

Enhanced Technique for Data Cleaning in Text File

Arup Kumar Bhattacharjee 1,Atanu Mallick 2,Arnab Dey3, Sananda Bandyopadhyay4

Dept. of MCA, RCC Institute of Information Technology, West Bengal University of Technology
Kolkata, West Bengal, India

www.rcciit.in

 Abstract
Data cleaning is a process of correcting or removing of erroneous
data caused by contradictions, disparities, keying mistakes,
missing bits, etc to create consistent and reliable information.
Text files are used to store simple information and which can be
also deceptive in terms of dirty data. In this paper we have
provided a solution to cleanup simple text file using some data
cleaning processes. Though we use text files so often but there is
no such robust method exist to clean up text files. As data
cleaning plays a crucial role for decision management which is
depend on high quality data. So we have implemented a set of
methods to clean text files. Here we use text files to store data in
tabular format and our system checks whether there exist any
error and finally try to correct or remove the errors according to
different algorithms.
Keywords: ETL, Data Dictionary, Metaphone, Date Validation
Rules, Gender Validation Rules.

1. Introduction

At the beginning of our cleaning process, we fetch data
from text file and then we apply several algorithms to
rectify the erroneous record and after modification we put
back the corrected data to the same source text file and
may be kept in newly created text files as per user request.
For implementing the process we have used ETL model
(Extract, transformation and load) [1], [6], [7].
Extract - The process of fetching data from external
sources (Text files).
Transform – In this process, several rules are applied on
the fetched data for validation.
Load – The process of putting back the transformed data
to a target location (May be source text file or other text
file).
We categorize different type of error that can be occurred
due to various reasons. And use respective rules to correct
the data. Cleaning processes use various data dictionary
(text file format) to match with the nearest correct data and
to replace the erroneous data with the correct one. Finally,
a report consist of detailed information about the rectified
data along with the percentage of modification is being
generated by the system.
As high quality data is essential for accurate data analysis
and decision making, this data cleaning process ensures
users to get correct and quality data. In our project we have
used simple text file for keeping the information as it
reduces the overhead of maintaining the storage and cost

complexity of other database packages and making the
system portable.

2. System Architecture

(Fig 1) describes the overall system working principal. Our
system provides a user interface (UI) where user gives
requested input. Here we have considered college
information system as a demo process. First of all, system
validates the ID field (At entry level we are checking the
redundancy and pre-defined format of Id fields. If the ID is
redundant or empty, the system will request user for a
unique ID. The entry will not be submitted to the input text
file until user gives a valid ID, If user input an ID of
improper format, system will try to rectify it into pre-
defined pattern) [1]. The data are extracted from the input
text files (student.txt, course.txt, department.txt, faculty.txt,
subject.txt) based on attributes and system categorizes
them to process through some functions namely Numeric
Validation, Alphabetic Validation, Metaphone Phonetic
Validation, Date Validation and Gender Validation. These
functions use different Data Dictionaries for valid data
reference and the system finally generates a report
containing all modifications to the original files.

. Fig 1: System Architecture [1]

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 229

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3. Data Dictionary

We have included some Data Dictionaries (DD) for some
specific fields like city, qualification, course name,
department name, subject name etc to rectify and replace
with specified form or most nearest form for the erroneous
data. To incorporate this transformation we first generate
the phonetic code of the erroneous data and match with
each phonetic code of each and every value in
corresponding data dictionary. Two examples of such Data
Dictionary are shown below.

4. Taxonomy of Errors

Here we have classified the types of error that can occur in
the input text file, those are:-

(1) Numeric Value in alphabetic token [1]
(e.g. Name, Gender, City)

(2) Alphabets in Numeric token [1]
(e.g. Phone no, registration no, Date)

(3) Phonetic error (e.g. City, Course Name)
(4) Invalid or Redundant ID pattern [1]

(e.g. SID, CID, DID)
(5) Misspelling (e.g. City)
(6) Invalid date (e.g. DOB)
(7) Invalid gender [1], [2]

5. Rules and Algorithms

(A) ID Correction Rules: In this ID correction rules we
assume that the id will be always of 4 characters (e.g. S007
for student ID, C276 for Course ID).

Step 1: Eliminate all alphabets from the given string id.
Step 2: If length of id equals to 1 or 2 then we will add

“00”, “0” in front of the number respectively. In
all other cases we will take only first three digits.

Step 3: After that, for the case of Student, Department,
Course, Faculty id we will add S, D, C, F
respectively in front of their ids. (e.g. for Student
ID - S001, S002. For faculty -F001, F002. For
Course - C001, C002 etc)

Step 4: After transformation if cause any redundancy,
request user for unique one.

(B) Alphabetic Rules:

Step 1: Extract each character from the given string.
Step 2: Check whether the character is an alphabet or not.

If it is digit, then check whether it matches with 0,
5, $, &, @ , i, I, l.

Step 3: If matches with the above digits, then we will
transform those digits into the resembling
character. If it is 0(Zero) then transform into O, if
5 or $ or & then transform into S, if @ then
transforms into A, if ! or 1 or l or | then transform
into I.

Step 4: In case of all other characters remove them all
from the given string.

(C) Numeric Rules:

Step 1: Extract each character from the given string.
Step 2: Check whether the character is numeric or not. If

it is alphabet, then check whether it matches with
o, O, i, I, l, !, s, S..

Step 3: If matches with the above alphabets, we will
transform those digits into the resembling digit. If
it is ‘o’ or ‘O’ then transform into 0(Zero), if ‘s’
or ‘S’ then transform into 5, if ‘!’ or ‘I’ or ‘i’ or ‘|’
then transform into 1(one).

Step 4: In case of all other character remove them all
from the given string.

Step 5: In case of Phone number first we check the length
of the number.
(1) If Phone No length less than 9 then

initialize Null to the string.
(2) If Phone No length equals to 9 then

append 0 in the end of the string.
(3) If Phone No length greater than 10 then

return the First 10 digit.
(4) If Phone No length equals to 10 then

take the whole string.

(D) Metaphone Phonetic Rules:

1. Drop duplicate adjacent letters, except for C.
2. If the word begins with 'KN', 'GN', 'PN', 'AE',

'WR', drop the first letter.
3. MB � B only if MB at the end of word.
4. CIA� X; CH � X; SCH�K; C[IEY] � S;

Otherwise C�K
5. DG[EIY] � J Otherwise D�T
6. Drop 'G' if followed by 'H' and 'H' is not at the

end or before a vowel. GN -> N; GNED�NED
and is at the end.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 230

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

7. ‘G' transforms to 'J' if before 'I', 'E', or 'Y', and it is
not in 'GG'. Otherwise, 'G' transforms to 'K'.

8. Drop 'H' if after vowel and not before a vowel.
9. CK � K
10. PH � F
11. Q � K
12. SH � X; SIO � X; SIA � X
13. TI[AO] � XI[AO] ; TH � O ; TCH � CH
14. V � F
15. 'WH' transforms to 'W' if at the beginning. Drop

'W' if not followed by a vowel.
16. Drop 'Y' if not followed by a vowel.
17. Z � S
18. Drop all vowels unless it is in the beginning.

(Here � implies transformation from left side to
the right hand side)

(E) Date Validation Rules:

We have specified our pre defined date format as
dd/mm/yy. We assume year is in the last portion of our
input always and the age of the student is greater than 12.
Following steps summarize most of the rules from the
original implementation in our project.

Step 1: Input Date.
Step 2: The system will take only the input string

containing minimum 6 digits and it will check
whether the use has given delimiters or not.
Otherwise system will return null.

Step 3: We parsed the input string into three parts- day,
month, year respectively; which is separated by
delimiter.

Step 4: If length of the year string is equals to 4 then we
extract last 2 characters and if the length of the
year string is equals to 2 then we extract the year
string.

Step 5: We convert the year string into integer, and check
whether the age is greater than 12 or not. If the
year is in between 1900 and 1999 then it will
execute following steps otherwise it will return
nothing.

Step 6: If user gives the month input using name of the
month instead of numbers, the system will convert
the month in system defined format even if the
month string starts with or ends with few
characters. Those rules are given below

Months Starts With Ends With Replace

With

 January Ja nuary 01
 February F ruary 02
 March Mar ch 03

 April Ap il 04
 May M[aeiou]y ay 05
 June Jun ne 06
 July Jul uly 07
 August Au ust 08
 September S tember 09
 October O ober 10
 November N vember 11
 December D cember 12

Step 7: Then we will check for different condition for the

day and month field. It can be in dd/mm/yy
format or mm/dd/yy format.

Step 8: Here if the day is greater than 31 then first we are
reversing the number and then check whether the
number is greater than 31 or not. If not, then we
will consider the value. (Our system considers
that, it may be possible that the user can give
wrong input for certain reasons)

Step 9: Check for the April, June, September, November
month. Those months cannot exceed 30 days if
user gives wrong input as 31. Then our system
will consider as typing mistake and will give
value of 13.

Step 10: Check for February month. And if the year is leap
year then only the month can have 29 days. For
normal year the system won’t take day as 29.

Step 11: After all checking, the system will give input in
dd/mm/yy format. If none of the rule satisfies the
user input then system will return null.

Step 12: End.

(F) Gender Validation Rules:

1. First go through Alphabetic validation.
2. If the return string starts with ‘m’ or ‘M’ then

convert the string to MALE.
3. If the string starts with ‘f’ or ‘F’ then convert the

string to FEMALE.
.

6. Class Models

We have modularized our project through some classes for
ease of understanding. Our system has two set of classes.
1. Classes that represents the input text files (Student,

Department, course, Faculty, Subject).
2. Validation Classes (Date, Gender, Numeric,

Alphabetic, Phonetic).
Whenever system retrieves a tuple from a text file, a new
object of corresponding class gets created, populating each
property with the respective field values of that tuple. Now
related validation objects (instantiated validation classes)
takes this object as input and validate properties and finally

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 231

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

return back the object with rectified field values which can
be inserted into output text files.

Fig 2: Class Models

7. Sample Outputs

8. Future Scope

Here we have used text file in tabular format, it is possible
to correct errors without the tabular structure. In this paper
we have used Metaphone (phonetic algorithm) for
pronunciation of word; it can be implemented by double
Metaphone and Metaphone 3 algorithm which are latest
algorithms. Here we have improved the knowledge base
according to our requirements, anyone can change that for
their own suitable condition. Our algorithms for ID,
Alphabetic, Numeric, Date, Gender and Phonetic
validation can be improved or replaced depending upon
situation arises.

9. Conclusion

Our data cleaning framework preserves the quality error
free data in text file. Data accuracy is very hard to achieve
through data-cleansing in the general case, because it
requires accessing an external source (Data Dictionary) of
data that contains the true value. So our approach is
quietly based on this predefined knowledge base which can
be improved further with a best possible outcome of true
value for the erroneous data. As text files are used
massively it can flaw a decision making process. So by
enhancing the process of data cleaning in text file we can
resolve the situation and can be later used as analytics
software for decision making or removing dirty data in text
file.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 232

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References

[1] Arup Kumar Bhattacharjee, Atanu Mallick, Arnab Dey and

Sananda Bandyopadhyay, “Data Cleaning in Text File”,
IOSR Journal of Computer Engineering (IOSR-JCE),
ISSN: 2278-0661, Volume 9, Issue 2 (Jan. - Feb. 2013).

[2] R. Cody, “Data cleaning 101,” Proceedings for the Twenty-
Seventh SAS User Group International Conference. Cary,
NC: SAS Institute Inc,2000.

[3] Dr. Mortadha M. Hamad and Alaa Abdulkhar Jihad, “An
Enhanced Technique to Clean Data in the Data
Warehouse”. Computer Science Department. University of
Anbar, Ramadi, Iraq.

[4] Hasimah Hj Mohamed, Tee Leong Kheng, Chee Collin and
Ong Siong Lee, “E-Clean: A Data Cleaning Framework for
Patient Data”. School of Computer Sciences. University
Sains Malaysia Penang, Malaysia.

[5] Arindam Paul, Varuni Ganesan, Jagat Sesh Challa and
Yashvardhan Sharma, “HADCLEAN: A Hybrid Approach
to Data Cleaning in Data Warehouses”. Department of
Computer Science & Information Systems . Birla Institute
of Technology & Science, Pilani, Rajasthan, India –
333031.

[6] Erhard, Rahm and Hong Hai Do. “Data Cleaning: Problems
and Current Approaches”. University of Leipzig, Germany.

[7] Srivatsa Maddodi, Girija V. Attigeri and Dr. Karunakar A.
K, “Data Deduplication Techniques and Analysis”. Manipal
Institute of Technology, Manipal, India.

[8] R. Kimball and J. Caserta, “The Data Warehouse ETL
Toolkit”. Wiley,2004.

[9] V. Raman and J. M. Hellerstein, "Potter‟s Wheel: An
Interactive Framework for Data Transformation and
Cleaning.," in Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001.

[10] K. Kukich, “Techniques for Automatically Correcting
Words in Text”, ACM Computing Surveys, vol. 24, no. 4,
pp.377-439, 1992.

[11] R. Bheemavaram, J. Zhang and W. N. Li, “Efficient
Algorithms for Grouping Data to Improve Data Quality”,
roceedings of the 2006 International Conference on
Information & Knowledge Engineering (IKE 2006),
CSREA Press, Las Vegas, Nevada, USA, pp. 149-154,
2006.

Author Biography

Arup Kumar Bhattacharjee received his MCA Degree from
University of Kalyani and his M.Tech from West Bengal
University of Technology. He has contributed to 15 books and
coauthored 2 publications. He is an Assistant Professor of
Computer Application at RCC Institute of Information
Technology which is affiliated to West Bengal University of
Technology in Kolkata, West Bengal. His research interests
include Software Engineering, Object Technology and Parallel
Computing.

Atanu Mallick has completed his Bachelors in Computer
Science (Hons.) from Surendranath College under Calcutta
University in Kolkata, West Bengal. Currently he is pursuing his
Masters in Computer Application from RCC Institute of
Information Technology which is affiliated to West Bengal
University of Technology in Kolkata, West Bengal, India.

Arnab Dey received his Bachelors degree in Computer
Application from Pailan College of Management & Technology,
Kolkata under West Bengal University of Technology. Currently
he is pursuing his Masters in Computer Application from RCC
Institute of Information Technology which is affiliated to West
Bengal University of Technology in Kolkata, West Bengal.

Sananda Bandyopadhyay has completed her Bachelors in
Computer Application from Techno India (salt lake) under West
Bengal University Of Technology. Now she is pursuing her
Masters in Computer Application from RCC Institute of
Information Technology which is affiliated to West Bengal
University of Technology in Kolkata, West Bengal.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 233

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

