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Abstract 
The Residue Number System (RNS) is a non-weighted system 

that is very efficient in digital signal processing and 

communicational applications. The previous proposed methods 

for the residue to binary (R/B) conversions are based on the 

Chinese Reminder Theorem (CRT) or Mixed Radix 

Conversion (MRC). These theorems are difficult to implement. 

In this paper, we present a new high-speed ROM-less residue 

to binary converter for the three moduli set of {2n1, 2n, 2n1}. 

Our technique unlike previous methods uses the grouping 

numbers in dynamic representation range M which its delay is 

much less than other converters. 

Keywords: residue number system, reverse converter, moduli 

set {2n1, 2n, 2n+1}, group number.  

 

1.  Introduction 

Residue Number System is an unconventional system. In 

this system, an integer X is represented by its reminder 

modulo a number of different bases. These residue 

numbers are smaller than the original number in the 

conventional system, so computations can be done with 

more speed and low power [1]. The advantages of RNS 

for implementing digital signal processors for certain 

applications such as FIR filtering are well-known [2-5]. 

Some of the more recent applications have been for 1-D 

filtering [6-8], 2-D filtering [9], video filtering [10], 

RSA cryptography [11-14], Elliptic curve cryptography 

[15], m-ary orthogonal keyed communication scheme 

[16], general purpose RISC DSP [17] and Image 

processing [18]. 

The RNS is determined using a set of relative pair wise 

prime integers positive co-prime integers {m1, m2, …, 

mn} as moduli set. The dynamic range M of that system 

is given as a product of the moduli mi where  

.

1






n

i

imM                                  (1) 

Any integer X between 0 and M 1 can be uniquely 

represented as (x1, x2, …, xn). The residues ,||
imi Xx   

also called residue digits, are defined as 

                      (2) .0,mod iiii mxmXx         

The two most important issues for the residue arithmetic 

are the choice of moduli sets and the conversion of 

residue to binary numbers. The choice of moduli set in 

RNS is of continuing interest. Early designs of RNS-

based processors were largely based on ROMs which 

used small set of mutually prime integers to realize a 

large dynamic range. However, the R/B converters for 

the general moduli sets are hardware intensive and 

implemented based on LUTs (Look-up tables). The 

access time of the LUTs and the need to read these 

iteratively have made the implementations inefficient for 

ASIC realization for RNS with large dynamic range. 

Hence, the more recent trend has been to use moduli sets 

which can help to eliminate the ROMs. These are known 

as power-of-two related moduli sets or “conversion-

friendly” moduli sets [19].  

In residue-based processors, designing an efficient R/B 

converter is very important. Considerable emphasis has 

been put on the popular moduli sets like {2n1, 2n, 

2n+1}, {2
n
1, 2

n
, 2

n
+1}, and {2

n
1, 2

n
, 2

n1
1} [3, 20-

25]. The arithmetic processors of these sets and the 

corresponding residue to binary converters make them 

very attractive compared with other sets [26]. The 

powers-of-two related moduli sets have the advantage 

that all operations required in digital signal processing 

applications such as modulo addition, modulo 

subtraction, modulo multiplication, scaling and FIR 

filtering can be efficiently performed due to the 

attractive arithmetic properties of these moduli [19].  

The three moduli set {2
n
1, 2

n
, 2

n
+1} is of special 

interest because several operations in this system can be 

performed efficiently with limited amount or even 

without ROM. The periodicity properties exhibited by 

three moduli of this RNS result in superb performance of 

the binary to residue converter and modulo addition 

even for large n [27]. 
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Section 2 describes how the conversion of RNS to 

binary system using the new approach. Section 3 

presents the hardware implementation and in section 4, 

the proposed design is compared with other reported 

converters.  

 

2. Proposed Method 

For residue to binary conversion in moduli set {2
n
-1, 2

n
, 

2
n
+1}, we distribute the numbers in dynamic 

representation range M into several groups and 

subgroups which a part of this novel idea is presented in 

[28]. Since, residue representation of X in above moduli 

set is corresponding with (x1, x2, x3), then the three 

residues denotes as:  

  

  
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n

nn
n

n

nn
n

n

nn
n

xxxXx

xxxXx

xxxXx

             (3) 

So, the group number of any residue number in the 

considered moduli set obtains according to Figure 1. 

 

 

Fig. 1  Group Number Detection. 

The number of groups required for this distribution is 

equal to  and can be expressed as 

.12
122321231 


n
nnn xxxx           (4) 

Therefore, we can concluded that length of any group be 

called l is given as 

).12.(2
12

)12.(2).12(





 nn

n

nnn
M

l


           (5) 

In any of these groups there are 2
n 
subgroups, because 

.120,
232  n

nxx 
    

            (6) 

For example, the value of  for numbers in first group 

with range [0, 2
2n

 + 2
n
) is shown in table1. 

Table 1: Distribution of Numbers in subgroups 

Subgroup Number 

0  0  2n    

1 2n+1  2(2n+1) – 1           

2 2n (2n+1)  3(2n+1) – 1    

  

2n–1 (2n–1) (2n+1)   2n (2n+1) – 1 

 

 

For determination of group number of any residue 

number, first should be get the value of . For clarity, 

we have exhibited it in range [0, 2
2n

 + 2
n
) as follows:  

 

 

 

 

 


1231 nxx

 

     0  X  2n+1,  =0 

     2n+1  X  2 (2n+1),  =2 

           2(2n+1)  X  3 (2n+1),  =4 

                              

(2n-11)(2n+1)  X  2n1 (2n+1)          =2n2 

      2n-1(2n+1)  X  (2n-1+1)(2n +1),  =1 

                              

 (2n 2)(2n+1)  X  (2n1)(2n+1),  =2n3 

  (2n 1)(2n+1)  X  2n (2n+1),  =0. 

(7) 

According to (7) and with regard to the product result 

from moduli subtraction in each group be appeared first, 

odd values and afterward even respectively. Since, in 

order to accomplishment of arithmetic operations should 

be arranged the  values increasingly, so it is achievable 

through one bit right rotate. Therefore, if assume  = 0, 

2, 4, 6, …, 2
n
 - 2, 1, 3, .., 2

n
 - 3, after 1-bit right rotate, 

we get   = 0, 1, 2, …, 2
n 
- 3, 2

n
 - 2. 

 

Thus, by having the values of  and , the group 

number of any residue number in RNS (counting from 0) 

is defined as   

           (8).220,
12




n
n   

Table 2 shows the distribution of numbers in dynamic 

range [0, 2
3n

 – 2
n
) which is given as a product of the mi’s 

in moduli set {2
n
-1, 2

n
, 2

n
+1}.  

Table 2: Distribution of Numbers in groups 

Group Number 

0               0  2n (2n+1) – 1 

1       2n (2n+1)  2[2n (2n+1)] – 1  

 
                                    

2n-2  (2n–2)[2n (2n+1)]  (2n–1)[2n (2n+1)] – 1 

 

Therefore, after the determination of group and 

subgroup numbers of any number in RNS, its 
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corresponding number in the binary system is achievable 

according to equation  

3)12.()12(2 xX nnn                  (9) 

Since, for multiplying one n-bit number in 2 is sufficient 

to do one bit left cyclic shift of number, then the value of 

.2
n
 is computed as the n-bit left cyclic shift of . In 

other words, we have  


n

nnn
n

nnn xxxxxxxxxx 0002... 0132101321    

 (10) 

 

Also, in order to multiplication of n-bit number in 2
n
+1, 

we get 

  


  


n

nnn

n

nnn

n
nnn

xxxxxxxxxx

xxxxx

0132101321

01321 )12(...



 

          (11) 

Therefore, to achieve the product of a n-bit number by 

2
n
. (2

n
+1) in (9), will be got: 

  


  


nn

nnn

n

nnn

nn
nnn

xxxxxxxxxx

xxxxx

000

)12.(2...

0132101321

01321



 

   (12) 

Now equation (9) can be rewritten as 

    


1

0,31,3,3000





n

nn

nnnnn

xxxX            (13) 

As be seen, X is the 3n bits number. For computation of 

the lower n bits of X, we can defined  according to 



  
  

1

0,32,31,3 ...





n

n

nn

n

xxx                      (14) 

In the other hand, because the lower n bits of X in binary 

system is equal to the division reminder of number 

modulo 2
n, then can be concluded in the considered 

moduli set, no need to computation of , due to the 

lower n bits of  is achievable through x2.  

2021 ... xnn                               (15) 

So, the most significant bit (MSB) of  is required to 

computed only and it denotes the carry bit, namely     

 11:0, CGC nnout                        (16) 

As we know, the x3 is the residue of the binary number 

mod 2
n
+1 and the largest value of x3 is equal to .0001 

n

 

In this case, in addition of  3x  which  is a n bit 

number, we will be .0, outC  Notice that, only while 


n

XXXx ...03  , we can be had .1, outC  Hence, the 

two bits of ,outC  and x3,n are not one simultaneously.  

So we get 

     nout xC ,3,                             (17) 

Therefore, according to the all mentioned issues, can be 

said   
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2

)(2

1
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2...13

1
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1

,...12

,

0,22,21,220...1
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MSBCC

xCX

CC

xxxxX

nn
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nnn
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































 




     (18) 

Due to, the most significant higher 2n bits of X gives as  

  
1

...13  

nnn

nnX                          (19) 

Therefore, the final form of (7) can be rewritten as 

2...13 xXX nn                          (20) 

Thus, (20) is implemented as a simple concatenation of 

Xn-1…0, X2n-1…n and also X3n-1…2n. Implementation of 

equation (20) is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 reverse conversion unit 

 

3. Hardware Structure 

The group detection function is determined by Eq.(8) as 

.
12 

 n  According to [28], since  is computed 

as a residue modulo 2
n
-1 then, instead of subtracting  

12 n  we can add its additive inverse modulo 2
n
-1. An 

additive inverse modulo 2
n
-1 is simply a negation of 

      PPA  -EAC   
C2 



 


 



 

n...nX 213 

 

1

 



 

nnX ...12 

 

Mux

 

2x
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binary representation. For simplification reasons the 

additive inverse of 
12 n  is denoted as  

.ˆ
1212 


nn                            (21) 

So that, the binary form of (21) is .,,...,ˆ
011   n  

Thus (8) can be rewritten as the sum  

.ˆ
12 


n

                             (22) 

 

From [29], an addition modulo (2
n 

- 1) with redundant 

zero elimination can be expressed as 

nn pcbaba out 212



                  (23) 

where cout is a carry bit of a + b addition and p = 1 for a 

+ b = 11…12. The sum cout + p is 0 for a + b < 2
n
  1 and 

1 for  a + b  2
n
 – 1 [30]. By assuming that Cin = cout + p, 

the final form of (22) is then 

  .ˆ
2ninC                             (24)  

Also, the values of  and   is given using this way. 

Notice that, in computing of ,
1231 

 nxx  because 

x3 is a residue number modulo 2
n
 +1 and x3  2

n
 then 

123 nx  is given by OR-ing the least and the most 

significant bits of x3. Therefore, binary form of 123 || nx   

is .,...,, 1,31,3,30,3 xxxx nn   

 

Proposed method for the numbers conversion from 

residue system to binary system is implemented with 

parallel prefix structure including parallel-prefix adder 

and end-around-carry prefix adder, both of which are 

introduced in [29]. A parallel prefix adder and also 

parallel prefix adder with end-around-carry are built 

from elements shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Blocks of prefix adder structure [30]. 

The signals jiG :  and jiP :  are the carry generation and 

propagation functions from the position i to j. For an 

addition of two binary vectors 01...aan  and 01...bbn  

and for ,jki   these functions can be expressed by 

logic equations 

 

.:1::

:1:1::

:

:

jkkiji

jkjkkiji

iiii

iiii

PPP

GPGG

baP

baG













                    (25) 

 

The carry signals jc  are equal to 1:0 jG  and the bits js  

of a final sum are .: jjjj cPs   An addition advantage 

of prefix structures is that the end-around carry can be 

added in the last stage with a delay cost of two logic 

levels [30]. The detailed description of this idea is 

presented in [29].  

In this paper, the standard unit-gate model [29] used to 

estimate the area and time (AT) characteristics of 

proposed design in order to reverse conversion of 

numbers by moduli set {2
n
-1, 2

n
, 2

n
+1}. In this model, 

each two-input monotonic gate (e.g. AND, OR, NAND, 

NOR), and also XOR/XNOR gate counts as one and two 

gates respectively.  

The Group Number Detection (GND) unit of shown in 

Fig. 1 comprises three main adders: one modulo (2
n
) 

adder and two adder mod (2
n
 1). For calculation of  

modulo 2
n
, we used the parallel prefix adder from [29] 

by 4log)2/3(5 2  nnnA  and .6log2 2  nT  

Also, for determination of values  and , applied the 

end-around-carry prefix adder which its hardware and 

delay are 3log)2/3(8 2  nnnA  and 

.6log2 2  nT  Consequently, area and time of  GND 

unit are:   

 

.12log4

2log
2

9
21

21

21





nT

nnnA
                    (26) 

 

As we mentioned already, since lower n bits of the 

decoded number are available directly as residue 

corresponding to modulus 2
n
, then without need to the 

hardware components, can be efficiently implemented. 

C1, the product carry bit from  + x3 addition be 

computed using the carry generation unit which is 

shown in Figure 4.   
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Fig. 4. Carry Generation Unit for n=16 

The carry generation unit use (n - 1) black nodes and n 

input nodes (denoted as square). Its area and time can be 

expressed as 

                     
2log2

36)1(33

22

2





nT

nnnA
                    (27) 

For the calculation of middle n bits from the position Xn 

to X2n-1, applied the new and modified structure of end-

around-carry parallel-prefix adder namely (EAC-PPA) 

which the output carry signal is determined by C2. 

Figure 5 is used to compute the value of       and 

C2 = Cout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Fig. 5 EAC-PPA 

The requirements for the above adder is as follows: n 

input nods, n output nodes (denoted as lozenge), (n - 1) 

black node, one additional gate. Notice that first input 

node is a full adder with area of 4 unit and delay of 2 

unit more than half adder. The prefix part of circuit from 

[29] requires the delay of n2log2  logic levels and also, 

the area of nn 2log)2/3( . The AT parameters for the 

shown circuit in Figure 5 are 

.8log2

2log
2

3
8

23

23





nT

nnnA
                    (28) 

So, the required hardware and time for generation of bits 

n to 2n-1 of the binary number can be expressed as 

                          
.20log6

log629

24

24





nT

nnnA
                     (29) 

It is shown in EAC-PPA circuit that delay of generation 

of C2 is equal to 6log2n + 17.  

According to Fig. 2, the most significant n bits of X in 

binary system is given by  or  + 1. The output carry 

signal from the circuit shown in Fig. 5 be called C2 is 

selecting line of multiplexer which determine whether  

be directed to output or  + 1. In order to computation of 

 + 1, is sufficient after the value determination of , be 

add with 1.  
Therefore, the circuit  + 1 perform the function of 

adding 1 to a n-bit input number. Consider               

=n-1n-2…10,+1=n-1n-2…10+1=en-1en-2… e1e0. 

We have the following equation, which imply that the 

circuit plus 1 requires n-1 XOR gates and n AND gates 

plus 1 inverter. 

e0= 0  , e1=110, ei=ii….0, 

en-1=n-1n-1….10, 

    The circuit requires the hardware of 3n and delay of 2 

logic levels. Thus, the sum of them consist of 

.14log4

2log
2

9
23

25

25





nT

nnnA
                   (30) 

Since, AT parameters of n bits Mux are 3n and 2 

respectively, then area and delay of generation of bits 

from position 2n to 3n – 1are 

              
.19log6

log632

26

26





nT

nnnA
                      (31) 

Total delay of the circuit is determined by a path 

consisting one unit of group detection, C2 generation 

unit and multiplexer. The total area and delay of the 

designed reverse converter circuit are 

         

.19log6

1log641

231

2532

2





nTTTT

nnnAAAAAA

Mux

T

tot

MuxORtot

C



(32) 

4. Conclusions  

Reverse converter is one of the most important issues in 

residue number system. In this paper, a novel and fast 

algorithm for the conversion of numbers given in RNS 

{2
n
-1, 2

n
, 2

n
+1} is presented. Our proposed technique is 

based on grouping numbers which has significant 

reduction in delay, compared to other methods. 

Furthermore, it accomplishes reverse conversion without 

applying the generic approaches such as CRT and MRC. 
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