
Investigational Study of 7 Effective Schemes of Load

Balancing in Cloud Computing

Suriya Begum

Research Scholar

Visvesvaraya Technical University

Belgaum, India

Dr. Prashanth C.S.R

Prof. and Head of Department

Dept. of Computer Science & Engg.

New Horizon College of Engg.

Bangalore, India

Abstract— With the exponential increase in demands of online

applications and services, cloud computing has evolved as a boon

in modern information technology. Built over the base of grid

and distributed computing, cloud computing offers services to

cater the dynamic needs of massive user base. However, with the

novelty associated with the system, cloud computing is also

associated with certain issues like availability, cost, load

balancing, security and performance. Very recently in last three

years there has been abundant set of research work conducted

aiming at mitigating the issues connected to load balancing in

cloud computing. This paper discusses 7 efficient techniques that

has been evolved in the past as a solution for load balancing
issues in cloud computing.

Keywords-component; Cloud Computing, Load balancing,

Scheduling, Virtualization

I. INTRODUCTION

As the information technologies are growing day by day,
the need of computing and storage are rapidly increasing. To
invest more and more equipments is not an economic way for
an organization to satisfy the even growing computational and
storage need. Cloud computing [1] is a term, which involves
virtualization, distributed computing, networking, software and
web services. A cloud consists of several elements such as
clients, datacenter and distributed servers. It includes fault
tolerance, high availability, scalability, flexibility, reduced
overhead for users, reduced cost of ownership, on demand
services etc. In its most basic form, cloud balancing provides
an organization with the ability to distribute application
requests across any number of application deployments located
in data centers and through cloud-computing providers. Cloud
balancing takes a broader view of application delivery and
applies specified thresholds and service level agreements
(SLAs) [2] to every request. The use of cloud balancing can
result in the majority of users being served by application
deployments in the cloud providers’ environments, even
though the local application deployment or internal, private
cloud might have more than enough capacity to serve that user.
So Cloud Computing has become a widely accepted paradigm
for high performance computing, because in Cloud Computing
all type of IT facilities are provided to the users as a service. In
Cloud Computing the term Cloud is used for the service
provider, which holds all types of resources for storage,
computing etc. Mainly three types of services models are
provided by the cloud. First is Infrastructure as a Service

(IaaS), which provides cloud users the infrastructure for
various purposes like the storage system and computation
resources. Second is Platform as a Service (PaaS), which
provides the platform to the clients so that they can develop,
and deploy their applications on this platform. Third is
Software as a Service (SaaS), which provides the software to
the users and hence the users don’t need to install the software
on their machines and they can use the software directly from
the cloud. Cloud Computing provides many benefits: it results
in cost savings because there is no need of initial installation of
much resource; it provides scalability and flexibility, the users
can increase or decrease the number of services as per
requirement; maintenance cost is very less because all the
resources are managed by the Cloud providers, basically our
model is a step towards green computing. As cloud computing
is in its evolving stage, so there are many problems prevalent in
cloud computing [3]. Such as:

 Ensuring proper access control (authentication,
authorization, and auditing)

 Network level migration, so that it requires minimum cost
and time to move a job

 To provide proper security to the data in transit and to the
data at rest.

 Data availability issues in cloud

 Legal quagmire and transitive trust issues

 Data lineage, data provenance and inadvertent disclosure
of sensitive information is possible

The most prevalent problem in Cloud computing is the
problem of load balancing. Further, while balancing the load,
certain types of information such as the number of jobs waiting
in queue, job arrival rate, CPU processing rate, and so forth at
each processor, as well as at neighboring processors, may be
exchanged among the processors for improving the overall
performance. The proposed paper will introduce a thorough
analysis of the 7 efficient techniques that has evolved in cloud
platform right from the origination of the initial distributed
computing system. The paper will mainly focus on the research
issues of load balancing and will attempt to analyze the prior
work done in this field.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 276

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

II. LOAD BALANCING IN CLOUD PLATFORM

Load balancing [4][5] is a process of reassigning the total
load to the individual nodes of the collective system to make
resource utilization effective and to improve the response time
of the job, simultaneously removing a condition in which some
of the nodes are over loaded while some others are under
loaded. A load balancing protocol is dynamic in nature doesn't
contemplate the previous state or behavior of the system, that
is, it depends on the current behavior of the system. It is
common these days in redundant high-availability computer
systems that incoming network traffic is distributed on network
level by deploying one of the frequently used network load
balancing algorithms like:- random-allocation, round-robin
allocation, weighted round-robin allocation, etc). These
algorithms use solely network parameters of incoming traffic to
create selections wherever to forward traffic, with none data
from different elements of database system, like current load of
application or info servers. Since these days it is extremely
common to possess internet servers acting as application
servers, it is usual that load balancers use session-switching
technique, which suggests that once a user opens website on
one server, it will stay on it server whereas the session lasts.

Depending on who initiated the process, load balancing
algorithms can be of five categories:

 Sender Initiated: If the load balancing algorithm is
initialized by the sender

 Receiver Initiated: If the load balancing algorithm is
initiated by the receiver

 Symmetric: It is the combination of both sender initiated
and receiver initiated

 Static: It doesn’t depend on the current state of the system.
Prior knowledge of the system is needed.

 Dynamic: Decisions on load balancing are based on
current state of the system. No prior knowledge is needed.
So it is better than static approach.

Users Load balancing
Routers

Application
Servers

Database
Cluster

Figure 1 Schematics of typical high-availability computer system with
hardware load balancers.

Central to the many other issues likes the establishment of an
effective load balancing algorithm. The load can be CPU load,
memory capacity, delay or network load. Load balancing is the
process of distributing the load among various nodes of a
distributed system to improve both resource utilization and job
response time while also avoiding a situation where some of
the nodes are heavily loaded while other nodes are idle or
doing very little work. Load balancing ensures that all the
processor in the system or every node in the network does
approximately the equal amount of work at any instant of time.

This technique can be sender initiated, receiver initiated or
symmetric type (combination of sender initiated and receiver
initiated types).

Table 1 Metrics in existing LB techniques in cloud computing

LOAD BALANCING METRICS

Metric Illustration

Throughput It is used to calculate the no. of tasks
whose execution has been completed. It
should be high to improve the
performance of the system

Overhead It determines the amount of overhead
involved while implementing a load-
balancing algorithm. It is composed of
overhead due to movement of tasks,
inter-processor and inter-process
communication. This should be
minimized so that a load balancing
technique can work efficiently.

Fault Tolerance It is the time to migrate the jobs or
resources from one node to other. It
should be minimized in order to enhance
the performance of the system.

Response Time It is the amount of time taken to respond
by a particular load balancing algorithm
in a distributed system. This parameter
should be minimized.

Resource
Utilization

It is used to check the utilization of re-
sources. It should be optimized for an
efficient load balancing.

Scalability It is the ability of an algorithm to perform
load balancing for a system with any
finite number of nodes. This metric
should be improved.

Performance It is used to check the efficiency of the
system. This has to be improved at a
reasonable cost, e.g., reduce task
response time while keeping acceptable
delays

It is important to evaluate solutions for cloud balancing
implementations with an eye toward support for the needs of an
actual IT department. The global and local application delivery
solution chosen to drive a cloud balancing implementation
should be extensible, automated, and flexible, and the vendors
involved need to look favorably upon standards. Meeting those
criteria is paramount to ensuring the long-term success of a
cloud balancing strategy. Combining high availability with
security is just as important. When the organization is using a
network that’s not its own for mission-critical application
delivery, stability and security become paramount.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 277

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Primary Data Ceter

Secondary

Data Center

Tertiary

Data Center
Public Cloud

Private Cloud

Hosted or Internal

Figure 2: Automated cloud balancing

Cloud balancing is still new, but the technology to add value is
available today. The ability to distribute connections across the
globe based upon an array of inputs such as geographic
location, device type, the state of servers in one location or
another, and balanced loads is real. There will be no doubt that
more advances in the future as cloud balancing will become
more main stream. There are challenges associated with the
implementation of such a strategy, some of which might take
years to address. But the core capabilities of global and local
application delivery solutions today make it possible to build a
strong, flexible foundation that will enable organizations to
meet current technical and business goals and to extend that
foundation to include a more comprehensive cloud balancing
strategy in the future. This review aims at summarizing the
current state of the art of existing load balancing techniques in
cloud computing. Here inspite of quantity of work done, the
focus in given to only names of distinctive techniques used to
mitigate load balancing issue in cloud computing), (load
balancing techniques in cloud computing), (load balancing in
clouds) and (load balancing in datacenters). Only papers
written in English were included. Following section discusses
about 7 load balancing techniques that are investigated in this
paper.

III. EVENT DRIVEN

In the recent the online game playing is much evolved. Day

by day the online playing games are increasing like Avatar,

Warcraft, and Counter Strike etc. For playing games through

online the resource managements take the initiation and

provide the game through servers for certain period of time, the

time will be for some minutes for shooting game and then

online billing occurs. In order to develop this kind of online

gaming the dynamic resource management with load balancing

is of quite essential.

Nae e.t al [6] evaluated a technique for dynamically

resource provisioning in massively multiplayer online games

(MMOG) for resource provisioning or for the load managing.

The many millions of concurrent players can play the same

game at a same time. Hence the dynamic resource management

is very much essential for multi-player online games. They

investigated the operational centers for provisioning on demand

games and operational costs and they evaluated a neural

technique for dynamic resource provisioning of MMOG entity

distribution for better performance.
Initially the investigated various types of player interaction a

source of short-term load variability, which complements the

long-term load variability due to the size of the player

population and then they introduced a combined MMOG
processor, network, and memory load model that takes into

account both the player interaction type and the population

size. MMOGs are large-scale simulations of persistent game

worlds comprising various objects or entities they classify into

four categories:

 Avatars are in-game representation of the players.

 Bots or non-player characters (NPCs) are mobile

entities that have the ability to act independently.

 Movable objects (such as boxes or guns) are passive

entities which can be manipulated but do not initiate

interactions.

 Immutable entities or decor.

The most employed model for online gaming is

client\server model and it consist of each discrete time unit that

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 278

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

to be executed. The clients dynamically connect to a joint game

session and interact with each other by sending play actions

such as movements, shootings, operations on game objects, or

chat. To ensure scalability and real-time response, an MMOG

session is distributed on multiple game servers, and each player

is mapped to an avatar on one of the servers, usually to one in

its closest proximity to minimize latencies. The entities that are

hosted in distributed session are called active entities. The

game session can be classified as parallelization techniques as

 zoning,

 replication, and

 instancing
Zoning is spatial scaling of game session, it partitions the

game world into geographical areas to be handled independently
by separate machines, replication targets parallelization of game

sessions with a large density of players located and interacting
within each other’s area of interest, instancing is simplification of

replication distributes session for high populated zones.

The MMOG depends on the game design that is on latency and

tolerance. The proposed the analytical load model for MMOG

by using the type of resource that they use CPU, memory, and

network. The load models that they classified as

 CPU Load Model

 Memory Load Model

 Network Load Model

 Complete Load Model
 In the CPU model they discussed w.r.t time consuming activities

within one game tick, for memory model they formulated a

equation w.r.t amount of memory needed to run actual game and
game world being played, In network model they focused on

outgoing network bandwidth usage for a machine running a
server of a distributed game session and last complete model is

integrating the all CPU, Memory, Network models.

Based on these models they proposed the neural network

based prediction model for better performance and accuracy for

provisioning dynamic MMOG. Their main goal is to reduce the

prediction error.

To experiment and validate the neural network prediction,

they developed a distributed game simulator, which

realistically emulates the behavior of game players. The

motivation for using an emulator is:

 they do not had available the exact coordinates of

entities in the RunScape game and

 through this emulator, they are able to give further

evidence that the player interaction determines the

server load

The emulator used by them generates eight different data traces

for duration of one day each with a sampling rate of two minutes,

modeling four parameters: peak hours, peak load, overall

dynamics, and instantaneous dynamics. The peak hours

correspond to the periods with high player count in online gaming

such as late afternoons. The peak load represents the highest load

observed in an MMOG, which is a good measure for its relative

popularity. The overall dynamic represents the variability of the

entity interaction over a period of one day, while the

instantaneous dynamic indicates the same variability over a

period of two minutes.

Figure 3 Statistical properties of the duration of one prediction for four

prediction algorithms applied to MMOG data

Fig. 3 depicts the duration of one prediction on an Intel Core

Duo E6700 (2.66 GHz) processor. Although the neural network

predictor is the slowest with average prediction duration of

approximately 7 microseconds, it is nevertheless fast enough

and suitable to MMOGs. They evaluate each experiment by
using three metrics: resource overallocation, resource

underallocation, and number of significant underallocation

events.

Table.2 Dynamic Resource Allocation Results
Predictor Type Avg Over-Allocation[%] Avg Under-Allocation[%]

 CPU ExtNet

[in]

ExtNet [out] CPU ExtNet

[in]

ExtNet

[out]

Neural Network 25.90 995.27 66.04 -0.09 0 0

Average 32.41 1023.4

3

69.29 -12.84 0 -2.46

Last Value 25.11 989.10 65.36 -0.16 0 0

Moving Average 24.92 992.06 65.69 -0.33 0 -0.03

Sliding Window 24.97 992.73 65.76 -0.41 0 -0.03

Exponential

Smoothing

24.76 977.85 64.11 -0.42 0 -0.03

They proposed a more efficient alternative based on the dynamic
resource provisioning and management of data center resources

and they made the thorough investigation of an MMOG
ecosystem, that is, of a multi-MMOG, multidata center

environment.

In this work they considered the number and the type of

interactions between players, and between players and the

environment is an important contributor to the game load. To

address it, they have introduced a new MMOG model that

focuses on the interaction count and type between game

entities, shown that interaction leads to much more dynamic

resource demands than previously believed, and proposed a

novel prediction algorithm based on neural networks that is fast

yet accurate. Their algorithm performed significantly better

than the six-time predictors. They have further investigated the

performance of the resource provisioning and management of

data center resources with a large variety of scenarios that

focus both on MMOG-specific properties and data center

hosting policies. Most importantly, they have shown that the

static resource provisioning can be, on average, from five upto

10 times more inefficient than dynamic allocation under the

same conditions, and that the game operators can penalize the

data centers with unsuitable hosting policies, by not using their

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 279

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

resources. Finally, they have designed and implemented

methods on top of the platform offered by the EUproject that

show real time resource provisioning for a real game prototype.

IV. VECTORDOT

In present era with increasing scale and complexity of modern

enterprise data centers, administrators are being forced to

rethink the design of their data centers. In a traditional data

center, application computation and application data are tied to

specific servers and storage subsystems that are often over-
provisioned to deal with workload surges and unexpected

failures. Such configuration rigidity makes data centers

expensive to maintain with wasted energy and floor space, low

resource utilizations and significant management overheads.

Today, there is significant interest in developing more agile

data centers, in which applications are loosely coupled to the

underlying infrastructure and can easily share resources

among themselves. Also desired is the ability to migrate an

application from one set of resources to another in a non-

disruptive manner. Such agility becomes key in modern cloud

computing infrastructures that aim to efficiently share and

manage extremely large data centers. One technology that is
set to play an important role in this transformation is

virtualization.

Storage virtualization technologies virtualized physical storage

in the enterprise storage area network (SAN) into virtual disks

that can then be used by applications. This layer of indirection

between applications and physical storage allows storage

consolidation across heterogeneous vendors and protocols,

thus enabling applications to easily share heterogeneous

storage resources. Storage virtualization also supports live

migration of data in which a virtual disk can be migrated from

one physical storage subsystem to another without any
downtime.

Singh e.t al. [7] describes the design of an agile data center

with integrated server and storage virtualization technologies.

Such data centers form a key building block for new cloud

computing architectures. They also show how to leverage this

integrated agility for non-disruptive load balancing in data

centers across multiple resource layers - servers, switches, and

storage. They propose a novel load balancing algorithm called

VectorDot for handling the hierarchical and multi-dimensional

resource constraints in such systems. The algorithm, inspired

by the successful Toyoda method for multi-dimensional

knapsacks, is the first of its kind. They evaluate system on a
range of synthetic and real data center test-beds comprising of

VMware ESX servers, IBM SAN Volume Controller, Cisco

and Brocade switches. Experiments under varied conditions

demonstrate the end-to-end validity of our system and the

ability of VectorDot to efficiently remove overloads on server,

switch and storage nodes.

They use the Harmony test bed architecture for designing of

the agile virtualization vectordot method and their algorithm

describes to address hierarchical and multidimensional

constraints that arise when deciding what items to move and to

where inspired by toyoda heuristic method.The developed two

algorithms called Extended vector product (EVP) for handling

overloads and selecting destinations. The two algorithms that

they used can be shown below.

Algorithm1 VectorDot: COMPUTING EVP

Step.1. EV P(Vitem vi, leafNode u) {
Step.2. if (vi already on u) then

Step31.LV ec ← PathLoadF racV ec(u)

Step.4.V V ec ← ItemPathLoadF racV ec(vi, u)

Step.5.TV ec ← PathThresholdV ec(u)

Step.6.return EV P2(LV ec, V V ec, TV ec)

else

Step.7.LV ec ← AdjustedP athLoadF racV ec(vi, u)

Step.8.V V ec ← ItemPathLoadF racV ec(vi, u)

Step.9.TV ec ← PathThresholdV ec(u)

Step.10.return EV P2(LV ec, V V ec, TV ec)

end if

}
Algorithm2 VectorDot: EVP2

Step.1.EV P2(LV ec, V V ec, TV ec) {

Step.2.Assert(LV ec.size() = V V ec.size())

Step.3.Assert(LV ec.size() = TV ec.size())

Step.4.val ← 0

Step.5.for i = 1. . . LV ec.size() do

Step.6.val+ = V V ec[i] Smooth(LV ec[i], TV ec[i])

end for

}

Step.7.Smooth(frac,T) {

return eα frac−T
}

For end-to-end validation of HARMONY in a real data center

setup, we created four scenarios in our testbed that cause

overloads on multiple dimensions of servers, storage and

switches. For the testbed experiments, they created six virtual

machines (3 GHZ CPU, 1.24 GB RAM running RedHat

Enterprise Linux 4.0) and distributed the equally between the

three ESX servers. Each ESX Server has 1 HBA with 1 active

port of 2GB I/O capacity and gigabit ethernet. They computed

for number of scenarios for single server, multiple server and

integrated server overloads. The results can be shown below.

Figure 4 Test bed Resource Description

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 280

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Figure 5 Single Server Overload Resolutions. Solid and dashed lines represent

CPU and memory utilizations resp.

Figure 6. Multiple Server Overload Resolution. Solid and dashed lines

represent CPU and memory utilizations resp.

Figure 7 Integrated Servers and Storage Overload Resolution

Their evaluations show [Fig.5-6] on a range of synthetic and

real data center testbeds demonstrate the validity of our system

and the ability of VectorDot to effectively address the

overloads on servers, switches, and storage nodes.

V. LBVS TECHNIQUE

The author [8] has discussed about Storage Virtualization

Model (SVM) that is proposed firstly to introduce the abstract

storage virtualization model. In this model, virtualization layers

are the key point. After that, Virtual Storage Architecture

(VSA) is proposed to introduce the specific virtual storage

architecture. This architecture is based on SVM, and Virtual

Storage Management Layer achieves this abstract model.

The Fig. 8 shows the Storage Virtualization Model (SVM).

Firstly, Storage Virtualization (SV) screens the differences of

physical storage devices, supplies uniform admin interface and

user interface, distributes and maps physical devices. During

storage access, SV will route logical address to physical

address. All access operations will be completed in a

transparent mode. As illustrated, SVM contains three

virtualization layers: resource virtualization, logical space

virtualization, storage network virtualization.

Figure 8 Storage Virtualization Model

In this work, LBVS uses the integrated Rule Oriented Data

System technology (iRODS) that is from Data Intensive Cyber

Environments (DICE) as the middleware to achieve virtual

storage. The iRODS (integrated Rule Oriented Data System)

technology is developed by the Data Intensive Cyber

Environments (DICE) group, which is distributed between the

University of North Carolina at Chapel Hill (UNC) and the

University of California, San Diego (UCSD). It is software

middleware that organizes distributed data into a shared

collection. When data sets are distributed across multiple types

of storage systems, across multiple administrative domains,

across multiple institutions, and across multiple countries, data

grid technology is needed to enforce uniform management

properties on the assembled collection. The iRODS Data Grid

expresses management policies as computer actionable Rules

and management procedures as sets of remotely executable

Micro-services. It contains three Logical Name Spaces (LNS)

which are from the original SRB Data Grid: Logical names for

users, Logical names for files and collections and Logical

names for storage resources. The iRODS supports four types of

virtualization.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 281

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 Workflow virtualization. This is the ability to manage the

execution of a distributed workflow independently of the

compute resources where the workflow components are

executed. iRODS implements the concept of workflows

through chaining of Microservices within nested Rule sets

and using shared logical variables that control the

workflow.

 Management Policy virtualization. This is the expression

of Management Policies as Rules that can be implemented

independently of the remote storage system. iRODS

implements traditional ACID database properties

(Atomicity, Consistency, Isolation and Durability).

 Service virtualization. The operations that are performed

by Rule-based data management systems can be

encapsulated in Micro-services. The iRODS Micro-

services provide a compositional framework realized at

run-time.

 Rule virtualization. This is a Logical Name Space that

allows the Rules to be named, organized in sets, and

versioned. A Logical Name Space for Rules enables the

evolution of the Rules themselves.
iRODS has been used, replica balancing and writing balancing

algorithms to build the virtual storage architecture, and the SVM
model.

Interface

GridSphere

Replica

Route
Write Route

iRODS

disk disk disk disk

Figure 9 Implementation Model

Compared with the strategy of iRODS, LBVS can use the

attribute of architecture to provide the best real time storage

scheme. In iRODS, users need to choose the storage space that

data write in manually. And in LBVS, system uses the

specified parameters to decide the trend automatically. To deal

with pressure of concurrent access, LBVS uses replica

balancing. After that, the pressure of concurrent access and the

response time decrease by a wide margin, and the capacity of

disaster recover are enhanced. Compared with managing

replica and migrating replica manually, this balancing strategy

enhances the flexibility and robustness of system, and makes

LBVS provide storage service much better.

VI. SERVER-BASED LB FOR INTERNET DISTRIBUTED

SERVICES

In this work, the authors [9] have simulated scenarios

where several clients, generating different workloads, access

replicas of a web service distributed worldwide. In these

simulations, the authors have assessed server selection policies

that are representative examples of the two groups of solutions.

With respect to this problem, an approach is presented for

client-based server selection that adaptively assigns different

selection probabilities to each server regarding network

latencies and end-to-end response times.

In order to evaluate the solution, a simulator is designed

using the CSIM for Java, a discrete event simulator framework.

The author has used the PackMime Internet traffic model [10]

to generate HTTP traffic in the simulations. PackMime allows

the generation of both HTTP/1.0 and HTTP/1.1 traffic.

PackMime has been obtained from a large-scale empirical

study of real web traffic and has been implemented in the ns-2,

a well known network simulator. In order to use the model in

our simulations, a Java version of the PackMime is designed

and implemented.

It is assumed that each geographically distributed replica of

the web server is composed of a cluster of servers. Each server

is simulated as a queueing system with fixed service time of

10ms. A scenario is considered with six replicas of the web

server that are worldwide distributed: one in South America

(S1), one in North America (N1), two in Europe (E1 and E2),

and two in Asia (A1 and A2). The average of the latencies

(ping RTT/2) measured on real hosts of PlanetLab3 in Brazil,

USA, Belgium, Austria, Japan, and China is used to simulate

the latencies among the replicated web servers. It is also

considered that each replica serves a region and that the latency

between a replica and a client of its region is 10ms.

In order to consider the latency of the TCP protocol, the

analytic model proposed by Cardwell et al. [11] is adopted.

This work extended previous models for TCP steady-state by

deriving models for two other aspects that can dominate TCP

latency: the connection establishment three-way handshake and

the TCP slow start [RFC793 1981]. Therefore, the model

proposed by Cardwell et al. can predict the performance of

both short and long TCP flows under varying rates of packet

loss. The accomplished solution (AD) is compared with two

other server selection policies:

 Round Robin (RR): Each client sends requests to all

servers in a rotative way;

 Best Server (BS): Each client uses RR to probe all servers.

The server that presents the best mean response time is

selected. Next, the client keeps sending all requests to the

selected server until its mean response time exceeds the

mean response time of other server. In this case, the client

starts probing again, in order to avoid using out-of-date

mean response times.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 282

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In order to present the flexibility of solution, the authors

performed the experiments considering two scenarios, one that

favors BS and another that favors RR. In the first, the total

capacity of the servers was set to 1200 requests per second

(rps) divided among the servers as follows: S1 = 100 rps, N1 =

300 rps, E1 = 200 rps, E2 = 300 rps, A1 = 200 rps, and A2 =

100 rps. The clients were configured to generate approximately

72% of the total capacity. In the second scenario, the total

capacity was divided equitably among the servers and the

aggregated load was set to approximately 90% of the total

capacity. The parameters used in the heuristic are shown in

Table 3.

Table 3 Parameters used in design

Parameter Value Description

INC 0.01 Probability increment

DEC 0.3Pi Probability decrement.

t_UPDATE 1s Time between probability

updates

WSIZE 30 requests Window size for response time

slide mean.

While the first scenario is characterized by a lightly loaded

system with heterogeneous servers, the second presents an

almost saturated system with homogeneous servers. It is clear

that, in the first case, due to its adaptability to server state

changes, BS performed better than RR. In the second case, the

equitable load distribution produced by RR outperformed BS’s

greedy strategy. Nevertheless, AD produced the best response

times in both scenarios. This indicates that our solution

successfully adapted to the system states while the other

solutions did not. The results suggest that, in the considered

scenarios, the considered hypothesis is valid.

A main advantage of client-side server selection policies is

that clients can monitor end-to-end response times in a better

way than server-side solutions. Besides, sometimes, client-side

policies are the only option available. Most of the client-side

policies proposed so far select one server to which the client

should send all requests or equitably distribute the load among

all of them. The simulations have shown that in scenarios

where several clients use the same server selection policy, these

two types of solution can lead to load-unbalanced states and,

consequently, to the worsening of response times. In this work,

the authors have argued that if clients collaborate in order to

balance server load they can obtain better response times. The

solution adaptively changes the fraction of load each client

sends to each server giving higher priorities to nearby servers.

Although this less greedy strategy of sending fractions of the

load to worser servers seems to be counterintuitive, the

experiments have shown that the solution overcomes the two

types of policies proposed so far, even an in scenario that

favors one type or another.

VII. FUZZY LOGIC

Fuzzy Logic Approach [12] was considered for deployment

over CloudSim with focus on designing a new load balancing

algorithm based on round robin in Virtual Machine (VM) to

achieve better response time and processing time. The load

balancing algorithm is done before it reaches the processing

servers the job is scheduled based on various parameters like

processor speed and assigned load of Virtual Machine (VM)

and etc. It maintains the information in each VM and numbers

of request currently allocated to VM of the system. It identify

the least loaded machine, when a request come to allocate and

it identified the first one if there are more than one least loaded

machine. Here, implementing the new load balancing technique

based on Fuzzy logic is tried. Where the fuzzy logic is natural

like language through which one can formulate their problem.

The advantages of fuzzy logic are easy to understand,

flexible, tolerant of imprecise data and can model nonlinear

functions of arbitrary complexity, and is used to approximate

functions and can be used to model any continuous function or

system. Fuzzy inference is the process of formulating the

mapping from a given input to an output using fuzzy logic and

the mapping provides a basis from which decisions can be

made, or patterns recognized.

In the investigation, the fuzzifier performs the fuzzification

process that converts two types of input data like processor

speed and assigned load of Virtual Machine (VM) and one

output like balanced load which are needed in the inference

system. In this work, considering the processor speed and load

in virtual machine as two input parameters to make the better

value to balance the load in cloud using fuzzy logic. These

parameters are taking as inputs to the fuzzifier, which are used

to measure the balanced load as the output.

The Defuzzification is the process of conversion of fuzzy

output set into a single number and the method used for the

defuzzification is smallest of minimum (SOM). The aggregate

of a fuzzy set includes a range of output values and be

defuzzified in order to resolve a single output value from the

fuzzy set. Defuzzifier adopts the aggregated linguistic values

from the inferred fuzzy control action and generates a non-

fuzzy control output, which represents the balanced load

adapted to load conditions. The defuzzification method is

employed to compute the membership function for the

aggregated output.
 The algorithm is described below to maintain the load in

VM of cloud computing as follows:

1 Begin

2 Connect_to_resource ()

3 L1

4 If (resource found)

5 Begin

6 Calculate connection_string ()

7 Select fuzzy_connection ()

8 Return resource to requester

9 End

10 Else

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 283

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

11 Begin

12 If (Anymore resource available)

13 Choose_next_resource ()

14 Go to L1

15 Else

16 Exit
17 End

18 End

The proposed algorithm starts with request a connection to

resource. It tests for availability of resource. It Calculate the

connection strength if the resource found. Then select the

connection, which is used to access the resource as per

processor speed and load in virtual machine using fuzzy logic.

As the proposed load balancer Fuzzy based Round Robin

(FRR) performs well, when comparing to the Round Robin

Load Balancer by considering all instruction length per request.

 Some experimental results of the performance increase in

the implemented service by minimize the data centre

processing time and overall response time is presented.

Benefits of using fuzzy logic on round robin policy of load

balancing are shown.

The network structure or topology also required to take into

consideration, when creating the logical rules for the load

balancer. Two parameters named as the processor speed and

assigned load of Virtual Machine (VM) of the system are

jointly used to evaluate the balanced load on data centers of

cloud computing environment through fuzzy logic. The results

obtained with performance evaluation can balance the load

with decreases the processing time as well as improvement of

overall response time, which are leads to maximum use of

resources. So, the obtained result shows the proposed Load

Balancing algorithms (FRR) perform better than Round Robin

(RR) Load balancer and it can be more appropriate in real life

application efficient and effectively.

Fig-10: Data Centre Processing Time vs. Instruction Length per Request

In the result phase the main focus is to show the result, as the

proposed load balancer Fuzzy based Round Robin (FRR)

performs well, when comparing to the Round Robin Load

Balancer by considering all instruction length per request. We

have simulated the result by exploiting 25 machines, 5

numbers of processors per machine, and hundreds of jobs with

the parameters mentioned as table-1. Some experimental

results of the performance increase in the implemented service

by minimizing the data centre processing time and overall

response time. Benefits of using fuzzy logic on round robin

policy of load balancing are shown.

Figure 11 Overall Response Time vs. Instruction Length per Request

Fig.10 shows the data centre processing times are minimized

with respect to all instruction length per request for Fuzzy

based Round Robin (FRR) load balancer as compared to

conventional Round Robin (RR) load balancer. We observed

the efficiency of proposed load balancer FRR in terms of

overall response time from Fig.11. It decreases the overall
response time in all respect of data centre processing times as

compared to RR. From these figure we observed that the FRR

is better than RR, which is our objective.

VIII. TASK SCHEDULING

Tayal [13] has proposed an optimized protocol based on

Fuzzy-GA improvement that makes a programming call by

evaluating the whole cluster of task within the job queue. The

inspiration of our work is to give the centralized scheduler

(master node) a choice by referring to a global view of the

whole system. The framework of proposed model is shown in

Figure 12. System Model describes the information related to

processors which includes slot information, data replication

information and workload information of processors. Task

Model includes the job and asks information to be processed in

the queue. Predicted Execution Time Model is a base for later

schedule optimization.

Task-1 Task-2 Task-3 Task-4 Task-5

Predicted
Execution Time

Model Fuzzification

GA Scheduler

Scheduler Optimizer

Optional Schedule

Objective Function

-System Model
-Workload Model

JOB-1 JOB-2

Figure 12 Schematic Diagram of Tayal [13]

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 284

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

It could be got by statistics techniques with tolerable

deviation. Using the information of Task Model, System

Model, Predicted Execution Time Model, Objective Function

as input, to Fuzzification of parameter is implemented and gone

through GA algorithm and generates an optimal schedule.

When new jobs arrive or rescheduling condition is met, such as

processor failure, Reschedule needs to be done.The system

model describes the data store and computing cluster that jobs

could be assigned to the cluster includes machines arranged in

a general tree-shaped switched network as in Figure1. The

nodes are commodity PCs. Data are distributed through these

nodes. There are several replicas for each data block in the

distributed file system. By default, the number of replicas is set

as three in Hadoop. Map tasks generate the intermediate data

stored the same node. We assume the communication overhead

exits when the data does not locate in the same node as the

computing node. The network rate between two nodes in the

same rack is faster than the communication between nodes in

different racks when network traffic on the main backbone

network is big. Usually each rack contains 30-40 nodes. The

links between racks are 1 Gbps while rack internal is 1 Gbps

and local disk read is 2 Gbps. Each node can contain several

processors. For each node, there are several map slots and

reduce slots. Usually there is per slot for one processor.

 The whole algorithm, considering the aspects discussed

above, is shown below:

1. Get new tasks to be scheduled. The tasks to be scheduled

include the uncompleted task and new jobs. But if jobs arrive in

dynamically and make too many jobs waiting to be assigned at

one time, the sliding-window technique [3] could be used as an

option. The window size is fixed. Tasks fall into the sliding

window will get scheduled.

2. Generating E matrix for the job Using KCCA technique to

predict the execution time of any individual task assigned to

every node.

3. Get the current state of the system.

4. Fuzzification of all above parameter to get optimized task

schedule.

5. The Fuzzify parameter Map in GA to get optimized.

5.1. Generate an initial population of chromosomes

randomly.

5.2. Evaluate the fitness of each chromosome in the

population. Evaluate P according to information in E;

5.3. Create a new population by repeating the following steps

until the new population is complete, Selection Select two

parent chromosomes from a population according to their

fitness. (The better the fitness, the higher is the chance for

getting selected). Crossover With a crossover probability, do

cross over operations on the parents to form a new offspring.

If no crossover is performed, offspring is the exact copy of

the parents. Mutation With a mutation probability, mutate

new offspring at each locus (Position in chromosome)

Acceptance Place the new offspring in the new population.

5.4. Using the newly generated population for a further sum

of the algorithm.

5.5 If the test condition is satisfied, stop and return the best

solution in the current population.

 5.6. Repeat Step c until the target is met.

6. Finally obtain the optimal solution.

The task scheduling using Genetic Algorithm is done. The

objective function for our algorithm is the latest completion

time of the task schedule, referred as Makespan. The Makespan

is calculated in objective function. Where represents the time

that processor i will have finished the previously assigned jobs

and E[t][i] is the predicted execution time that task t is

processed on processor i. This paper also assume centralized

scheduling scheme; i.e., a master processor unit in cloud,

collecting all tasks, will take charge of dispatching them to

other process units. Each process unit has its own dispatch

queue (DQ). The master unit communicates with other process

units through these dispatch queues. This organization ensures

that processor units always find some tasks in the dispatch

queue when the finish the execution of their current task. The

master unit works in parallel with other units, scheduling the

newly arrived tasks, and periodically updating the dispatch

queues. Tasks are sorted ascending by the value of deadlines.

Reasons to choose GA as an optimization algorithm is

simplicity of operation and power of effect. It is suitable to

some NP-hard problems

IX. PARTICLE SWARM OPTIMIZATION

Wu et al. [14] have experimented with a set of workflow

applications by varying their data communication costs and

computation costs according to a cloud price model. First, the

algorithm starts with swarm initialization using greedy

randomized adaptive search procedure to guarantee each

particle in the initial swarm is a feasible and efficient solution.

Then, compute the potential exemplars, pbest and gbest, for

particles to learn from while they are moving. The stop

condition is considered as the user’s QoS requirements, such as

deadline, the budget for computation cost or data transfer cost.

The particle’s new position generation procedure has three

steps: 1) select elements from the promising set of pairs with

larger probability, that is, the particle learns from gbest and

pbest; 2) due to the discrete property of scheduling, there are

usually not enough feasible pairs in gbest to generate new

position, so the particle will learn from its previous position; 3)

all the unmapped tasks should choose resources from other

feasible pairs. Finally, gbest will be return as optimal solution.
Assume all tasks are executed on the Amazon Elastic

Compute Cloud (http://aws.amazon.com), all the data are

stored in Amazon Simple Storage Service and data

transmissions are fulfilled through the Amazon Cloud Front.

And assume that Service 1 and 2 to be in US, Service 3 in Euro

and Service 4 in APAC. Due to the varying price of service, in

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 285

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

the following simulation, the price at this moment is adopted.

Cost of execution of Ti on Servicej is $0.17 per hour (resources

for high-CPU, on-demand instance medium instances, Linux

Usage). Taskcost = Tasktime * Price. Data communication unit

cost matrix is shown in Table 4. Each task has own

input/output data and the sum of all data in the matrix varies

according to the data size we test (64-2048M).

Table 4 Cost Matrix Used

 S1 S2 S3 S4

S1 0 0.01 0.15 0.19

S2 0.01 0 0.15 0.19

S3 0.15 0.15 0 0.20

S4 0.19 0.19 0.20 0

As for workflow, the number of total tasks ranges from 50 to
300 including both workflow and non-workflow activities.

The number of workflow segments increase accordingly

from 5 to 50. The number of resources is constrained in the

range of 3 to 20. QoS constraints including time constraint

and cost constraint for each task are defined as follows:

time constraint is defined as the mean duration plus 1.28*

variance and cost constraint is defined as the triple of the

corresponding time constraint. The makespan of a

workflow is defined as the latest finished time on all the

virtual machines and the total cost of a workflow is defined

as the sum of task durations multiply the prices of their

allocated virtual machines..

Figure 13 total makespan optimization ratio

Figure 14. The total computation cost optimization ratio

From Fig 13, we can see that BRS can get around 2%

optimization ratio, PSO can achieve from 6% to 8%

optimization ratio, RDPSO can get from 10% to 17%

optimization ratio on the whole makespan. PSO does not

take makespan into account when it evolves; RDPSO takes

not only computation cost but also whole makespan into

account when it evolves. When user’s requirement is

specified, complete the workflow application with the

requirement constraint is very important, so RDPSO is

more applicable in cloud environment than PSO. From Fig

4, we can see that both PSO and RDPSO can achieve

relatively large optimization ratio. These two algorithms

take cost into account while they are searching the optimal

solutions. BRS only blindly choose the best service. The

authors have also compared the total computation cost

optimization ratio by varying the tasks number. The result

shows that when the task number of the workflow becomes

large, their technique optimization ratio increases relatively

dramatic. It means the technique can actually achieve lower

cost for executing the workflow. Experimental results show

that the proposed algorithm can achieve much more cost

savings and better performance on makes pan and cost

optimization. Result could be better if SLA was considered.

The goal of this study was to determine whether the literature
on load balancing techniques in cloud computing provides a

uniform and rigorous base. The papers were initially obtained

in a broad search in four databases covering relevant journals,

conference and workshop proceedings. Then an extensive

systematic selection process was carried out to identify papers

describing load balancing techniques in cloud computing. The

results presented here thus give a good picture of the existing

load balancing techniques in cloud computing.

X. CONCLUSION

Load balancing is one of the main challenges in cloud

computing [15]. It is required to distribute the dynamic local

workload evenly across all the nodes to achieve a high user

satisfaction and resource utilization ratio by making sure that

every computing resource is distributed efficiently and fairly.

So in this paper we have compared various algorithms of load

balancing in Cloud Computing. And we have concluded that

we can use a particular algorithm according to our

requirement/need. But as we know that the Cloud Computing

covers a very vast area, it is applicable to both small and large

scale area but as we have concluded that none of the above

algorithms satisfies the criteria. So there is a need to develop
an adaptive algorithm which is suitable for heterogeneous

environment and should also reduce the cost.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 286

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

REFERENCES

[1] Peter Mell, Timothy Grance, “The NIST Definition of Cloud
Computing”, Special Publication 800-145, 2011.

[2] Rajkumar Buyya1, Saurabh Kumar Garg, and Rodrigo N. Calheiros,
“SLA-Oriented Resource Provisioning for Cloud Computing:

Challenges, Architecture, and Solutions”, International Conference on
Cloud and Service Computing, IEEE, 2011

[3] Nayandeep Sran, Navdeep Kaur, “Comparative Analysis of Existing
Load Balancing Techniques in Cloud Computing”, International Journal

of Engineering Science Invention, ISSN (Online): 2319 – 6734, ISSN
(Print): 2319 – 6726, Vol. 2 Issue 1, pp.60-63, 2013

[4] Jaspreet kaur, “Comparison of load balancing algorithms in a Cloud”,
International Journal of Engineering Research and Applications, Vol. 2,

Issue 3, pp.1169-1173, 2012
[5] K. Ramana, A. Subramanyam and A. Ananda Rao, “Comparative

Analysis of Distributed Web Server System Load Balancing Algorithms
Using Qualitative Parameters”, VSRD-IJCSIT, Vol. 1 (8), pp.592-600,

2011
[6] Vlad Nae, Alexandru Iosup, Member, Radu Prodan, “Dynamic Resource

Provisioning in Massively Multiplayer Online Games”, Parallel and
Distributed Systems, IEEE Transactions on , Vol.22, No.3, pp..380,395,

2011
[7] Aameek Singh, Madhukar Korupolu, Dushmanta Mohapatra, “Server-

Storage Virtualization: Integration and Load Balancing in Data Centers,
High Performance Computing, Networking, Storage and Analysis, SC.

International Conference for , Vol., pp.1-12, , 2008
[8] Hao Liu, Shijun Liu, Xiangxu Meng, Chengwei Yang, Yong Zhang,

“LBVS:A Load Balancing Strategy for Virtual Storage”, International
Conference on Service Sciences, Service Sciences (ICSS), International

Conference on , pp.257,262, 2010
[9] Alan Massaru Nakai1, Edmundo Madeira1, and Luiz E. Buzato,

“Improving the QoS ofWeb Services via Client-Based Load
Distribution”, 2011

[10] Jin Cao, William S. Cleveland, Yuan Gao, Kevin Jeffay, F. Donelson
Smith, Michele Weigle, “Stochastic Models for Generating Synthetic

HTTP Source Traffic”, INFOCOM, Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies,

Vol.3, pp.1546-1557 vol.3, 2004
[11] Cardwell, N., Savage, S., Anderson, T. “Modeling tcp latency. In

INFOCOM,. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, Vol. 3, pp. 1742 –

1751, 2000
[12] Srinivas Sethi, Anupama Sahu, Suvendu Kumar Jena, “Efficient load

Balancing in Cloud Computing using Fuzzy Logic”, IOSR Journal of
Engineering (IOSRJEN) ISSN: 2250-3021 Vol. 2, Issue 7, pp. 65-71,

2012
[13] Tayal, S., “Task Scheduling Optimization for the Cloud Computing

System”, International journal of advanced engineering sciences and
technologies, Vol. 5, No. 2, pp.111 – 115, 2011

[14] Zhangjun Wu1, Zhiwei Ni, Lichuan Gu, Xiao Liu, “A Revised Discrete
Particle Swarm Optimization for Cloud Workflow Scheduling”,

Computational Intelligence and Security (CIS), 2010 International
Conference on , pp.184-188, 2010

[15] Begum, Suriya, and C. S. R. Prashanth. "Review of Load Balancing in
Cloud Computing", IJCSI International Journal of Computer Science

Issues, Vol. 10, Issue 1, No 2, 2013.

Suriya Begum has completed her

Bachelor of Engineering in Computer

Science and Engg in 1995 from

Bangalore University, India. She

completed her Master of Technology in

Computer Science in 2007 from
Allahabad University, India and

currently a research scholar in

Visveswaraya Technical University,

Belgaum, India. She is having almost 19 years of

experience as an academician. Her research interest is

cloud computing, networking and load balancing.

Dr. Prashanth C.S.R has completed
Bachelor of Engineering in

Computer Science and Engg from

Bangalore University, India. M.S in

Computer Science from University

of Texas at Dallas and Completed

his PhD in Computer Science, from

Auburn University in 2006.His

research interest is high

performance computing, cloud

computing, networks and Operating

Systems. He is presently working as Professor and Head
of Department of Computer Science and Engg, New

Horizon College of Engineering, Bangalore. He has

published many national and international papers.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 287

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

