

 A
ve

ra
g

e
B

es
t-s

o
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

 F10

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

10
5

 F11

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

 F12

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-150

10
-100

10
-50

10
0

10
50

 F13

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

Fig.3.Comparison of performance of IGSA and GSA for

minimization with n = 30.

Table5: Minimization result of benchmark

functions, with n=30, tmax=1000.

Average Best-so-far

IGSA GSA

F8 -2.5712e+003 -2.8416e+003

F9 0 17.4781

F10 2.1798e-011 3.7009e-009

F11 0 4.0144

F12 0.5753 0.0362

F13 0.0199 2.1797e-032

Median Best-so-far

IGSA GSA

-2.4472e+003 -2.8452e+003

0 17.9093

1.4309e-011 3.7478e-009

0 4.1021

0.5978 1.4923e-019

0.0173 1.3498e-032

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 122

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Multimodal functions have many more local

minima and are almost too difficult to optimize. For

multimodal functions, the final results are important,

because they reflect the ability of the algorithm to escape

from poor local optima and locate a near global

optimum. Experiments of table2 functions are carried

out, the results are averaged over 30 different runs and

the average best-so-far solutions and median of the best

solutions are reported for these functions in Table 5. The

largest difference in performance between IGSA and

GSA occurs with these multimodal functions for the

robust power of the proposed algorithm to explore and

exploit. In Functions 9, 10 and 11, IGSA performs

significantly better than GSA in exploring and

exploiting, and it exactly finds the optimum. In F13 and

F12, GSA is better than IGSA, in F8 GSA is a little better

than IGSA in exploiting.The results of the average best-

so-far solution over 30 runs are shown in Figs. 3 and

table 5.

0 200 400 600 800 1000
10

0

10
1

10
2

 F14

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

-4

10
-3

10
-2

10
-1

10
0

 F15

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
10

0

10
1

10
2

 F18

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000

-10
1

-10
0

 F19

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

100 200 300 400 500 600 700 800 900 1000

-10
1

-10
0

 F20

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
-10

2

-10
1

-10
0

-10
-1

 F21

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 123

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

0 200 400 600 800 1000
-10

2

-10
1

-10
0

-10
-1

 F22

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

0 200 400 600 800 1000
-10

2

-10
1

-10
0

-10
-1

 F23

 Iteration

 A
ve

ra
g

e
B

es
t-

so
-f

ar

 GSA
 IGSA

Fig.4.Comparison of performance of IGSA and GSA for

minimization

Multimodal Low-Dimensional Functions. Table 6

shows a comparison between GSA and IGSA on the

multimodal low dimensional each mark functions of

F14-F23. The dimension of these functions is set

according to Table 6, and the maximum number of

iterations for both GSA and IGSA is set to 1000. The

results are averaged over 30 different runs and the

average best-so-far solutions and median of best

solutions. Table 6 contains multimodal low-dimensional

functions in which exploitation is more effective than

exploration. So, IGSA work slightly better than GSA,

except in F18, F19 and F20. The exploration ability of

neighborhood crossover operator in IGSA does not let it

exploit as well as GSA. According to the results, it is

concluded that the GSA has the ability to explore and

exploit, while IGSA has improved the exploration and

exploitation of GSA for high-dimensional unimodal and

multimodal optimization functions. The results of the

average best-so-far solution over 30 runs are shown in

Figs. 4 and table 6.

Table6: Minimization result of

benchmark functions, tmax=1000.

Average Best-so-far

IGSA GSA

F14 3.2665

n=2

4.0796

F15 6.9793e-004

n=4

0.0042

F16 -1.0306

n=2

-1.0306

F17 0.4848

n=2

0.3979

F18 3.2015

n=2

3.0000

F19 -3.7966

n=3

-3.6630

F20 -2.5261

n=6

-2.0358

F21 -9.4916

n=4

-5.2251

F22 -10.1491

n=4

-7.3910

F23 -10.3273

n=4

-10.5364

Median Best-so-far

IGSA GSA

2.9826 3.0186

6.8627e-004 0.0035

-1.0311 -1.0306

0.4527 0.3979

3.1668 3.0000

-3.8142 -3.7651

-2.9007 -1.8714

-9.9794 -5.0552

-10.3823 -5.0877

-10.4523 -10.5364

The benchmark functions are taken form [17].

Tables1-3 is the benchmark functions used in the

experimental study. In the tables, n is the dimension of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 124

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

function optf is the optimum value of the function, S is a

subset of the nR . The functions of table1 are unimodal

and optf are zero, the functions of table2 are multimodal

having many local minima, the minimum values are zero

except for 8F which has a optf of 420 n− × . Table3 is

multimodal functions have a few local minima, A

detailed description of these functions can be found in

the appendix of [17, 18].

5. Conclusion

GSA is a powerful global searcher, but it is not

effective enough for more complicated problems. The

overall goal of this paper was to increase the exploration

and exploitation abilities of GSA, therefore the

neighborhood crossover operator was applied to the

GSA, The operator is used to enhance the gravitational

search algorithm for the local search capacity, and scale

factor line adjust the proper balance between the GSA

and the neighborhood crossover operator to obtain good

results. The experiment and simulation results show the

IGSA is an effective optimization algorithm, avoiding

premature convergence in cases where standard GSA

failed.

Acknowledgments

Project supported by the National Natural Science

Foundation of China (Grant No. 60774028) and Natural

Science Foundation of Hebei Province, China (Grant No.

F2010001318).

Reference

[1] B. S. Xun, X. G. Zhou, A genetic algorithm based on

combination operators, Procedia Environmental Sciences

11(2011), 346–350.

[2] R. Gábor, E. Anikó, Genetic algorithms in computer aided

design.Computer Aided Design, 35(2003), 709-726.

[3] H.H.K Timo, S. Jukka, Accelerating genetic algorithm

computation in tree shaped parallel computer ,Journal of

Systems Architecture, 42 (1996), 19-36.

[4] Y. H. Chang, Adopting co-evolution and constraint-

satisfaction concept on genetic algorithms to solve supply

chain network design problems, Expert Systems with

Applications, 37(2010), 6919-6930.

[5] E. B. Donald, L. H. Christopher, A practical application of

simulated annealing to clustering, Pattern Recognition,

25(1992), 401-412.

[6] A. Vasan, S. R. Komaragiri, Comparative analysis of

simulated Annealing, simulated quenching and genetic

algorithms for optimal reservoir operation. Applied Soft

Computing, 9,(2009), 274-281.

[7] T. H. Wu, S. H. Chung, Hybrid simulated annealing

algorithm with mutation operator to the cell formation

problem with alternative process routings. Expert Systems

with Applications, 36(2009), 3652-3661.

[8] Q. Zhang, An Improved artificial immune algorithm with a

dynamic threshold, Journal of Bionic Engineering, 11

(2006), 93-97.

[9] A. Kalinlia, N. Karabogab, Artificial immune algorithm for

IIR filter design, Engineering Applications of Artificial

Intelligence 18 (2005) 919–929.

[10] M. N. Hossein, T. Nima, New robust and efficient ant

colony algorithms: using new interpretation of local

updating process, Expert Systems with Applications,

36(2009), 481-488.

[11] C. García-Martínez, O. Cordón, F. Herrera, A taxonomy

and an empirical analysis of multiple objective ant colony

optimization algorithms for the bi-criteria TSP, European

Journal of Operational Research, Volume 180(2007), 116-

148

[12] B. J. Zhao, S. Y. Li, , Ant colony optimization algorithm

and its application to Neuro-Fuzzy controller design,

Journal of Systems Engineering and Electronics, 18(2007),

603-610.

[13] T.Y. Chen, T.M. Chi, On the improvements of the particle

swarm optimization Algorithm, Advances in Engineering

Software, 41(2010), 229–239.

[14] Y. Jiang, T. Hu, C. Huang, X. Wu, An improved particle

swarm optimization algorithm, Applied Mathematics and

Computation, 193(2007), 231–239.

[15] P.C. Fourie, A.A. Groenwold, The particle swarm

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 125

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

optimization algorithm in size and shape optimization,

Structural and Multidisciplinary Optimization, 23(2002),

259–267.

[16] G.. Baskar, M.R. Mohan, Contingency constrained

economic load dispatch using improved particle swarm

optimization for security enhancement, Electric Power

Systems Research, 79(2009), 615–621.

[17] E. Rashedi, Gravitational search algorithm, Electrical

Engineering Department, Shahid Bahonar University of

Kerman, Iran (2007) (in Farsi).

[18] S. Sarafrazi, H. Nezamabadi-pour, S. Saryazdi, Disruption:

A new operator in gravitational search algorithm, Scientia

Iranica, 18 (2011), 539-548.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 126

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

