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Abstract 
The robust exponential stability is investigated for a class of 
uncertain neutral-type neural networks with  discrete and distri-
buted time-varying delays. By introducing a new vector 
Lyapunov-Krasovskii functional, using Jensen integral inequality, 
free-weighting matrix method and linear matrix inequality 
techniques, delay-dependent sufficient conditions are obtained 
for exponential stability of considered neural networks, which 
generalize some previous results in the literature. Four examples 
are given to show the less conservativeness of the obtained 
results. 
Keywords: Global robust exponential stability; linear matrix 
inequality(LMI); uncertain neutral-type neural networks; Jensen 
integral inequality; free-weighting matrix. 

1. Introduction 

In recent decades, neural networks have been successfully 
applied to various fields such as optimization, image 
processing and associative memory design. In such 
application, it is important to know the stability properties 
of the designed neural network, these properties include 
asymptotic stability and exponential stability. However, 
time delays inevitably exist in neural networks due to 
various reasons [13]. The existence of time delay may lead 
to some complex dynamic behaviors such as oscillation, 
divergence, chaos, instability or other poor performance of 
the neural networks. Therefore, stability analysis for 
neural networks with delays has attracted more and more 
interests in recent years. Various sufficient conditions, 
either delay-dependent or delay-independent, have been 
proposed to guarantee the global stability for neural 
networks with constant and time-varying delays, for 
example, see [9,12, 17–19,24] and references therein. 
 
Since neural networks usually have a spatial extent, there 
is a distribution of propagation delays over a period of 
time. In these circumstances the signal propagation is not 
instantaneous and can’t be modeled with discrete delays 
[6]. A more appropriate way is to incorporate continuously 
distributed delays in neural network model [2,5,7,10, 
13,16]. On the other hand, uncertainties are inevitable in 
neural networks because of the existence of modeling 
errors, external disturbance and parameter fluctuation in 

the process of implementations. Therefore it is important 
to study the robust stability of delayed neural networks in 
the presence of uncertainties [8,14,20–23]. 
 
Motivated by the above discussions, in this paper we 
consider a class of uncertain neutral-type neural networks 
with discrete and distributed time-varying delays. Based 
on a new vector Lyapunov-Krasovskii functional, delay-
dependent sufficient conditions are obtained for 
exponential stability of considered neural networks. By 
using Jensen integral inequality, free-weighting matrix 
method and LMI techniques, the results are less conser-
vative than some previous ones in the literature. Four 
examples are given to show the effectiveness of the 
obtained results. 

2. Problem description 

Considering the following uncertain neutral-type neural 
networks with discrete and distributed time-varying delays: 
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( ) ( ) ( ( )) ( ( ( )))

( ( ))d ( ) ,
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          (1) 

where 
1 2( ) ( ( ), ( ),..., ( ))T n

nz t z t z t z t R  is the neural 

state vector, ( ),C C C t  ( ),A A A t  ( ),B B B t    

( ),D D D t   ( ).E E E t   1 2diag{ , ,..., }nC c c c  is a 

positive diagonal matrix, ( ) ,ij n nA a  ( ) ,ij n nB b   

( ) ,ij n nD d  ( )ij n nE e   are known constant matrices, ( ),C t   

( ), ( ), ( ), ( )A t B t D t E t    are parametric uncertainties, 

0 ( ) , 0 ( ) ,t t        are time-varying delays, 

where , ,   are constants. J is the constant external 

input vector, and 
1 1 2 2( ( )) ( ( ( )), ( ( )),..., ( ( )))T

n nf z t f z t f z t f z t    , 

1 1 2 2( ( )) ( ( ( )), ( ( )),..., ( ( )))T n
n ng z t g z t g z t g z t     R  denote the 

neural activation functions. It is assumed that ( ( )),j jf z t  

( ( ))j jg z t  are bounded and there exist constants 
1 2,j jl l  

such that 
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for any , , , 1, 2,..., .x y x y j n  R  
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Moreover, we assume that the initial condition of system 
(1) has the form 

( ) ( ), [ max{ , , },0]i iz t t t       

where ( )( 1, 2,..., )i t i n   are continuous functions. 

 
From the well-known Brouwer's fixed point theorem, 
system (1)  always has an equilibrium point *z  [13]. 
Throughout this paper, let ||y|| denote the Euclidean norm 
of a vector 1, , , ( ), ( )n T

M my W W W W R  and 

|| || ( )T
MW W W  denote the transpose, the inverse, the 

largest eigenvalue, the smallest eigenvalue, and the 
spectral norm of a square matrix W, respectively. Let 
W>0(<0) denote a positive (negative) definite symmetric 
matrix, I denote an identity matrix with compatible 
dimension. 

 
In order to prove the robust stability of the equilibrium 
point *z  of system (1), we will first simplify system (1) as 
follows. Let *( ) ( ) ,u z z     then we have 
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where 
1 2( ) ( ( ), ( ),..., ( )) ,T

nu t u t u t u t *( ( )) ( ( ) )j j j j jf u t f u t z    

* * *( ), ( ( )) ( ( ) ) ( )j j j j j j j j jf z g u t g u t z g z        with 

(0) 0,jf    (0) 0, 1, 2,..., .jg j n   By assumption (2), 

we can see that 
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              (4) 

Suppose that the time-varying uncertain matrices ( ),C t  

( ), ( ), ( ), ( )A t B t D t E t     are norm-bounded, which are 

in the form of 

0 0 0 1 2 3 4

[ ( ) ( ) ( ) ( ) ( )]

( )[ ],

C t A t B t D t E t

H F t G G G G G

    


       (5) 

where 
0 0 1 2 3 4, , , , ,H G G G G G  are known constant real 

matrices with appropriate dimensions, the uncertainty 

0 ( )F t  is defined as 

0 0( ) ( ) .TF t F t I                         (6) 

The definition of exponential stability is now given. 
Definition 1: The system (1) is said to be globally 
exponentially stable if there exist constants k>0 and M>1 
such that 

max{ , , } 0
|| ( ) || sup || ( ) ||,|| ( ) || ,( ) ktx t M x x e

   
  

  
   

where k is called the exponential convergence rate. 
Clearly, the equilibrium point of system (1) is robust 
stable if and only if the zero solution of system (3) is 
robust stable. 

In order to obtain the results, we need the following 
lemmas. 
Lemma 1 (see [3]) For any positive symmetric constant 
matrix n nM  R , scalars 

1 2r r  and vector function 

1 2: [ , ] nr r  R  such that the integrations concerned are 

well defined, then 
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Lemma 2 (see [1,24]) Let ,H K  and L  be real matrices 

of appropriate dimensions with 0.K  Then for any 
vectors x and y with appropriate dimensions, the following 
matrix inequality holds: 

12 .T T T T Tx y x x y y H L H K H L KL  

Lemma 3 (see  [23]) Assuming that function ( )jg s  is 

defined such that  
( )

0 ,j
j

g s

s
   

where 0,j   then the following inequality holds 

( ( ) ( ))d ( )( ( ) ( )).j j j jg s g s g g



         

Lemma 4 (see [4]) Let F,E, and   be real matrices of 
compatible dimensions with 

1diag{ ,..., }, ,T
r i i I        

1,..., .i r Then, for any real matrix 

1diag{ ,..., } 0,rI I     the following inequality holds: 
1 .T T T T TF E E F F F E E        

3. Globally exponential stability result of 
neural networks 

First, we will present the exponential stability results for 
system (3) without uncertainties, that is  
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Before introducing the main results, following notations 
are defined for simplicity: 

11 11 1 1 2 1 1 13 13

2
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2 4 ( )
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      

12 12 13 14 23 1 2(2 ) (1 )( ) ,T TkI C P P P P X X          

13 14 14 12 15 5 16 1, , , ,TP P CX F E           
2

17 1 2 12 1 22 ( ),T kF A CF e Q k D D       

18 1 1,10 1, ,F B F D     

1,11 13 33 1,12 1(2 ) , ,kI C P P X          

22 22 11 23 23 24 242 (1 )( )T TkP Q P P P P         
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2 2 3 3 1 2 12 ,T TX X X X L T L      

23 24 3 4 24 22 13, ,TP X X P Q         
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44 33 48 23 4,11 23, , ,TQ Q P         
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1 2diag{ , ,..., }, 1, 2,i i i inL l l l i   

other parameters ( )ij i j   are all equal to zero's and 

other parameters 
ij are defined as .ij ij   

 
Now, we present the stability results for system (7) with  

0 ( ) 1.t     

Theorem 1. Under the assumption (2), for given 
scalars 0, ,h   the equilibrium point of system (7) is 

globally exponentially stable with a convergence rate k for 
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Proof. Consider the following Lyapunov-Krasovskii 
functional: 
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For convenience, we denote ( ( )).u u t t    The time 

derivative of functional (13) along the trajectories of 
system (7) is obtained as follows: 
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 It is easy to get the following inequalities by using 
Lemmas 1 and 2: 
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Further, from inequality (4) and Lemma 3 we have 
( )

10
1

1

( )

10
1

1

( ) d

{ ( ( )) ( ) } ( ), (15)

( ) d

{ ( ) ( ( ))} ( ). (16)

( )

( )

i

i

n u t

i i i
i

T T

n u t

i i i
i

T T

f s l s s

f u t u t L u t

l s f s s

u t L f u t u t











  



  

 

 

 

In addition, the following inequality holds from Lemma 1: 

4

4

4( ) ( )

( ( )) ( ( ))d

( ( ))d ( ( ))d

( ( ))d ( ( ))d . (17)

( )

( )

t T

t

t tT

t t

t tT

t t t t

g u s R g u s s

g u s s R g u s s

g u s s R g u s s



 

 




 

 



 

 


 
 

 

On the other hand, one can infer from inequality (4) that 
the following matrix inequalities hold for any positive 
diagonal matrices ( 1, 2,3)iT i   with compatible 

dimensions 
2

1 1 1 10 2 ( ) ( ) ( ( )) ( ( )) , (18){ }kt T Te u t LT L u t f u t T f u t 
 

2
1 2 1 2

2
2 3 2 3

0 2 ( ) ( ) , (19)

0 2 ( ) ( ) ( ( )) ( ( )) . (20)

{ }
{ }

kt T T

kt T T

e u L T L u f u T f u

e u t L T L u t g u t T g u t

    

 
 

Based on Leibniz-Newton formula, for any real matrices 
( 1,..., 4)iX i   with compatible dimensions, we get 

2
1 2

( )

2
3 4

( )

0 2 { ( ) }

( ) ( )d , (21)

0 2 { ( ) }

( ) ( )d . (22)

{ }

{ }

kt T T

t

t t

kt T T

t t

t

e u t X u X

u t u u s s

e u X u t X

u u t u s s



 




 











 

  

  

   









 

To get less conservative criterion, we introduce the 
following equality for any real matrix 

5X  with 

compatible dimension 

5

( )

0 2 ( ) ( ) ( ) ( ( )) ( )

( ( ))d ( ) . (23)

{
}

T

t

t t

u t X u t Cu t Af u t Bf u

D g u s s Eu t








    

  

 



 From (10)-(23), we obtain 
( )2

2
44( )

1
( ( )) ( , ) ( , )d

( , )( ) ( , )d ,

(

)

t tkt T

t

t T T

t t

V u t e t s t s s

t s P t s s







 


  







 

    





 
 

where   

( )
 

( , ) [ ( ), , ( ), (1 ( )) ( ( )),

( ), ( ), ( ( )), ( ),

( ( )), ( ( ))d , ( ), ( ) ].

T T T T T

T T T T

tT T T T

t t

t s u t u u t t u t t

u t u t f u t f u

g u t g u s s u s u s







   




   




 

 



 

Thus ( ( )) 0V u t   holds if inequalities (8) and (9) are true. 

Furthermore, following the similar line in [23,24], from 
Lemma 2 we have 

 2

max{ , , } 0
( (0)) sup (|| ( ) ||,|| ( ) ||) ,( )V u M u u

   
 

  
   

where 

1 5

2 2
1 1

2 3 2
2 3 2 4

4(2 ) ( ) 2 ( ) ( ) ( )

3 ( )[1 ( )] ( )

1 1
[ ( ) ( )] ( ) ( ).

2 2

{

}

M M M M

k
M M M

M M M M

M P D L R

e Q L R

R R L R



    

   

     

     

   

  

 

Meanwhile 2 * 2
11( ( )) || ( ) || ( ),kt

mV u t e t z P    by 

Lyapunov stability theory, the proof of Theorem 1 is 
completed. 

 
Remark 1.  It is easy to see that the derivatives of 

( ) ( )T t P t   and 
( )

( ) ( )d
t T

t t
s Q s s


 

  have some terms 

containing 1 ( ).t   In order to absorb some 1 ( ),t   we 

introduce (1 ( )) ( ( ))Tt u t t     in ( )t  but not 

( ( )),Tu t t so   and  contains fewer 1 ( ),t   which 

leads to a more effective results. 
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Remark 2. In Theorem 1,  if we set 0( 2),ijP i j    

0,Q  by deleting (1 ( )) ( ( ))Tt u t t     from ( , ),T t s  

we can employ this criterion to analyze the stability of 
neural network when ( )t  is unknown or ( )t  is not 

differentiable. 
Remark 3. If ( ) ( )( 1,..., )i if x g x i n   in neural network 

(7), by applying the same functional as in Theorem 1 and 
deleting ( ( ))Tg u t  from ( , ),T t s  similar to above proof 

and Remark 2, from (10)-(19) and (21)-(23) we can derive 
a criterion to analyze the stability of neural networks (7) 
with    f x g x .  

Remark 4. If E=0 in neural network (7), by setting 

5 0R   in Theorem 1 and deleting ( )Tu t   from 

( , ),T t s  similar to above proof and Remark 2, we can 

derive a criterion to analyze the stability of mixed-delay 
neural networks (7) with E=0. 
Remark 5. If D=0 in neural network (7), by setting 

4 0R  in Theorem 1 and deleting ( ( ))Tg u t , 

( )
( ( ))d

t T

t t
g u s s

  from ( , ),T t s  similar to above proof and 

Remark 2, from (10)-(16) and (18)-(23) we can derive a 
criterion to analyze the stability of neutral-type neural 
networks (7) with D=0.  

4. Robust exponential stability results of 
uncertain delayed neural network 

On the basis of the results of Theorem 1, from Lemma 4 it 
is easy to obtain the following conclusion about the robust 
stability condition for system (1) with norm-bounded 
uncertainties satisfying (5) and (6). 
Theorem 2. Under the assumption (2), for given scalars 

0, ,h   the equilibrium point of system (1) is globally 

robust exponentially stable with a convergence rate k for 

0 ( ) , 0 ( ) 1t t         if there exist constant 0,   

positive definite symmetric matrix 
4 4[ ] ,ijP P   non-

negative definite symmetric matrices 
3 3[ ] ,ijQ Q   

( 1,...,5),iR i   positive diagonal matrices ( 1,2,3),iT i   

, ,   real matrices ( 1,...,5)iX i   with compatible 

dimensions  such that the following LMIs hold: 

44

2

2 0 0, (24)

0

 
0, (25)

T T T

T

T T

T

k h H

k h P

H I

H

H I








       
 

    
    
     

   

 



 

where 

0 4 1 2 3

0 12 5 1 13

0 12 5 1 14

[ 0 0 0 0 0 0 0 ],

[ 0 0 0 0 0 0 0 ],

[ 0 0 0 0 0 0 0 ],

T T T T

T T T T

G G G G G

F P X F P

F P X F P




  
 
 

 

and other parameters are defined in Theorem 1. 
 

Remark 6. Similar to Remark 3, by setting 
0( 2),ijP i j    Q=0, we can employ the criterion of 

Theorem 2 to analyze the robust stability of neural 
network (1) when ( )t  is unknown or ( )t  is not 

differentiable. 
Remark 7. If ( ) ( )( 1,..., )i if x g x i n   in neural network 

(1),  similar to Remark 3, from Theorem 2 and Remark 6 
we can derive a criterion to analyze the robust stability of 
neural networks (1) with f(x)=g(x). 
Remark 8. If E=0 in neural network (1), by setting 5 0R   

in Theorem 2, similar to Remarks 4,6, we can derive a 
criterion to analyze the robust stability of mixed-delay 
neural networks (1) with E=0. 
Remark 9. If D=0 in neural network (1), by setting 

4 0R  in Theorem 2, similar to Remarks 5,6 we can 

derive a criterion to analyze the robust stability of neutral-
type neural networks (1) with D=0. 

5. Comparison and Illustrative Examples 

In this section, we provide four numerical examples to 
demonstrate the effectiveness and less conservativeness of 
our delay-dependent stability criteria over some recent 
results in the literature. 

 
Example 1. Consider system (7) with 

1

diag{3,3.4}, [ 0.9 1.5]

0.9 1.5 0.8 0.6
, ,

1.2 1 0.1 0.5

0.2 0.1 0.5 0.2
, ,

0.1 0.1 0.1 0.6

( ) ( )( 1, 2), .

T

i i

C J

A B

D E

f x g x i L I

   

    
        

   
        

  

 

Obviously, the stability of this model can't be 
ascertained by using the conditions in [5]–[7], [11], [13], 
[15], [16]. However, if we set time delays be constants 

( ) ( )t t     and 1, 0.2,k    by Remark 3 of 

Theorem 1 we can conclude that, the equilibrium point of 
this system is exponential stable for any time delay with 

1.5976.   
Example 2. Consider system (7) with 

diag{2.3,3.4, 2.5}, 0,C E   
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1

0.9 1.5 0.1

1.2 1 0.2 ,

0.2 0.3 0.8

0.8 0.6 0.2

0.5 0.7 0.1 ,

0.2 0.1 0.5

0.3 0.2 0.1

0.1 0.2 0.1 ,

0.1 0.1 0.2

( ) ( )( 1, 2,3), 0.2 .i i

A

B

D

f x g x i L I

 
   
  
 
   
  
 
   
  
  

 

For this model, if we set exponential convergence rate k be 
fixed as 0 (this means the asymptotic stability), the 
maximal upper bounds of time delays for various  's 

from Remark 4 of Theorem 1 in this paper and those in 
[13] are listed in Table I. It is clear that the results in this 
paper are much better than those in  [13]. 
 
Table I Calculated maximal upper bounds of time delays 
for various   of Example 2 with k=0 

methods 0   0.8   unknown   

[13] 2.8384 2.8384 2.8384$ 
This 
paper 

23.7800 20.5183 6.9332 

 
Example 3. Consider system (7) with constant delays 

( )t  , and 

diag{2.7644,1.0185,10.2716}, 0,

0.2651 3.1608 2.0491

3.1859 0.1573 2.4687 ,

2.0368 1.3633 0.5776

0.7727 0.8370 3.8019

0.1004 0.6677 2.4431 ,

0.6622 1.3109 1.8407

0.2076 0.0631 0.3915

0

C D

A

B

E

 

  
    
  
  
   
   

 

1

.0780 0.3106 0.1009 ,

0.2763 0.1416 0.3729

( ) ( )( 1, 2,3),

diag{0.1019, 0.3419, 0.0633}.
i if x g x i

L

 
 
 
  
 



 

This model was studied in [11,15]. Ref. [15] illustrated 
that the maximum bound of delays is 1.0344. Let m=3 in 
[11], the authors obtained the upper bound of delay is 82. 
However by using our Remark 5 to this example, we can 
obtain the system is feasible for any 0.  It means that 
the system is delay-independent stable, which shows that 
our criteria are less conservative than [11,15]. 
Example 4. Consider system (3) with 

diag{2, 3},C   

0

1 2

3 4

0.5 0.1 0.2 0.4
, ,

0.2 0.3 0.1 0.2

0.4 0.3 0.5 0.2
, ,

0.1 0.2 0.1 0.6

0 0
, ,

0.2 0.2

0 0 0 0
, ,

0.1 0.1 0.3 0.3

0 0 0 0
, ,

0.2 0.2 0.1 0.2

( ) ( )( 1, 2i i

A B

D E

H I G

G G

G G

f x g x i

    
        
   

       
 

   
 

   
    
   
   

    
   
  1), .L I

 

Obviously, none of the criteria in [2,8,14,21–23] can be 
applied to verify the stability of this system. 

 
However, if we set exponential convergence rate of k be 
fixed as 0, from Remark 7 of Theorem 2 we can confirm 
that the equilibrium point of this system is robust 
exponential stable for any constant time delays with 

( ) ( ) 1.8444, 0.t t         

Therefore, we can say that for these four systems the 
results in this paper are much effective and less 
conservative than those in [2,5–8,11,13–16,21–23]. 

6. Conclusions 

In this paper we have investigated the global robust 
stability problem of uncertain neutral-type neural networks 
with discrete and distributed delays. By employing new 
Lyapunov Krasovskii functional, we proposed several 
novel stability criteria for the considered neural networks. 
The obtained results are all in the form of LMI, which can 
be easily optimized. Finally, four examples are given to 
show the superiority of our proposed stability conditions 
to some existing ones.  
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