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Abstract

Diagonal cubic Hermite-Padé approximation to the expo-
nential function with coefficient polynomials of degree at
most m is considered. Explicit formulas and differential
equations are obtained for the coefficient polynomials. An
exact asymptotic expression is obtained for the error func-
tion and it is also shown that these generalized Padé-type
approximations can be used to asymptotically minimize the
expressions on the unit disk. As an application, a class of
local analytical difference schemes based on diagonal cubic
Padé approximation for diffusion-convection equation with
constant coefficients is proposed.

Keywords: Padé-type approximant; Cubic Hermite-
Padé approximation; Asymptotic formula; Differential
equation

1 Introduction

The Padé approximation theory has been widely used
in problems of theoretical physics[1][3][4][5], numerical
analysis[9][10], and electrical engineering, especially in
modal analysis model[2], order reduction of multivariable
systems[6][11][13][14].

We consider approximations of e−x generated by find-
ing polynomials Pm, Qm, Rm and Sm so that

Em(x) := Pm(x)e−3x+Qm(x)e−2x+Rm(x)e−x+Sm(x)

= O(x4(m+1)−1), (1)

where Pm, Qm, Rm, Sm ∈ πm (the vector space of all alge-
braic polynomials of degree at most m), and Pm has leading
coefficient 1. The approximation of e−x is given by one of
the following three functions (j = 0, 1, 2)

δjm(x) := ωj
1
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which is real and closest to 0, where
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Obviously, δjm(x) is the natural cubic generalization of
the main diagonal Padé approximant −Q̂m/P̂m satisfying

P̂m(x)e−x + Q̂m(x) = O(x2(m+1)−1)

and the diagonal quadratic Hermite-Padé approximant [7](
−qm +

√
q2
m − 4pmrm

)/
(2pm) satisfying

pm(x)e−2x + qm(x)e−x + rm(x) = O(x3(m+1)−1). (2)

Our primary aim is to derive the exact asymp-
totic formula for {Em}, the explicit formulae of
{Pm}, {Qm}, {Rm}, {Sm}, {Em} and to treat some
minimization problems concerning related approximations
on the unit disk in C.

Exact results concerning best rational approximation
to the exponential function, particularly the Meinardus
conjecture, have attracted much attention ([8]). Theorem 4
can be viewed as a cubic version of this conjecture on the
disk. A linear version, due to Trefethen appeared in [15];
a quadratic version on the disk given by Borwein can be
found in [7].

As an application, this paper proposes a class of local
analytical difference schemes based on cubic Padé approxi-
mation to e−x for the following diffusion-convection equa-
tion

∂u

∂t
= a

∂u

∂x
+ ε

∂2u

∂x2
(3)

with the initial condition u(x, 0) = ϕ(x), 0 ≤ x ≤ 1; and
the boundary condition u(0, t) = α, u(1, t) = β; where
ε > 0, a ̸= 0, α, β are all real constants.
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2 Explicit Formulae of the Polynomial Coef-
ficients

Let

pm(x) = m!
m∑

j=0

cjx
j

j!
,

qm(x) = −2m+1m!
m∑

j=0

djx
j

j!
,

rm(x) = (−1)mpm(−x),

with

cj =
m−j∑
k=0

1
2k

(
2m − (k + j)

m

)(
m + k

m

)
;

dj =
m−j∑
k=0

(−1)k−j

(
2m − (k + j)

m

)(
m + k

m

)
.

Then
(
−qm +

√
q2
m − 4pmrm

)/
(2pm) is the diagonal

quadratic Hermite-Padé approximant [7] to e−x. Also,
pm, qm and rm satisfy (2) and

pm(x)e−2x + qm(x)e−x + rm(x)

=
2m+1x3m+2

m!m!

∫ 1

0

∫ 1

0

(1 − u)mum

×e−uvx(1 − v)mv2m+1e−vxdudv. (4)

Now let

Pm(x) :=
e3x3m+1

m!

∫ ∞

x

(t − x)mpm(t)e−3tdt. (5)

Then

Pm(x) =
e3x3m+1
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x
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.

If we set

ai :=
m∑

j=i

3i−jcj

(
m + j − i

m

)
,

then

Pm(x) = m!
m∑

i=0

aix
i

i!
. (6)

Note that Pm is a polynomial of degree m with highest
coefficient 1.

Let

Qm(x) =
e2x3m+1

m!

∫ ∞

x

(t − x)mqm(t)e−2tdt (7)

:= −3m+1m!
m∑

i=0

bix
i

i!
, (8)

with

bi =
m∑

j=i

dj2i−j

(
m + j − i

m

)
.

Then Qm(x) is a polynomial with integer coefficients.
Let

Rm(x) :=
ex3m+1

m!

∫ ∞

x

(t − x)mrm(t)e−tdt (9)

= (−1)m3m+1m!
m∑

i=0

eix
i

i!
, (10)

where

ei :=
m∑

j=i

cj(−1)j

(
m + j − i

m

)
,

then Rm(x) is a polynomial with integer coefficients.

Define Sm by

Sm(x) = −3m+1

m!

∫ ∞

0

(t − x)me−t

×
{
pm(t)e−2t + qm(t)e−t + rm(t)

}
dt,

then

Sm(x) = m!
m∑

i=0

six
i

i!
, (11)

with

si = (−1)i+1
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j=0
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Finally, let

Em(x) = −3m+1

m!

∫ x

0

(t − x)me−t

·2
m+1t3m+2

m!m!

∫ 1

0

∫ 1

0

um(1 − u)m
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·e−uvt(1 − v)mv2m+1e−vtdudvdt (12)

= (−1)m+1 6m+1x4m+3

m!m!m!

·
∫ 1

0

∫ 1

0

∫ 1

0

(1 − u)mume−uvwx

·(1 − v)mv2m+1e−vwxw3m+2

·(1 − w)me−wxdudvdw (t = wx). (13)

Now we may establish the basic theorem.

Theorem 1.

Em(x) := Pm(x)e−3x+Qm(x)e−2x+Rm(x)e−x+Sm(x)

= O(x4(m+1)−1),

where Em, Pm, Qm, Rm and Sm are given by (12), (6), (8),
(10) and (11) respectively.

Proof By (12) and (4)

Em(x)

= −3m+1

m!

∫ x

0

(t − x)me−t

·
{
pm(t)e−2t + qm(t)e−t + rm(t)

}
dt

=
3m+1

m!

∫ ∞

x

(t − x)mpm(t)e−3tdt

+
3m+1

m!

∫ ∞

x

(t − x)mqm(t)e−2tdt

+
3m+1

m!

∫ ∞

x

(t − x)mrm(t)e−tdt

−3m+1

m!

∫ ∞

0

e−t(t − x)m

·
{
pm(t)e−2t + qm(t)e−t + rm(t)

}
dt

= Pm(x)e−3x + Qm(x)e−2x + Rm(x)e−x + Sm(x).

With (13), the theorem has been proved.

3 Asymptotics and Exact Minimization

We now turn to asymptotic estimate for {Em}. As usual,
im ∼ jm means im/jm → 1 (m → ∞). Throughout this
paper the asymptotics are concerning the variable m.

In order to give the asymptotic, we need the following
lemma.

Lemma 2 [15].∫ 1

0

(1 − t)αmtβme−γtdt

∼ e−
βγ

α+β

∫ 1

0

(1 − t)αmtβmdt

= e−
βγ

α+β
(αm)!(βm)!

((α + β)m + 1)!
,

where α, β are positive numbers, αm, βm are positive in-
tegers.

Now we can give the asymptotic estimates of {Em}.

Theorem 3.

Em(x) ∼ (−6)m+1m!
(4m + 3)!

x4m+3e−
3
2 x.

The asymptotic is uniformly on the bounded subsets of C.
Proof From (13)

Em(x) ∼ (−6)m+1x4m+3

(2m + 1)!m!

∫ 1

0

∫ 1

0

(1 − v)m

·e− 3
2 vwxv2m+1(1 − w)mw3m+2e−wxdvdw

∼ (−6)m+1x4m+3

(3m + 2)!

∫ 1

0

(1 − w)m

·w3m+2e−
12m+5

2(3m+1) wxdw

∼ (−6)m+1m!
(4m + 3)!

x4m+3e−
(3m+2)(12m+5)
2(4m+3)(3m+1) x

∼ (−6)m+1m!
(4m + 3)!

x4m+3e−
3
2 x.

Both of the first two asymptotics follow from the elemen-
tary relation of Lemma 2. It is easy to check directly from
(12) that Em(x)/{(−6)m+1m!x4m+3e−

3
2 x/(4m + 3)!} is

uniformly bounded on a compact subsets of C. The unifor-
mity of the asymptotic now follows from Vitali’s theorem
[7].

We wish to uniformly minimize over D := {z ∈
C :|z| ≤ 1},

wm(z) := sm(z)e−3z + tm(z)e−2z + um(z)e−z + vm(z),

where sm, tm, um, vm ∈ πm and sm has highest coefficient
1.

Firstly, we have
Theorem 4. For |z| = 1,∣∣∣∣Em

(
z +

3
2(4m + 3)

)∣∣∣∣ ∼ 6m+1m!
(4m + 3)!

.

Proof This follows from Theorem 2 and the observation
that (

z +
3

2(4m + 3)

)4m+3

∼ z4m+3e
3
2z ,

and the fact that for |z| = 1, |e 3
2 ( 1

z −z)| = 1.
Let

P ∗
m(z) = Pm

(
z +

3
2(4m + 3)

)
,

Q∗
m(z) = Qm

(
z +

3
2(4m + 3)

)
,
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R∗
m(z) = Rm

(
z +

3
2(4m + 3)

)
,

S∗
m(z) = Sm

(
z +

3
2(4m + 3)

)
.

Let || · ||D denote the supremum norm on D.
Now we need the following lemma.

Lemma 5 [12] Suppose m1,m2, · · · ,ml are positive in-
tegers such that m1 + m2 + · · · + ml = n and λ1 < λ2 <
· · · < λl are real numbers. Let f1(z), f2(z), · · · , fn(z)
denote eλ1z, zeλ1z, · · · , zm1−1eλ1z; eλ2z, zeλ2z, · · · ,
zm2−1eλ2z; · · · , eλlz, zeλlz, · · · , zml−1eλlz respectively.
If |k1| + |k2| + · · · + |km1 | > 0, |kn−ml+1| + · · · +
|kn−1| + |kn| > 0, and N denotes the zero number of
function k1f1(z) + k2f2(z) + · · · + knfn(z) in the region
Ω = {z : ξ ≤ Imz ≤ η}. Then

(λl − λ1)(η − ξ)
2π

−n+1 ≤ N ≤ (λl − λ1)(η − ξ)
2π

+n−1.

By this lemma, we can prove the main result of this
section.

Theorem 6. (a)

||P ∗
m(z)e−3z + Q∗

m(z)e−2z + R∗
m(z)e−z + S∗

m(z)||D

∼ 6m+1m!
(4m + 3)!

.

(b) Let

w∗
m = min

s,t,u,v∈πm

||sme−3z + tme−2z + ume−z + vm||D,

where s = zm + · · · . Then

w∗
m ∼ 6m+1m!

(4m + 3)!
.

Proof Part (a) is just a restatement of Theorem 4. Ob-
serve that P ∗

m has leading coefficient 1.
To prove part (b) we use the fact that a nonzero expression
of the form

h1(z)e−3z + h2(z)e−2z + h3(z)e−z + h4(z),

where h1, h2, h3, h4 are polynomials, the sum of whose de-
grees is k, can have at most k + 3 zeros in D. This is wind-
ing number argument and is proved in Lemma 5 with l =
4, ξ = −1, η = 1, λ1 = −3, λ2 = −2, λ3 = −1, λ4 = 0
and n = k + 4. Thus

w∗
m ≥ min

|z|=1
|P ∗

m(z)e−3z+Q∗
m(z)e−2z+R∗

m(z)e−z+S∗
m(z)|.

If this were not the case we could find s, t, u, v ∈ πm with
s having leading coefficient 1 so that, for |z| = 1

|se−3z + te−2z + ue−z + v|

< |P ∗
me−3z + Q∗

me−2z + R∗
me−z + S∗

m|.

By Rouché’s theorem this would imply that

(s−P ∗
m)e−3z +(t−Q∗

m)e−2z +(u−R∗
m)e−z +(v−S∗

m)
(14)

has at least 4m + 3 zeros in D. However, since s− P ∗
m has

degree at most m − 1, the sum of the degrees of the coeffi-
cients in (14) is at most 4m − 1, and we have contradicted
the above result from Lemma 5.

We note that

||Pme−3z + Qme−2z + Rme−z + Sm||D ∼ e
3
2

6m+1m!
(4m + 3)!

and so, up to a small constant, the cubic Hermite-Padé ap-
proximant is optimal in the sense of Theorem 6. The trick
of shifting the center of the approximation to make the er-
ror curve have asymptotically constant norm on D is due
to Braess [8] who used it to get the right constant in the
Meinardus’ conjecture.

It is easy to show that the coefficient polynomials of the
diagonal cubic Hermite-Padé approximant are linked by the
following fourth-order differential equations.

Theorem 7.

(a) − 6mPm−1(x) = P
′′′′

m − 6P
′′′

m + 11P
′′

m − 6P
′

m.

(b) − 6mQm−1(x) = Q
′′′′

m − 2Q
′′′

m − Q
′′

m + 2Q
′

m.

(c) − 6mRm−1(x) = R
′′′′

m + 2R
′′′

m − R
′′

m − 2R
′

m.

(d) − 6mSm−1(x) = S
′′′′

m + 6S
′′′

m + 11S
′′

m + 6S
′

m.

4 Local analytical difference schemes based
on cubic Padé approximation

In order to investigate the application of the diagonal
cubic Padé approximation to e−x, we discuss the problem
(1.6).

We rewrite the above equation (1.6) as

aux + εuxx = c. (15)

In the case that c is a constant, we get the solution of (15)
after integration:

u = c1e
λx + c2 +

c

a
x, λ = −a

ε
.

After discretization, we have

ui =
ui+1 + eλhui−1

1 + eλh
+ c

h(eλh − 1)
a(1 + eλh)

,
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where h = 1
N is the common step width. Therefore

c =
a

(
ui+1 − (1 + eλh)ui + eλhui−1

)
h(1 − eλh)

,

i = 1, 2, ..., N − 1.

Now letting c = dui

dt , we have{
du
dt = −Au + b,

u(0) = Φ,
(16)

where
u= (u1, u2, ..., uN−1)T ,

b=
(

aαeλh

h(1 − eλh)
, 0, ..., 0,

αβ

h(1 − eλh)

)T

,

Φ= (ϕ(x1), ϕ(x2), ..., ϕ(xN−1))T are all (N − 1)-
dimensional column vectors,

A =
a

h(1 − eλh)

·



1 + eλh −1 0 · · · 0

−eλh 1 + eλh −1
. . .

...

0 −eλh 1 + eλh . . . 0
...

. . . . . . . . . −1
0 0 · · · −eλh 1 + eλh


is an (N − 1) × (N − 1) tridiagonal matrix.

So the solution of problem (16) is

u(t) = e−At(Φ − A−1b) + A−1b, (17)

where e−At =
∞∑

n=0

1
n! (−At)n.

Equivalently, (17) can be written as the following forms:

u(t + jτ) = e−jAτ{u(t) − A−1b}+A−1b (j = 1, 2, 3),
(18)

where τ > 0 is the increment.

Denoting

Tm(x) = −Qm(x)
Pm(x)

, Um(x) = −Rm(x)
Pm(x)

,

Vm(x) = −Sm(x)
Pm(x)

,

we have

e−3x = Tm(x)e−2x+Um(x)e−x+Vm(x)+O(x4m+3).

Replacing e−3Aτ in (18) with Tm(Aτ)e−2Aτ +
Um(Aτ)e−Aτ + Vm(Aτ), we get a class of 3-step lo-
cal analytical difference schemes based on diagonal cubic
Padé approximation:

u(t+3τ) = Tm(Aτ)u(t+2τ)

+Um(Aτ)u(t + τ) + Vm(Aτ)u(t)

+{I − Tm(Aτ) − Um(Aτ) − Vm(Aτ)}A−1b. (19)

According to (19), we can list three simple schemes as
follows:

Scheme 1. m = 0, Pm = 1, Qm = −3, Rm =
3, Sm = −1;

u(t + 3τ) = 3u(t + 2τ) − 3u(t + τ) + u(t).

Scheme 2. m = 1,

Pm = x +
11
3

, Qm = 9(x + 1),

Rm = 9(x − 1), Sm = x − 11
3

;

u(t + 3τ) =
(

11
3

I + τA

)−1 {
− 9(I + τA)u(t + 2τ)

+9(I − τA)u(t + τ) +
(

11
3

I − τA

)
u(t) + 20τb

}
;

where I is the (N − 1) × (N − 1) unit matrix.

Scheme 3. m = 2,

Pm = x2 + 11x +
103
3

, Qm = 27(x2 + 3x + 9),

Rm = −27(x2 − 3x + 9), Sm = x2 − 11x +
103
3

;

u(t + 3τ) =
(

103
3

I + 11τA + τ2A2

)−1

·
{

27(9I + 3τA + τ2A2)u(t + 2τ)

−27(9I − 3τA + τ2A2)u(t + τ)

+
(103

3
I − 11τA + τ2A2

)
u(t) − 140τb

}
.
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[3] D. Belkić , Strikingly stable convergence of the Fast
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proximation to allow retention of dominant modes, Int.
J. Contr. , 21(1975) 257-272.

[15] L.N. Trefethen, The asymptotic accuracy of rational
best approximation to ez on a disk, J. Approx. Theory,
40(1984) 380-383.

Jing-Hua Gao was born in Heilongjiang, China, in
1962. She received the Bachelor Degree in mathematics
from Harbin Normal University of China in 1983. She
joined the Department of Mathematics, Dalian Jiaotong
University, China in 2003. She is now an associate profes-
sor. Her research interests include numerical approximation
and its application.

Mei-Yan Lin was born in Liaoning, China, in 1973.
She received the Master Degree in mathematics from Xi’an
University of Science and Technology of China in 2003,
and then joined the Department of Mathematics, Dalian
Jiaotong University, China. Her research interests include
numerical approximation and its application.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 148

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




