
 

Reducing the Computational Cost in Multi-objective 

Evolutionary Algorithms by Filtering Worthless Individuals 

Zahra Pourbahman
1
, Ali Hamzeh

2
 

 

 
1
 Department of Electronic and Computer Engineering, Shiraz University,  

Shiraz, Iran 

 
2
 Department of Electronic and Computer Engineering, Shiraz University,  

Shiraz, Iran 
 

 

Abstract 
The large number of exact fitness function evaluations makes 

evolutionary algorithms to have computational cost (especially in 

Multi Objective Problems (MOPs)). In some real- world 

problems, reducing number of these evaluations is much more 

valuable even by increasing computational complexity and 

spending more time. To fulfil this target, we introduce an 

effective factor, in spite of applied factor in Adaptive Fuzzy 

Fitness Granulation NSGAІІ (AFFG_NSGAІІ) algorithm, to 

filter out worthless individuals more precisely. Our proposed 

approach is compared with respect to AFFG_NSGAІІ, using the 

Hypervolume (HV) and the Inverted Generational Distance 

(IGD) performance measures. The proposed method is applied to 

1 traditional and 1 state-of-the-art benchmarks with considering 

3 different dimensions. From an average performance view, the 

results indicate that although decreasing the number of fitness 

evaluations leads to have performance reduction but it is not 

tangible compared to what we gain. 

Keywords: Multi objective evolutionary algorithm optimization, 

Fitness approximation, Information granulation, Pareto optimal 

solutions. 

1. Introduction 

Evolutionary algorithms (EAs) have a population-based 

procedure in which the population evolves repeatedly by 

applying some stochastic operators in order to generate 

better population members until a termination control 

criterion is met [1]. They seem to be one of promising 

optimizers among recent proposed optimization methods 

[2] since they have a number of unique features as 

follows. (i) EAs can be implemented simply [1], (ii) EAs 

can find multiple optimal solutions ideally while classical 

optimization methodologies can’t find such solutions 

efficiently [3], and (iii) EAs perform the parallel search as         

a computationally quick procedure in contrast with 

classical optimization methodologies [1]. 

In a wide variety of real-world optimization problems EAs 

can be applied [1] because most of the time, practical 

problems have two or even more normally conflicting 

objectives which should be optimized simultaneously as 

MOPs in which a set of optimal solutions (effective 

solutions) needs to be obtained and EAs can find these 

effective solutions efficiently in a single run [2] whereas 

they use a population-based approach. This trend is known 

as Multi Objective Evolutionary Algorithms (MOEAs). 

Also, set of these effective solutions is known as Pareto 

optimal set and their vectors are called non-dominated. 

Non-dominated vectors are plotted in objective space and 

constituted the Pareto front. In MOPs, to assign a fitness 

value to an individual, all objectives should be evaluated. 

Therefore, when MOEAs are applied to a complex 

problem, computational cost can grow increasingly [4]. 

Also, it can be time-consuming. To handle these 

difficulties, fitness approximation can be integrated into 

MOEAs [5].  

 In our work, we aim to reduce the number of exact fitness 

function evaluations in one of the state-of-the-art proposed 

approaches for fitness approximation, which is called 

AFFG_NSGAІІ [6, 7] by introducing an effective factor to 

diagnose valuable individuals more logically.   

The remainder of this paper proceeds as follows. 

Literature review is provided in Section 2. Section 3 

expresses the contributions of the proposed approach. 

Section 4 and Section 5 present the experimental setup and 

the experimental results respectively. Section 6 is devoted 

to discussion. Finally, Conclusion of the paper and future 

directions are described in Section 7. 

2. Related Work 

In some real-world problems, metaheuristics like 

evolutionary algorithms are used to find a set of solutions 

over a unique run. The large number of exact fitness 

function evaluations makes such problems 

computationally prohibitive. The computational cost 

becomes more critical in MOPs since more objectives are 

involved. To deal with this difficulty, it is common to use 

approximation techniques, which are divided into three 
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levels, namely, problem approximation, functional 

approximation, and evolutionary approximation [8].  

Problem approximation tries to substitute an easier 

computationally solvable problem for the original one. As 

an example, performance evaluation of turbine blade wind 

tunnel experiments, which is led to Euler equations, can be 

replaced with Computational Fluid Dynamics (CFD) 

simulation, which is led to Navier-Stokes equations [8, 9]. 

Functional approximation tries to estimate a model based 

on objective functions known as the fitness function in the 

evolutionary computation [8]. To approximate fitness 

function, surrogate-assisted evolutionary computation can 

be used [9]. In recent researches, an Aggregate Surrogate 

Model (ASM) for multi objective optimization is 

introduced [10, 11, 12]. This surrogate model is built 

based on the combination of One-Class Support Vector 

Machine (SVMs) to change (randomly) unsupervised 

population into supervised one in each generation and 

Support Vector Regression (SVR) to estimate fitness of 

each individual and provide a Pareto front at last. Since 

ASM is used for extrapolation, to have enough diversity in 

the search space, informed operators are applied. In the 

other hand, because there are some errors in the surrogate 

model, pre-children generated by informed operators are 

not filtered in the basis of ASM lonely. In [10, 11] it is 

done based on ASM gain with regard to the lowest 

distance to non-dominated solutions in each generation. In 

[12] offsprings are filtered in a greedy manner (The 

highest amount of {ASM (k) – ASM (zk) | k is an 

offspring and zk is the nearest neighbour of k}), but 

premature convergence forces to make a probabilistic 

selection besides by using a normal distribution. Another 

research on surrogate-assisted MOEAs was proposed in 

[13]. In this work a Pareto Rank Learning procedure is 

used to predict rank of each new offspring. To learn this 

surrogate model, a population evolves iteratively and the 

value of each new offspring is evaluated using original 

objective functions and then is archived into an embedded 

database. Archiving new offsprings continue until having 

enough training data. After that, the non-dominance 

sorting is applied over the archived solutions. Then, an 

ordinal SVM model is learned based on the sorted 

database. At last, the rank of each new offspring is 

predicted in terms of the learned model; if the model 

produces an output of rank 1 its fitness is evaluated and is 

archived in the database. This updated database is used for 

updating the model after each generation. Even though 

fitness function approximation models presented can 

reduce cost of solving problems with expensive objective 

functions, they have some general defects as follows. 

Since model is updated in each generation, computational 

burden rises. Moreover, the precision of the model is 

dependant to the primary training data. Additionally, 

complexity of model grows exponentially as the number 

of problem parameters increases [14].  

Evolutionary approximation specifically is used in 

evolutionary algorithms. Fitness inheritance is a major 

class of this type of approximation, which was basically 

introduced in [15]. In this method, the number of fitness 

approximation in contrast with fitness evaluation is 

controlled based on inheritance proportion parameter. For 

an individual, its similarity to its parents and fitness of its 

parents are applied to form a weighted average formula for 

fitness approximation. Despite the simplicity of this 

method, since similarity of each individual to its parents is 

evaluated just in the decision space, its performance is not 

acceptable [14].  

To address the above-mentioned difficulties (in functional 

and evolutionary approximation), a new method for fitness 

approximation based on information granulation was 

introduced by Davarynejad et al. [7] Called Adaptive 

Fuzzy Fitness Granulation NSGAII (AFFG_NSGAII). In 

this method, a pool of solutions is constituted in the 

objective space. Each member of the pool is called a fuzzy 

granule. Each fuzzy granule is a Gaussian Membership 

Function (GMF) where its center is an individual and its 

width is computed based on its fitness and some problem 

dependant parameters. But approximated fitness 

sometimes leads to have not sufficient precision in such 

calculations. So, the weighted rank of each member of the 

pool besides a problem dependant parameter which is the 

minimum width of GMFs is used instead [6]. Additionally, 

each fuzzy granule has a life index used in fitness 

approximation while it can control the computational 

complexity of the algorithm. In this method, fitness of 

each new individual, generated by an evolutionary 

algorithm (like the standard NSGAІІ) in the decision 

space, being approximated or evaluated explicitly is 

determined based on its maximum similarity to the 

granules of the pool. The maximum similarity is evaluated 

in terms of a predefined similarity metric, which is 

Gaussian similarity function. In this criterion, the 

computed width of each fuzzy granule is used as a 

parameter for controlling the degree of the similarity 

among a new individual and that fuzzy granule; if the 

maximum similarity of the new individual to the granules 

of the pool be lower than an adaptive threshold, its fitness 

is approximated by increasing the granule’s life index. As 

a point, in [6] the threshold is considered fixed (0.9) to 

simplify their evaluations. In the other hand, in 

AFFG_NSGAII, the pool size is controlled in terms of the 

life index parameter in which the granule with the lowest 

life index is removed from the pool when its size becomes 

more than a predefined threshold.  

Since AFFG_NSGAII is one of the state-of-the-art 

proposed approaches in fitness approximation, vast 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 171

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

researches over it was done recently. For example, as 

mentioned earlier, by the reason that the width of each 

granule is used in the similarity metric as an important 

factor, in [16] a fuzzy logic controller is embedded to 

propose a width for each fuzzy granule. Input of this 

controller is Number of Decision Variable (NDV), 

Maximum Range of Decision Variables (MRDV), and 

number of completed generations. As an application-based 

work, effectiveness of the granule-based fitness 

approximation on Spread Spectrum Watermarking was 

investigated in [17]. 

In some applicatory problems like simulation, reducing 

number of expensive objective function evaluations is 

taken into consideration. AFFG_NSGAII can be used to 

deal with this limitation as a recent and promising method 

for fitness approximation. However, in this method, 

exploring valuable solutions for fitness evaluations more 

accurately can have a considerable effect on reducing the 

number of exact fitness function evaluations without 

sacrificing its performance. We contribute to this area and 

acquire some achievements.  

3. The Proposed Approach 

As mentioned in the previous section, AFFG_NSGAII as 

an evolutionary algorithm integrated into fitness 

approximation was improved in [6], in which filtering 

worthless individuals for fitness approximation was 

performed in terms of a fixed threshold and an applied 

factor that is a similarity metric called Gaussian similarity 

function. It means that the value of each new offspring 

generated by the standard NSGAII is determined based on 

its maximum similarity to the granules of the pool which is 

computed by the similarity metric; if the maximum 

similarity of a new offspring to the pool be lower than a 

fixed threshold, it is considered as a valuable individual. 

So, it is added to the pool and its fitness is evaluated 

explicitly; otherwise, fitness of the most similar granule of 

the pool is assigned to the new offspring (fitness is 

approximated) and then granule's life index is increased.  

However, we found that in such evolutionary process, 

there are some potential factors despite applied factor to 

filter out worthless individuals more precisely. Even if 

applying these factors leads to have an increase in the 

computational complexity but decreasing the 

computational cost in many applicatory problems, in 

which there are multiple expensive-to-evaluate objective 

functions, is much more significant under a limited 

resource budget. In our proposed approach, we introduce 

the most effective factor among the potential factors in 

spite of Gaussian similarity function, to identify more 

logically whether a new offspring is worthy enough for 

exactly evaluating its fitness. Before the introduction of 

the new effective factor, a preprocessing should be 

explained in the following. 

In each generation, granules of the pool are ranked based 

on non-dominance sorting [18]. Then, Non-inferior 

solutions are considered as the Current Pareto Set.  

Inspired by the fact that in most MOEAs the population is 

driven toward the best Pareto points [10], we introduce an 

influential factor in order to guide the search in the 

vicinity of the Current Pareto Set in each generation.  

Suppose the phenotype of jth individual and the center of 

lth fuzzy granule in ith generation to be like 

 

, 

 

 

 

, respectively and d be considered as the dimension of 

each individual, the minimum distance between jth 

individual and k’ elements of the Current Pareto Set in ith 

generation is computed based on Euclidean distance, as 

Eqn. (1). 

 

 
 

 

 

Now assume that the maximum similarity of the new 

offspring to the granules of the pool be lower than the 

determined threshold like before. To decide fitness of that 

offspring is either evaluated or approximated, the 

minimum distance of both the new offspring and its 

parents to the Current Pareto Set are computed by Eqn. 

(1); if the new offspring be closer to the Current Pareto Set 

compared with at least one of its parents, the new 

offspring is considered as a valuable individual, is added 

to the pool as a new fuzzy granule and its fitness is 

evaluated explicitly. We call our proposed approach as 

Modified_AFFG_NSGAII. 

Even if applying our powerful factor leads to make 

algorithm more complicated but in some real-world 

problems like expensive simulation-based and mechanical 

design problems decreasing the computational cost is 

much more considerable even by increasing computational 

complexity and spending more time. 

In Modified_AFFG_NSGAII, we use our influentially 

promising factor, which is the minimum distance to the 

Current Pareto Set despite applied factor, thereby deciding 

that fitness of a new offspring is either evaluated or 
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approximated. Consequently, the estimation of the 

proximity of solutions to the real Pareto set locally leads to 

have more precise selections of valuable individuals for 

fitness evaluations. In this way, we deal with the 

computational cost burden of such expensive problems by 

remarkably reducing the number of exact fitness function 

evaluations without having any tangible effect in the 

viewpoints of efficiency and efficacy. 

In order to prove that our proposed approach is promising, 

14 test problems are applied. Additionally, 2 well-known 

performance metrics are used for validation of our 

proposed approach. 

4. The Experimental Setup 

This section describes comprehensive assessments by 

means of two well-known performance metrics and 

adopting wide varieties of test problems to compare our 

results with respect to those obtained with a state-of-the-

art algorithm for fitness approximation (AFFG_NSGAІІ) 

[6].  

4.1 Performance Measures 

In this section, we present 2 indicators, which are 

commonly used specially in MOEAs for evaluation of our 

proposed approach.  

4.1.1 Hypervolume 

For a minimization problem, the volume in the objective 

space covered by non-inferior solutions (N) is evaluated 

by this metric. The set of the worst values of objectives 

forms a vector as the reference set. As explained 

mathematically by Deb in [2], for each non-inferior 

solution, sϵN, a hypercube, Vs, is constructed with a 

reference point, r. After all, Hypervolume is calculated 

based on the union of all hypercubes, as follow: 

 

 
 

To make it sensible, it is showed in Fig 1 [2]. 

 

 

 

 

 

 

 
Fig.1  The Hypervolume enclosed by non-dominated solutions. 

 

4.1.2 Inverted Generational Distance 

A real Pareto front and a set of candidate solutions 

 

, 

                         
 

are given; the Inverted Generational Distance (IGD) is 

defined as follow: 

 

 
 

Where  is minimal Euclidean Distance from yj to F [19]. 

4.2 Benchmarks 

In this section, we present 1 traditional and 1 state-of-the-

art benchmarks in order to perform comprehensive 

assessments of our proposed approach.  

4.2.1 Congress on Evolutionary Computation 2009 

(CEC09) 

In the CEC 2009 algorithm competition, a set of bound 

constrained MOP test problems as UF family and a set of 

constrained test problems as CF family are suggested [20].  

In our experiments we adopt 5 test problems from CF 

family, CF1 to CF5, and 4 test problems from UF family, 

UF1 to UF5 except UF4. 

4.2.2 Zitzler-Deb-Thiele (ZDT) 

As it was emerged in [21], ZDT family test problems have 

sufficient complexity to compare different types of multi 

objective optimizers. In our experiments, we adopt 5 test 

problems, ZDT1 to ZDT6 except ZDT5 as a binary 

problem. 

5. The Experimental Results 

Some parameter settings need to be performed in our 

experiments. The population size is set to 50. A set of new 

offsprings are generated by Simulated Binary Crossover 

(SBX) with probability of 0.9 and Polynomial Mutation 

(PM) with the probability of 1/L, where L is the number of 

decision variables. Distribution indices for crossover and 

mutation are taken from the literature (ɳc = 20 and ɳm = 

20). Furthermore, binary tournament selection is applied. 

Tables 1, 2, 3 show amounts of mentioned design 

parameters per test problem. 
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Table 1: Utilized parameter values and reference points used for 

calculating IH in ZDT family and their number of decision variables. 

 

 

 

 

 

 

 

 

Table 2: Utilized parameter values and reference points used for 

calculating IH in CF family and their number of decision variables. 

 

 

 

 

 

 

 

 

Table 3: Utilized parameter values and reference points used for 

calculating IH in UF family and their number of decision variables. 

 

 

 

 

 

 

 

 

 

Additionally, all numerical results are the average of 30 

independent runs, which are presented in Tables 4, 5, 6, 7, 

8, and 9. These attainments are related to HV and IGD of 

Pareto front while ZDT, CF, and UF test problem families 

are applied, respectively and both AFFG_NSGAII and 

Modified_AFFG_NSGAII converge. Indeed, these results 

indicate that both methods approximately have the same 

performance. 

 

Table 4: IGD of both AFFG_NSGAII and 

Modified_AFFG_NSGAII after convergence in ZDT family. 

 

 

 

 

 

 

 

 

 

 

Table 5: HV of both AFFG_NSGAII and Modified_AFFG_NSGAII 

after convergence in ZDT family. 

 

 

 

 

 

 

 

 

Table 6: IGD of both AFFG_NSGAII and Modified_AFFG_NSGAII 

after convergence in CF family. 

 

 

 

 

 

 

 

 

Table 7: HV of both AFFG_NSGAII and Modified_AFFG_NSGAII 

after convergence in CF family. 

 

 

 

 

 

 

 

 

Table 8: IGD of both AFFG_NSGAII and Modified_AFFG_NSGAII 

after convergence in UF family. 

 

 

 

 

 

 

 

 

Table 9: HV of both AFFG_NSGAII and Modified_AFFG_NSGAII 

after convergence in UF family. 
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 In the other hand, the average number of exact fitness 

function evaluations (of 30 independent runs) was plotted 

against the number of generations, which is determined in 

terms of the convergence time per test problem per 

algorithm. Derivative Figures (from Fig. 2 to Fig. 7) 

signify that Modified_AFFG_NSGAII reduces the 

computational cost considerably compared with 

AFFG_NSGAII. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Computational Cost Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Computational Cost Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT4 Problm 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Computational Cost Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Computational Cost Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF3 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Computational Cost Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  Computational Cost Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF3 Problem. 

6. Discussion 

As some state-of-the-art MOEAs integrated with fitness 

approximation in the literature, it is common to perform 

fitness approximation for some individuals besides fitness 

evaluation as usual for others. In some applicatory 

problems like simulation-based and mechanical design 

problems, there are expensive objective functions to 

evaluate. Therefore, contribution to this area has attracted 

more attention, recently. In this paper, we have 

contributed to this area in order to decrease the 

computational cost. 
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We believe that if we have had even lower individuals for 

fitness evaluations as usual in each generation but higher 

confidence about their qualities, termination control 

criterion would be met sooner. Therefore, there is a trade-

off between the computational cost and the computational 

complexity to achieve this fidelity. To achieve the above 

target, inspired by the fact that in most MOEAs the 

population is driven toward the best Pareto points, we 

proposed an effective and powerful factor in order to 

guide the search in the vicinity of the Current Pareto Set in 

each generation. Derivative Figures (Fig. 8 to Fig. 19) 

prove that Modified_AFFG_NSGAII mostly outperforms 

AFFG_NSGAII in terms of HV and IGD metrics per 

adopted test problem. 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig.8  Performance (HV) Comparison of Modified_AFFG_NSGA2 

and AFFG_NSGA2 over ZDT1 Problem. 

 

 

      

 

 

 

 

 

 

 

 

Fig.9  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT1 Problem. 

 

 

 

 

 

 

 

 

 

 

Fig.10   Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT4 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT4 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12   Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF1 Problem. 

 

 

 

 

 

 

 

 

 

 

Fig.14   Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF3 Problem. 
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Fig.15  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF3 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.18  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF3 Problem. 

 

 

 

 

 

 

 

 

 

 

Fig.19  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF3 Problem. 

 

As mentioned in Section 4, both methods were run until a 

fixed number of generations characterized in terms of the 

convergence time per test problem. To have a deep 

analysis of the proposed approach, the average HVs, and 

the average IGDs (of 30 independent runs), like the 

average number of exact fitness function evaluations in the 

previous section, were plotted separately against the 

determined number of generations. Derivative Figures in 

Section 4 (Fig. 1 to Fig. 7) and those are demonstrated in 

this section (Fig. 20 to Fig. 31) indicate that in our 

proposed approach the computational cost remarkably 

decreases while the convergence speed reduces. 

Fortunately, reduction in the convergence speed is 

negligible in comparison with the amount of decreasing 

the computational cost per test problem. 

 

 

 

 

 

 

 

 

 

 

Fig.20  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.21 Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT1 Problem. 
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Fig.22  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT4 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.23  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over ZDT4 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.24 Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.25  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.26  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF3 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.27  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over CF3 Problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.28  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF1 Problem. 

 

 

 

 

 

 

 

 

 

 

 

Fig.29 Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF1 Problem. 
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Fig.30  Performance (HV) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF3 Problem.  

 

 

 

 

 

 

 

 

 

 

 

Fig.31  Performance (IGD) Comparison of Modified_AFFG_NSGA2 and 

AFFG_NSGA2 over UF3 Problem. 

 

 

To find a better understanding of the usefulness of the 

proposed approach, numerical results are provided. In 

Tables 10, 11, and 12 the comparative amounts of the area 

under both AFFG_NSGAII and the 

Modified_AFFG_NSGAII curves (correspond to the 

Figures 44 to 71) are presented. 

 

Table 10: The area under both AFFG_NSGAII and 

Modified_AFFG_NSGAII curves in ZDT family correspond to Figs 

20 to 23. 

 

 

 

 

 

 

 

Table 11: The area under both AFFG_NSGAII and 

Modified_AFFG_NSGAII curves in CF family correspond to Figs 24 

to 27. 

 

 

 

 

 

 

Table 12: The area under both AFFG_NSGAII and 

Modified_AFFG_NSGAII curves in UF family correspond to Figs 28 

to 31. 

 

 

 

 

 

 

 

 

 

Moreover, to be more understandable, Tables 13, 14, and 

15 signify the percentage of differences of those 

comparative amounts. In particular, for some test problems 

such as CF4 the computational cost improved to more than 

43% while the convergence speed reduced to less than 

1%. 

 

Table 13: The percentage of differences of the area under the 

AFFG_NSGAII and the Modified_AFFG_NSGAII curves in ZDT 

family correspond to Figs 20 to 23 and Figs 2 to 3. 

 

 

 

 

 

 

 

Table 14: The percentage of differences of the area under the 

AFFG_NSGAII and the Modified_AFFG_NSGAII curves in CF 

family correspond to Figs 24 to 27 and Figs 4 to 5. 

 

 

 

 

 

 

 

 

Table 15: The percentage of differences of the area under the 

AFFG_NSGAII and the Modified_AFFG_NSGAII curves in UF 

family correspond to Figs 28 to 31 and Figs 6 to 7. 
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As it was showed in Tables 1, 2, and 3 in Section 4, the 

number of decision variables is considered 6, 10, and 30 

for “ZDT1 to ZDT3”, “ZDT4, ZDT5, and CF1 to CF5”, 

and “UF1 to UF3 and UF5”, respectively to have further 

investigation. The results, from first to end, illustrated that 

increasing individuals dimension has greater negative 

impact on Modified_AFFG_NSGAII form the viewpoint 

of both efficiency and efficacy. To explore the reason, we 

found the following observations. First of all, we suppose 

that the maximum similarity of a new offspring to the pool 

be more than 0.9 (predefined threshold); if the number of 

decision variables be set 100 in one time and 10 in the 

other time, the ratio of dissimilarity (between the new 

offspring and the granule whose similarity to it is more 

than predefined threshold) of the first case to the second 

one is 10 to 1. So, fitness is approximated with a lower 

accuracy in the first case. Furthermore, according to what 

was explained before, a greater number of fitness 

approximations are performed by 

Modefied_AFFG_NSGAII rather than AFFG_NSGAII 

until evolution control criterion is met. Therefore, 

decreasing both speed and accuracy is more tangible in 

our proposed approach rather than AFFG_NSGAII while 

the number of decision variables is increased. 

7. Conclusion and Future Directions 

In this study, we have introduced an effective factor for 

fitness approximation inspired from information 

granulation that affirmatively impress on reducing cost of 

MOEAs optimization. Our comprehensive experiments 

illustrate that the proposed approach is promising.  

As a future work, we can explore some extra factors to 

find valuable individuals more and more precisely. Also, 

our proposed approach can be employed in many objective 

problems.  
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