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Abstract

 In order to improve exploration and exploitation of the

Gravitational  Search  Algorithm  (GSA)  for  solving  more

complicated  problems,  Neighborhood  Crossover  Operator

(NCO)  is  applied  to  GSA.  In  GSA,  the  gravitational  force

guides the masses. As the force absorbs the masses into each

other, if premature convergence happens, there will not be any

recovery  for  the  algorithm,  the  NCO help  the  GSA recover

from  premature  convergence  and  improve  the  local  search

ability. The improve GSA has been evaluate on 23 functions,

compared with the GSA, the obtained results confirm the high

performance  of  the  proposed  method  in  solving  various

nonlinear functions.

Keyword: Optimization;  Gravitational  search
algorithm; Neighborhood  crossover  operator;
Heuristic search algorithm; nonlinear functions.

1. Introduction

Optimization is an old problem, the pursuit of the

optimal target  has  been a human ideal,  Some scholars

have  proposed  a  lot  of  feasible  effective  optimization

methods  on  the  problem  of  the  exploration  and

exploitation, the exploration is the ability of expanding

search  space  and  investigating  the  search  space  for

finding new and better solutions, the exploitation is the

ability of finding the optima around a good one. In most

heuristic  algorithm,  the  abilities  of  exploration  and

exploitation are applied with special operator, the special

operator can improve the local search ability.

Heuristic  algorithms  simulate  physical  or

biological processes，such as, Genetic Algorithms [1-4],

Simulated Annealing Algorithm [5-7], Artificial Immune

Algorithm [8, 9], Ant Colony Algorithm [10-12], Particle

Swarm  Optimization  [13-16],  Gravitational  Search

Algorithm[17,18].  Those  methods  have  made  great

successful. 

Xun et  al.  [1]  indicates  the  importance  of  the  two

new genetic operators is designed to overcome the defect

of genetic algorithm in local searching, which combines

with  uniform  crossover.  New  operator  has  turned  for

other heuristic algorithm. For example, Wu et al. [7] add

mutation  operator  to  a  hybrid  simulated  annealing

algorithm  solving  the  manufacturing  cell  formation

problem. An improved artificial immune algorithm with

a dynamic threshold is presented; the calculation for the

affinity  function  in  the  real-valued  coding  artificial

immune algorithm is modified through considering the

antibody's  fitness  and  setting  the  dynamic  threshold

value  [8].  Two  new  efficient  and  robust  ant  colony

algorithms  are  proposed  [10].  It  is  two  new  and

reasonable  local  updating  rules  that  make  them  more

robust  and  efficient.  While  going  forward  from  start

point to end point of a tour, the ants’ freedom to make

local changes on links is gradually restricted. Chen et al.

[13] used a local search to improve the Particle swarm
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optimization.  For  increasing  the  diversity  of  particles,

Jiang et al. [14] utilized a mutation operator. Groenwold

et  al.  [15]  divided  the  population  to  sub-divisions,

applies particle  swarm optimization to them separately

and  then  combines  the  results  of  the  sub-divisions  to

transfer the information. In the improved particle swarm

optimization [16], a new velocity strategy equation with

a scaling factor is proposed, and the Constriction Factor

Approach (CFA) utilizes the value analysis to control the

system behavior.

GSA [17]  is  the  newest  algorithm  introduced  by

Rashedi et al in 2009. It is inspired by the law of gravity

and mass interactions. In this algorithm, the gravitational

force guides the masses. As this force absorbs the masses

into each other,  if premature convergence happens, the

algorithm loses its ability to explore and then becomes

inactive.  Therefore,  the  Neighborhood  Crossover

Operator should be added to GSA in order to increase its

flexibility for solving more complicated problems.

 This  paper  is  organized  as  follows.  In  the  first

section, some Heuristic optimums are introduced, In the

second  section,  “Gravitational  Search  Algorithm”

provides  a  brief  review.  In  the  third  section,

Neighborhood  Crossover  Operator  is  described.  A

comparative  study  is  presented  in  “Experimental

Results”  and  finally  in  the  last  section,  the  paper  is

concluded.

2. Gravitational search algorithm

The  GSA  is  a  novel  meta-heuristic  stochastic

optimization algorithm introduced by  Rashedi  et  al.  in

2009.  It  bases  on  the  metaphor  of  gravitational

interaction  between  masses  and  is  inspired  by  the

Newton  theory.  Every  particle  attracts  every  other

particle  with  a  gravitational  force  that  is  directly

proportional to the product of their masses and inversely

proportional to the square of the distance between them

in the universe. The heavy masses are good solutions of

the problem. In other words, each mass correspond to a

solution,and  the  heuristic  algorithm  is  navigated  by

properly adjusting the masses and gravitational. With the

passage  of  time,  the  masses  will  be  attracted  by  the

heaviest  mass  which  it  corresponds  to  an  optimum

solution in the search space, the heaviest mass which it

represents an optimum solution in the search space.

In  GSA,  consider  a  system  with  N  agents

(masses) in which the position of the agent i  is defined

by: 

( )1 2, n
i i i iX x x x= L L ,  1, ,i N= L L     (1)

Where 
n
ix  presents  the  position of  agent i  in

dimension. n is the search space dimension. 

After  evaluating  the  current  population  fitness,

the mass of agent is calculated for a minimization m ,

as follows:

( ) ( ) ( )
( ) ( )
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i
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Where ( )ifit t defined the fitness value of agent i at

time t ,  ( )best t and ( )worst t are the  best  and worst

fitness of all agents
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To evaluate the acceleration of an agent i at time
t  in  direct d th,  the  next  velocity  of  an  agent  is
considered as a fraction of its current velocity added to

its  acceleration,  velocity  and  position  of  the  agent i at

time t .Therefore, ( )t
ia t ,  ( )1d

iv t + ， ( )1d
ix t +  is

given as follows:
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( ) ( ) ( )1d d d
i i i iv t rand v t a t+ = × +     (8)

( ) ( ) ( )1 1d d d
i i ix t x t v t+ = + +       (9)

Where irand and jrand are  two  uniformly

distributed random numbers in the range of [ ] 0,  1 ,  ε
is  a  small  value  to  avoid  division  by  zero,  n  is  the
dimension of the search space, The set of first  K agents

with the best  fitness value and biggest  mass is  bestK .

 bestK is  a  function  of  time,  initialized  to 0 K  at  the

beginning and decreasing with time. 0 K  is set to  N
(total  number of agents)  and is linearly decreased to1.
 G  is a decreasing function of time that is set to 1 at the
beginning and decreases linearly towards zero with lapse

of time. It is noted that ( )1, , ,d n
i i i iX x x x= L L  indicates

the position of agent i  in the search space, which is a
candidate solution. The different steps of  the proposed
algorithm are given by Figure 1.

We compare IGSA with GSA, in all cases, 

population size is set to 50N = . The dimension is

30N =  and maximum iteration ( maxt ) is 1000 for 

functions of the Tables 1- 3.

In both forms of IGSA with GSA, G is set using Eq.

(10), where 0G  is set to 100, α  is set 20 and T  is the 

total number of iterations 

0

t
G G

T
α = − ÷ 

         (10) 

Furthermore, 0 K  is set to  N  (total number of 

agents) and is decreased linearly to 1.

3. Neighborhood crossover operator

In  GSA,  as  the  gravitational  force  absorbs  the

masses  into  each  other,  if  premature  convergence

happens, the algorithm loses its ability to explore and is

inactive. So a new operator is added to GSA in order to

improve its flexibility to solve complex problems. 

( )( 1,1) , 1,2,3i i i i i iX rand X U rand X X i= × + − × × − = L (10)

iX  is the position of ith agent,  ( 1,1)U −  is a random

number  in  the  interval ( 1,1)− .  irand is  a  random

number in the interval [0, 1],

We  take  into  account  the  global  search  ability  of  the

gravitational search algorithm and the local search ability

of the neighborhood crossover operator. To achieve both

the advantages of complementary, we introduce a factor, 

( )max max min max/w w t w w t= − × −     (11)

maxw and minw are the maximum and the minimum of the

scale  factor  respectively, t  is  the  current  number  of

iterations and maxt is  the maximum number of iterations.

w  is  a  scale  factor, r  is  a  random  number  in  the

interval  [0,1],  where r w< ,  the  gravitational  search

algorithm is used to search the space , where r w≥ , the

neighborhood  crossover  operator  is  used  to  generate

some  individuals.  In  the  early  stages  of  searching,

considering the search efficiency of the solution space,

global search ability of the gravitational search algorithm

should  be  fully  utilized,  the  gravitation  optimization

algorithm  guide  the  neighborhood  crossover  operator

searches near the front end, with the depth of searching,

the algorithm should be gradually change into the depth

from breadth, to ensure that the solutions converge to the

front.

The different steps of the algorithm are the 

followings:

(a) Search space identification, 0t = ;

(b) Randomized initialization 

(c) ( )X t for 1,i N= L ;

(d) Fitness evaluation of agents;

(e) Update , ( )Best t , ( )worst t

(f) and ( )iM t for 1,i N= L ;

(g) Calculation of acceleration and 

velocity;
(h) Updating agents’ position to yield
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(i)   ( )1iX t + and

1, , 1i N t t= = +L ;

(j) Neighborhood Crossover Operator

is 

(k) on the ( )iX t ;

(l) Repeat steps c to g until the

(m)  stop criteria is reached;

(n) End;

Fig.1 :Pseudo code of the IGSA

4. Experimental results 

To evaluate the performance of the IGSA, we 

apply it to 23 standard benchmark functions [17]. The 

standard functions are presented in the nest section.

Table1:Unimodal test functions.
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Table2:Multimodal test functions.
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Table3:Mutimodal test functions with

fix dimension

Test function s
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Fig.2.Comparison of performance of IGSA and GSA for

minimization with n = 30

Table4: Minimization result of

benchmark functions, with n=30,

tmax=1000.

Average Best-so-far

IGSA GSA

F1  7.3275e-022 2.0527e-017

F2  1.1859e-010 2.3129e-008

F3  3.0936e-021 261.7802

F4  1.0986e-011 3.3463e-009

F5  28.7738 30.1717

F6  4.3930 2.0821e-017

F7  3.3941e-005 0.0234

Median Best-so-far

IGSA GSA

2.5578e-022 2.0172e-017

7.0418e-011 2.2862e-008

3.7860e-022 252.2580

5.0181e-012 3.2572e-009

28.7873 25.9890

4.3602 2.0705e-017

1.9619e-005 0.0220

Functions of the table1 are unimodal functions. In

this case, the convergence rate of the search algorithm is

more important than the final results for functions F1 to

F7,  because  there  are  other  methods  particularly

designed to optimize F1 to F7 functions. The results are

averaged over 30 runs under different random seeds , the

average  best-so-far  solutions  and  median  of  the  best

solutions are reported for unimodal functions in Table 4.

In Functions 1, 2, 3，4 and 7, IGSA has a very powerful

ability to explore and exploit the search space and also

has  a  high  convergence  rate.  So,  these  characteristics

significantly  cause  good  results.   In  Function5,  both

algorithms could find the optimum, IGSA is a little better

than GSA in exploiting. In Table 4, the progress of the

average best-so-far solution of IGSA and GSA over 30

runs, for F1，F3, F4, F6 and F7. The good convergence

rate of GSA could be concluded from Fig.2.  According

to these figures, IGSA tends to find the global optimum

faster than GSA and hence has a higher convergence rate.
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Fig.3.Comparison of performance of  IGSA and GSA for

minimization with n = 30.

Table5: Minimization result of benchmark

functions, with n=30, tmax=1000.

Average Best-so-far

IGSA GSA

F8  -2.5712e+003 -2.8416e+003

F9    0 17.4781

F10  2.1798e-011 3.7009e-009

F11  0 4.0144

F12  0.5753 0.0362

F13  0.0199 2.1797e-032

Median Best-so-far

IGSA GSA

-2.4472e+003 -2.8452e+003

0 17.9093

1.4309e-011 3.7478e-009

0 4.1021

0.5978 1.4923e-019

0.0173 1.3498e-032
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Multimodal  functions  have  many  more  local

minima  and  are  almost  too  difficult  to  optimize.  For

multimodal  functions,  the  final  results  are  important,

because they reflect the ability of the algorithm to escape

from  poor  local  optima  and  locate  a  near  global

optimum.  Experiments  of  table2  functions  are  carried

out, the results are averaged over 30 different runs and

the average best-so-far solutions and median of the best

solutions are reported for these functions in Table 5. The

largest  difference  in  performance  between  IGSA and

GSA occurs  with  these  multimodal  functions  for  the

robust power of the proposed algorithm to explore and

exploit.  In  Functions  9,  10  and  11,  IGSA  performs

significantly  better  than  GSA  in  exploring  and

exploiting, and it exactly finds the optimum. In F13 and

F12, GSA is better than IGSA, in F8 GSA is a little better

than IGSA in exploiting.The results of the average best-

so-far  solution over 30 runs are shown in Figs.  3 and

table 5.
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Fig.4.Comparison of performance of IGSA and GSA for

minimization

Multimodal  Low-Dimensional  Functions.  Table  6

shows  a  comparison  between  GSA and  IGSA on  the

multimodal  low  dimensional  each  mark  functions  of

F14-F23.  The  dimension  of  these  functions  is  set

according  to  Table  6,  and  the  maximum  number  of

iterations for  both GSA and IGSA is set  to 1000. The

results  are  averaged  over  30  different  runs  and  the

average  best-so-far  solutions  and  median  of  best

solutions. Table 6 contains multimodal low-dimensional

functions  in  which  exploitation  is  more  effective  than

exploration.  So,  IGSA work  slightly  better  than  GSA,

except in F18, F19 and F20. The exploration ability of

neighborhood crossover operator in IGSA does not let it

exploit  as well  as GSA. According to the results,  it  is

concluded that  the GSA has the ability  to explore and

exploit,  while  IGSA has improved the exploration and

exploitation of GSA for high-dimensional unimodal and

multimodal  optimization  functions.  The  results  of  the

average best-so-far solution over 30 runs are shown in

Figs. 4 and table 6.

 

Table6: Minimization result of

benchmark functions, tmax=1000.

Average Best-so-far

IGSA GSA

F14  3.2665

n=2

4.0796

F15  6.9793e-004

n=4

0.0042

F16   -1.0306

n=2

-1.0306

F17  0.4848

n=2

0.3979

F18  3.2015

n=2

3.0000

F19  -3.7966

n=3

-3.6630

F20  -2.5261

n=6

-2.0358

F21  -9.4916

n=4

-5.2251

F22   -10.1491

n=4

-7.3910

F23   -10.3273

n=4

-10.5364

Median Best-so-far

IGSA GSA

2.9826 3.0186

6.8627e-004 0.0035

-1.0311 -1.0306

0.4527 0.3979

3.1668 3.0000

-3.8142 -3.7651

-2.9007 -1.8714

-9.9794 -5.0552

-10.3823 -5.0877

-10.4523 -10.5364

The  benchmark  functions  are  taken  form  [17].

Tables1-3  is  the  benchmark  functions  used  in  the

experimental study. In the tables, n is the dimension of
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function optf  is the optimum value of the function, S is a

subset of the nR . The functions of table1 are unimodal

and optf  are zero, the functions of table2 are multimodal

having many local minima, the minimum values are zero

except for 8F  which has a optf  of 420 n− × . Table3 is

multimodal  functions  have  a  few  local  minima,  A

detailed description of these functions can be found in

the appendix of [17, 18].

5. Conclusion

GSA is  a  powerful  global  searcher,  but  it  is  not

effective  enough  for  more  complicated  problems.  The

overall goal of this paper was to increase the exploration

and  exploitation  abilities  of  GSA,  therefore  the

neighborhood  crossover  operator  was  applied  to  the

GSA, The operator is used to enhance the gravitational

search algorithm for the local search capacity, and scale

factor line adjust the proper balance between the GSA

and the neighborhood crossover operator to obtain good

results. The experiment and simulation results show the

IGSA is  an  effective  optimization  algorithm,  avoiding

premature  convergence  in  cases  where  standard  GSA

failed.
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