

The impact of indexes on data warehouse performance

El Amin Aoulad Abdelouarit1, Mohamed El Merouani2 and Abdellatif Medouri3

 1 Laboratory modeling and information theory

Abdelmalek Essaadi University, Tétouan, Morocco

2 Laboratory modeling and information theory

Abdelmalek Essaadi University, Tétouan, Morocco

3 Laboratory modeling and information theory

Abdelmalek Essaadi University, Tétouan, Morocco

Abstract
A data warehouse designer should consider the effectiveness of

data query, this depends on the selection of relevant indexes and

their combination with the materialized views, note that the index

selection is a NP-complete problem, because the number of

indexes is exponential in the total number of attributes in the

database, So, it is necessary to provide, while the data warehouse

design, the suitable type of index for this data warehouse.

This paper presents, in some steps, a comparative study between

the index B-tree and Bitmap type, their advantages and

disadvantages, with a real experiment based on two factors: size

of index and clustering factor, this shows that the Bitmap index is

more advantageous than the B-tree one.

Keywords: Data Warehouse DBMS, indexes, business

intelligence.

1. Introduction

The data warehouse administrator takes several decisions

regarding the administration tasks, such as databases

logical and physical designs, management of storage space

and performance tuning (performance tuning).

The most important task is the physical design of databases,

including data organization and improving access to these

data. To improve the access time, the administrator uses

general index to quickly find the necessary information

without a request to review all the data [1], [3], [5], [7].

Index selection is difficult because their number is

exponential in the total number of attributes in the database.

So the index plays an important role in the performance of

databases, for that we focus on this aspect of the data

warehouse, which it considers the focus of the designer

when editing and query optimization selection.

The objective is to minimize the query execution time.

And as queries in a data warehouse are based on the index,

we will work on the problem of choosing the type of index

when designing our warehouse data.

There are several types of indexes supported by databases

such as Bitmap [4] B-tree [3], [6], [7], [8], Bitmap join [9],

range-based bitmap index [10] etc... In this sense we have

chosen two types of index relevant to this study, the index

type: B-tree index and type Bitmap.

2. Bitmap Index

2.1 Definition

A bitmap index is a data structure defined in a DBMS used

to optimize access to data in databases. It is a type of

indexing is particularly interesting and effective in the

context of selection queries. The index bitmap attribute is

encoded in bits, where its low cost in terms of space

occupied. [7] All possible attribute values are considered,

the value is present or not in the table. Each of these values

is an array of bits, called bitmap, which contains as many

bits as n-tuples present in the table. Thus, this type of

index is very effective when the attributes have a low

number of distinct values. Each bit represents the value of

an attribute for a given tuple. For each bit, there is an

encoding presence / absence (1/0), which indicates that a

tuple or not the present value characterized in bitmap.

To illustrate how a bitmap index works, we take an

example EE-PP-O'Neil and O'Neil [2]. Table 1 illustrates a

basic bitmap index into a table containing 9 records, where

the index is created in the C column with integers ranging

from 0 to 3, we say that the cardinality of the column C is

4, by what there are 4 distinct values [0, 1, 2, 3], where the

index bitmap C Contains 4 bitmaps shown as B0, B1, B2

and B3 corresponding value represents. In this example,

the first line where RowID = 0, column C is worth 2,

consequently, B2 column bit value "1", while the other

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 34

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

bitmaps are set to "0". Same for the next line, where C = 1

corresponds to the bitmap B1 is set to 1 and the rest to "0".

This process is repeated for the remaining lines. [12].

Table 1: Basic Bitmap adopted by [9]

ROWID C B0 B1 B2 B3

0 2 0 0 1 0

1 1 0 1 0 0

2 3 0 0 0 1

3 0 1 0 0 0

4 3 0 0 0 1

5 1 0 1 0 0

6 0 1 0 0 0

7 0 1 0 0 0

8 2 0 0 1 0

2.1 Properties

Bitmap indexes have a very interesting property of responding to

certain types of requests without returning the data themselves,

thus optimizing the response time, disk storage. This is possible

by counting operations (COUNT) and logical operators (AND,

OR, etc.) that act "bit by bit" on bitmaps.

3. Bitmap Index

3.1 Definition

The index B-tree stores the index values and pointers to other

index nodes using a recursive tree structure. [3], [6], [7], [8] The

data are easily identified by traces pointers. The highest level of

the index is called the root while the lowest level is called the

leaf node or "leaf node". [7] All other levels between them are

called branches or internal nodes. All roots and branches contain

entries that point to the next level of the index. Leaf nodes

consist of the index key and pointers pointing to the physical

location of records. We present details of the index B-tree

structure [7].

The B-tree structure is used by the database server to configure

the index (Figure 1)

Fig 1: B-tree structure

Root or root is the highest level of the index points to the

following levels of nodes branches.

Intermediate nodes or branches contain pointers to the following

branches or to the leaf nodes level.

Node leaves or leaf nodes: the lowest level of the index points to

other node leaves.

4. Hypothesis

The conventional wisdom is that bitmap indexes are most

appropriate for columns having low distinct values - such as

gender, marital status, and relationship. This assumption is not

entirely accurate, however. In reality, a bitmap index is always

advisable for systems in which the data is not updated frequently

by many competing systems. In fact, as I will demonstrate here, a

bitmap index on a column with unique values to 100%

(candidate of the primary key column) is as effective as a B-tree

index.

5. Analysis and results

5.1 Analysis

As known, the bitmap index is more efficient than the b-

tree index by its low cardinality columns, we present in this

experimentation the performance given by Bitmap index

comparing with the B-tree.

We use two factors to of cost-based optimizer:

• The index size

• Clustering factor

Step 1:

In our Data warehouse schema, we created a table named

“Employees” with 100000 records and with a column

named employee_id with 100000 distinct values, and then

we added a GRADE column with 4 distinct values only.

Step 2:

We create now a standard B-Tree index on the GRADE

column using this SQL:

SQL> create index employees_grade_i on

employees(grade);

Then we check the index size using this query:

SQL> select index_name, index_type, distinct_keys, blevel,

leaf_blocks from dba_indexes where

index_name=’EMPLOYEES_GRADE_I’;

And we got this result:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 35

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Basic Bitmap adopted by [9]

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS

employee
s_grade_i Normal 4 1 176

Step 3: Creating a bitmap index on the same column to

compare the size (dropping the b-tree index created in first

step)

SQL> create bitmap index employees_grade_bitmap_ii on

employees(grade);

Step 4: In the bitmap index size checking, we use the same

query:

SQL> select index_name, index_type, distinct_keys, blevel,

leaf_blocks from dba_indexes where

index_name=’EMPLOYEES_GRADE_II’;

Table 3: Bitmap index size checking result in GRADE column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS

employee
s_grade_i

i
Bitmap 4 1 10

Note that the index size is reduced from 176 to 10 (while

going from B-tree to bitmap index)

Step 5: the bitmap index creation on employee_id column

that contains 100000 distinct values:

SQL> create bitmap index employees_empid_bitmap_i on

employees(employee_id).

By checking the index size using the same query, we have

this table as result:

Table 4: Bitmap index size checking result in EMPLOYEE_ID column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS
employee
s_empid_
bitmap_i

Bitmap 100000 1 348

And when trying with B-tree index we have this result:

Table 5: B-Tree index size checking result in EMPLOYEE_ID column

INDEX_

NAME

INDEX

_TYPE

DISTINCT

_KEYS
BLEVEL

LEAF_

BLOCKS
employee
s_empidb

tree_i
B-tree 100000 1 222

5.2 Results

For large distinct values B-tree index occupies less size,

and for minimal distinct values, the bitmap index occupies

less size.

Clustering factor: considered as the sum of rows orders in

a table based on the index values.

 If this amount is near the number of blocks, then the

table order is well done, and the index entries in a

single leaf block are pointing to rows stored in the

same data blocks.

 If the value is near the number of rows, then the table

is randomly ordered, so is improbable that the index

entries in a single leaf block are pointing to rows

stored in the same data blocks.

Table 6: Clustering factor and blocks used for B-Tree index on GRADE

column

INDEX_NAME
CLUSTERING

_FACTOR
BLOCKS

employees_grade_i 1148 256

Table 7: Clustering factor and blocks used for Bitmap index on GRADE

column

INDEX_NAME
CLUSTERING

_FACTOR
BLOCKS

employees_grade_ii 20 16

6. Conclusion and future work

By using the B-tree index, the optimizer opted for a full

table scan; this operation makes a higher clustering factor,

whereas in the case of bitmap index that makes a low

Clustering factor, he used to answer the query. You can

deduct the performance by the number of I / O required

fetching the result.

The message here is pretty clear. Both indices have a

similar goal: to return results as fast as possible. But the

choice of which one to use should depend only on the type

of application, and not on the level of cardinal.

As future work, another study will be done on data

warehouse schema comparison, especially it impact on

data warehouse performance.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 36

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] S. Chaudhuri, U. Dayal,An Overview of Data Warehousing

and OLAP Technology., ACM SIGMOD RECORD. 1997

[2] E. E-O’Neil and P. P-O’Neil, Bitmap index design choices

and their performance impli-cations, Database Engineering

and Applications Symposium. IDEAS 2007. 11th

International, pp. 72-84.

[3] R. Kimball, L. Reeves, M. Ross, The Data Warehouse

Toolkit. John Wiley Sons, NEW YORK, 2nd edition, 2002

[4] W. Inmon, Building the Data Warehouse., John Wiley Sons,

fourth edition, 2005

[5] C. DELLAQUILA and E. LEFONS and F. TANGORRA,

Design and Implementation of a National Data Warehouse.

Proceedings of the 5th WSEAS Int. Conf. on Artificial

Intelligence, Knowledge Engineering and Data Bases,

Madrid, Spain, February 15-17, 2006 pp. 342-347

[6] D. Comer,Ubiquitous b-tree, ACM Comput. Surv. 11, 2,

1979, pp. 121-13

[7] R. Strohm, Oracle Database Concepts 1g,Oracle, Redwood

City,CA 94065, 2007

[8] C. Dell aquila and E. Lefons and F. Tangorra, Analytic Use

of Bitmap Indices. Proceedings of the 6th WSEAS

International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases, Corfu Island,

Greece, February 16-19, 2007 pp. 159

[9] P. O’Neil and G. Graefe, Multi-table joins through bitmapped

join indices, ACM SIGMOD Record 24 number 3, Sep 1995 ,

pp. 8-11.

[10] K. Wu and P. Yu, Range-based bitmap Indexing for high

cardinality attributes with skew, In COMPSAC 98:

Proceedings of the 22nd International Computer Software

and Applications Conference. IEEE Computer Society,

Washington, DC, USA, 1998, pp. 61-67.

El Amin Aoulad Abdelouarit Is a Database administrator in
Tanger Med Port, Morocco, PhD Student doing research in Data
warehouse and Data mining and it application in Port
Management.

Mohamed El Merouani is professor of mathematics, with
interests in Probability, Statistics, Stochastic operational research
and Data mining, professor of Statistics and Computer Sciences,
Poly disciplinary Faculty of Tétouan, Abdelmalek Essaâdi
University, Morocco.
University of Granada, Spain, Ph.D. in Mathematics, 1995.

Abdellatif Medouri is Full professor of physics, with interests in
Telecommunications, Information theory and Databases;
professor of Statistics and Computer Sciences, Poly disciplinary
Faculty of Tétouan, Abdelmalek Essaâdi university, Morocco.
University of Granada, Spain, Ph.D. in physics, 1993.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 2, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 37

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

