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Abstract 
The existence, uniqueness and global robust exponential stability 
is analyzed for a class of uncertain neutral-type bidirectional 
associative memory (BAM) neural networks with time-varying 
delays. Without assuming the boundedness of the activation 
functions, by constructing a novel class of augmented Lyapunov-
Krasovskii functional, new relaxed delay-dependent stability 
criteria of the unique equilibrium point are presented in terms of 
linear matrix inequalities (LMIs). Following the idea of convex 
combination and free-weighting matrices method, less conser-
vative results are obtained. Two examples are given to illustrate 
the effectiveness of our proposed conditions. 
Keywords: Global robust exponential stability, globally 
exponential stability, linear matrix inequality(LMI), neutral-type, 
bidirectional associative memory (BAM) neural network. 

1. Introduction 

Bidirectional associative memory (BAM) neural networks, 
which were proposed by Kosko in [10,11], generalized the 
single-layer autoassociative Hebbian correlator to a two-
layer pattern-matched heteroassociative circuits. There are 
many applications for BAM neural networks such as 
pattern recognition, artificial intelligence, solving 
optimization problem and automatic control engineering. 
Therefore, the BAM neural networks have been one of the 
most interesting research topics and have attracted the 
attention of many researchers. Up to now, many important 
results on the stability of BAM neural networks have been 
reported in the literature, see e.g. [2]–[4], [7], [8], [12], 
[15]–[19] and references therein. 
 
On the other hand, the stability of a neural network may 
often be destroyed by its unavoidable uncertainties due to 
the existence of modeling errors, external disturbance and 
parameter fluctuation in the applications and designs of 
neural networks. Therefore, the robust stability analysis of 
neural networks has gained much research attention [15]–
[17], [19], [24]–[27]. However, the existence of time 
delays in these DNN models indicates that time delays are 
dependent on the past state. In fact, many practical delay 
systems can be modeled as differential systems of neutral 
type, whose differential expression concludes not only the 

derivative term of the current state but also concludes the 
derivative term of the past state, such as partial element 
equivalent circuits and transmission lines in electrical 
engineering, controlled constrained manipulators in 
mechanical engineering, population dynamics system and 
so on (see [13]). It is natural and important that systems 
should contain some information about the derivative of 
the past state to further describe and model the dynamics 
for such complex neural reactions. There have been many 
results about neutral-type cellular neural networks, but to 
the best of our knowledge, few researchers studied the 
stability for BAM neural networks which is described by 
nonlinear delay differential equations of the neutral type. 
By using Jensen integral inequality, Liu et al. [12] recently 
proposed stability conditions of neutral-type BAM neural 
networks with constant delays which are expressed in 
terms of LMIs. Based on an inequality, Park et al. [14] 
obtained a condition of globally asymptotic stability for 
such systems also with constant time delays. Up to now, 
there are no results about such systems with time varying 
delays. 

 
Motivated by the preceding discussions, the aim of this 
paper is to relax the constraint on the boundedness of the 
activation function, and study the existence, uniqueness 
and global robust exponential stability for uncertain 
neutral-type BAM neural networks with time-varying 
delays. The authors introduce a novel form of augmented 
Lyapunov-Krasovskii functional that takes into account 
new terms 2

22( ( )) ( ( ))kt Te u t t P u t t   and 
2 ( ( ))kt Te v t t  

22 ( ( )),Q v t t  whose derivatives are 

directly coupled with both neutral and retarded systems.  
The proposed Lyapunov functional also includes the terms 
of  cross products 2

12( ) ( ( )),kt Te u t P u t t  
2

12( ) ( ( )),kt Te v t Q v t t  and some integral terms of cross 

products, such as 2
12( )

( ) ( ( ))d ,
t ks T

t t
e u s R g u s s

  

2
12( )

( ) ( ( ))d ,
t ks T

t t
e v s S f v s s

  

which are not considered in previous results. Following 
the idea of convex combination and free-weighting 
matrices method [9], we derive several new sufficient 
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conditions for the global exponential stability of BAM 
neural networks with time-varying delays. The derived 
conditions are expressed in terms of linear matrix 
inequalities (LMIs), which can be checked numerically 
very efficiently via the LMI toolbox. Some comparisons 
between the obtained results in this paper and previous 
results are made by two illustrative examples. 

 
The rest of this paper is organized as follows. In 

Section II, problem formulation and preliminaries are 
given. In Sections III,IV, new delay-dependent conditions 
are established for the existence, uniqueness and 
exponential stability. In Section V, the new stability 
conditions are extended to neural networks with norm-
bounded uncer-tainties. Section VI provides two 
illustrative examples. Finally, some conclusions are drawn 
in Section VII. 

2. Problem description 

Considering the following neutral-type neural networks 
with time-varying delays: 

1 1 1

1

2 2 2

2

( ) ( ) ( ( )) ( ( ( )))

( ( )) ,

( ) ( ) ( ( )) ( ( ( )))

( ( )) ,

x t A x t B f y t C f y t t

D x t t J

y t A y t B g x t C g x t t

D y t t E







     


  


    
   

 



  



  (1) 

where 
1 2( ) ( ( ), ( ), ..., ( ))T

nx t x t x t x t  and 
1( ) ( ( ),y t y t   

2 ( ), ..., ( ))T
my t y t are the neural state vectors, J,E are the 

constant external input vectors. 
1 1 1 ( ),A A A t    

1 1B B  

1( ),B t 1 1 1 ( ),C C C t    
1 1 1 ( ),D D D t    

2 2A A  

2 ( ),A t 2 2 2 ( ),B B B t  2 2 2 ( ),C C C t    
2 2 2( ).D D D t    

1 11 12 1diag{ , , ..., }nA a a a  and 
2 21 22 2diag{ , ,..., }mA a a a  

are positive diagonal matrices, 
1 1( ) ,ij n mB b  1 1( ) ,ij n mC c   

1 1( ) ,ij n nD d  2 2( ) ,ij m nB b  2 2( ) ,ij m nC c  2 2( )ij m mD d   are 

known constant matrices, 
1 1 1( ), ( ), ( ),A t B t C t    

1( ),D t  

2 2 2 2( ), ( ), ( ), ( )A t B t C t D t     are parametric uncertainties, 

0 ( ) , 0 ( )t t       are the time-varying delays, 

where ,  are positive constants.
1 1( ( )) ( ( ( )),f x t f y t   

2 2( ( )),..., ( ( ))) ,T
m mf y t f y t 

1 1( ( )) ( ( ( )),..., ( ( )))T
n ng x t g x t g x t    

denote the neural activation functions. It is assumed that 
there exist constants 

1 2 3 4, , ,i i j jl l l l  such that 

 

1 2
1 2

1 2

1 2
3 4

1 2

( ) ( )
,

( ) ( )
,

i i
i i

j j
j j

f s f s
l l

s s

g s g s
l l

s s


 




 


 

 
 

for any 1 2, ,s s R  1 2, 1,2,..., ;s s i m   1, 2, ..., .j n  

Moreover, we assume that the initial condition of neural 
networks (1) has the form 

 ( ) ( ), ( ) ( ), [ max{ , },0]j j i ix t t y t t t        

where ( ), ( )( 1, 2,..., ; 1, 2,..., )j it t i m j n     are conti-

nuous functions. 
 
Throughout this paper, let ||y|| denote the Euclidean norm 
of a vector ,nyR  1, , ( ), ( )T

M mW W W W  and || ||W   

( )T
M W W denote the transpose, the inverse, the largest 

eigenvalue, the smallest eigenvalue, and the spectral norm 
of a square matrix W, respectively. Let W>0(<0) denote a 
positive (negative) definite symmetric matrix, I denote an 
identity matrix with compatible dimension. 

 
The definition of exponential stability is now given. 
Definition 1( [20])  The neural network (1) is said to be 
globally exponentially stable if there exist constants 0k  
and M>1 such that 

 0

0

|| ( ) || || ( ) || sup || ( ) ||,|| ( ) ||

sup || ( ) ||, || ( ) || ,

( { }

{ }) kt

x t y t M x x

y y e

 

 

 

 
  



  

  



 

where k is called the exponential convergence rate. 
 

Clearly, the equilibrium point of neural network (1) is 
robust stable if and only if the zero solution of neural 
network (4) is robust stable. 

 
The time-varying uncertain matrices are defined by: 

 
 

 
 

 

1 1 1 1

0 0 1 2 3 4

2 2 2 2

1 1 5 6 7 8

( ) ( ) ( ) ( )

( ) ,

( ) ( ) ( ) ( )

( ) ,

A t B t C t D t

H E t G G G G

A t B t C t D t

H E t G G G G

    
 
    
 

       (4) 

where 
0 1, , ( 1, ...,8)iH H G i   are known real constant 

matrices with appropriate dimensions. 
0 1( ), ( )E t E t are 

unknown time-varying matrices satisfying  

0 0 1 1( ) ( ) , ( ) ( ) .T TE t E t I E t E t I              (5) 

 
In order to obtain the main results, we need the following 
lemmas. 
 
Lemma 1 (see [1,23]) Let X,Y and P be real matrices of 
appropriate dimensions with P>0. Then for any positive 
scalar   the following matrix inequality holds: 

 1 1 .T T T TX Y Y X X P X Y PY      

 
Lemma 2(see [27]) Continuous map ( ) : n nT z R R  is 

homeomorphic if T(z) is injective and 
|| ||
lim || ( ) || .
z

T z


   
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3. Existence and uniqueness of the 
equilibrium point 

Firstly, we consider neural network (1) without uncertain-
ties, that is 

1 1 1

1

2 2 2

2

( ) ( ) ( ( )) ( ( ( )))

( ( )) ,

( ) ( ) ( ( )) ( ( ( )))

( ( )) .

x t A x t B f y t C f y t t

D x t t J

y t A y t B g x t C g x t t

D y t t E







     


  


    
   

 



  



     (6) 

 
In order to study the existence and uniqueness of the 
equilibrium point, we define map ( )wH  as ( )w H  

1 2[ ( ) ( )] ,T T Tw wH H where [ ]T T Tw x y  and 

 1 1 1 1

2 2 2 2

( ) ( ) ( ) ,

( ) ( ) ( ) .

w A x B C f y J

w A y B C g x E

    
    





H

H
 

 
Theorem 1. Under assumptions (2),(3) and 0 ( )t  

1 2, 0 ( ) , 0 ( ) 1, 0 ( ) 1,t t t                 

given a constant 0,k   suppose that there exist positive 

definite symmetric matrices 
2 2 2 2[ ] , [ ] ,ij ijP P Q Q    non-

negative definite symmetric matrices 
3 3[ ] ,ijR R   

3 3[ ] ,ijS S   , ( 1, 2),i iU Z i  positive diagonal matrices ,jT  

real matrices , ( 1, 2,3, 4)j jX Y j   with compatible 

dimensions  such that the following LMIs hold (i,j=1,2): 

 2
1

2
2

0 0,

0

T T
i j

k
i

k
j

e U

e U









   
    
   

          (7) 

where 

1 4 1 4

1 1 1 1 1 1 1 3 1 1 1 1 1 3

1 1 1 1 3 3 4

1 2 1 1 2 1 2

1 4 1 2 1 2 3 3 4 3

1 6 1 1 1 3 1 2 1 2 1 7 1 1

1,1 1 1 1 1 3 1 1,1 2 1 1 1 3 1

2 2 2 2

,

2 ( ) ( )

2 ,

(2 ) ,

( ) ,

( ) (1 ) , ,

( ) , ( ) ,

2

ij

T

T

T

T

T

kP P R A A P R

R X X L T L

kI A P X X

R A R L L T

P R D P A Z

P R B P R C

kP




    

     

   

    

    

       

     

   2
2 1 1 2 2 3

3 3 4 4 2 3 3 4

2
2 5 2 1 2 3 4 4

2
2 6 1 2 1 2 2 2 2 1 3

2 ,1 1 1 2 1 2 ,1 2 1 2 1 3 3 4 4

(1 )

2 , ,

(1 ) ( ) ,

(1 ) (1 ) ,

, , ,

k T

T T

k

T k

T T T

e R X X X

X L T L X X

e R L L T

P D P e R

P B P C X X











 







   

     

     

     

       

 

4 4 2 2 3 4 6 2 3 1

4 8 2 1 1 1 3 4 9 2 1 2

4 ,1 1 2 3 1 2 2 3

4 ,1 2 2 3 1 4 ,1 4 2 2

2
5 5 2 2 2 4

2 , ,

( ) , ,

,

, ,

(1 ) 2 ,

T T T

T T

T T

k

R T R D

B Q S B Q

R B B S

R C B Z

e R T 

    

    

  

   

    

 

2
56 2 23 58 2 11 13

59 2 12 5 ,11 2 23 5,14 2 2

2
66 2 33 67 1 1

2
77 1 1 33 1

7 ,11 1 1 7 ,12 1 1

88 11 11 13 2 2 11 13 11

1 1 1

(1 ) , ( ),

, , ,

(1 ) , ,

,

, ,

2 ( ) ( )

2

k T T

T T T T T

k T T

T

T

T

e R C Q S

C Q C S C Z

e R D Z

Z Z R U

Z B Z C

kQ Q S A A Q S S

Y Y L T















      

     

     

     
   

      

   1 2

89 2 12 1 2

8,11 12 2 23 1 2 1

8,13 11 13 2 1 12 8 ,14 2 2

2
99 22 1 11 2 2 3

3 1 2 2 9 ,10 3 4

2
9 ,12 1 12 1 2 2

9 ,13 12

,

(2 ) ,

( ) ,

( ) (1 ) , ,

2 (1 )

2 , ,

(1 ) ( ) ,

T

T

T T

k T

T T

k

T

L

kI A Q Y Y

S A S L L T

Q S D Q A Z

kQ e S Y Y Y

Y L T L Y Y

e S L L T

Q D















    

    

       

      

     

     

  2
2 1 22 1 13

10 ,10 4 4 11,11 22 1

(1 ) (1 ) ,

, 2 ,

k

T

Q e S

Y Y S T

     

      

 

2
1 1,1 3 2 3 2 1 2 ,1 2 1 2 2 2

2
1 2 ,1 3 1 2 3

2
1 3 ,1 3 1 3 3 1 3 ,1 4 2 2

2
1 4 ,1 4 2 2 3 3 2

1 1 2

2 3 4

1 1 2

2

, (1 ) 2 ,

(1 ) ,

(1 ) , ,

,

[ 0 0 0 0 0 0 0 0 0 0 0 0 ],

[ 0 0 0 0 0 0 0 0 0 0 0 0 ],

[ 0 0 0 0 0 0 0 0 0 0 0 0 ],

[ 0 0 0 0 0 0

k

k

k T T

T

S D e S T

e S

e S D Z

Z Z S U

X X

X X

Y Y





















      

   

     

     

 
 

 
  3 4

1 2

0 0 0 0 0 0 ],

d iag{ , , ..., } , 1, 2 , 3, 4 ,i i i in

Y Y

L l l l i 

 

and other parameters ( )ij i j  are all equal to zero's, then 

neural network (6) have a unique equilibrium point. 
 
Proof.  As done in [6], we will firstly prove that 

( ) ( )w wH H  for any , , .n mw w w w  R  

 
Now suppose ( ) ( ),w wH H  that is 

 1 1 1

2 2 2

( ) ( )( ( ) ( )) 0,

( ) ( )( ( ) ( )) 0.

A x x B C f y f y

A y y B C g x g x

     
     

 

 
 

It is easy to see that 

11 13 12 23

1 1 1

11 13 12 23

2 2 2

2[( ) ( ) ( ( ) ( )) ]

{ ( ) ( )( ( ) ( ))} 0, (8)

2[( ) ( ) ( ( ) ( )) ]

{ ( ) ( )( ( ) ( ))} 0. (9)

T T T T

T T T T

x x P R P g x g x R

A x x B C f y f y

y y Q S Q f y f y S

A y y B C g x g x

    

      

    
      

 

 

 

 

 

By inequalities (2) and (3), we get 

 

1 1 2 2

1 2

1 2 1 2

3 3 4 4

3 4

3 4 3 4

2( ) ( ) ( )

2( ( ) ( )) ( )( ( ) ( ))

2( ) ( )( )( ( ) ( )) 0,

2( ) ( ) ( )

2( ( ) ( )) ( )( ( ) ( ))

2( ) ( )( )( ( ) ( )) 0.

T

T

T

T

T

T

y y L T T L y y

f y f y T T f y f y

y y T T L L f y f y

x x L T T L x x

g x g x T T g x g x

x x T T L L g x g x

   

   

     
   
   
     

   

 

   

 
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These together with Eqs.(8),(9) give 
0,T G           (10) 

where

4 4

11 11 13 12 1 1 11 13 12

3 3 4 4

12 1 23 3 4 3 4

14 11 13 12 1 1

22 3 4 23 2 2 4 1

,

[( ) , ( ( ) ( )) , ( ) , ( ( ) ( )) ],

( ) ( )

2 ( ) ,

( )( ),

( )( ),

2( ), ( ) (

ij

T T T T T

T T

T

T

T T

G G

x x g x g x y y f y f y

G P R P A A P R P

L T T L

G A R T T L L

G P R P B C

G T T G B C F Q




   

    
      

 
    
   
     

  

2

24 23 1 1 2 2 23

33 11 13 12 2 2 11 13 12

1 1 2 2

34 2 23 1 2 1 2 44 1 2

),

( ) ( ) ,

( ) ( )

2 ( ) ,

( )( ), 2( ).\

T T

T T

T

G R B C B C S

G Q S Q A A Q S Q

L T T L

G A S T T L L G T T

   
      

 
       

 

 
On the other hand, one can infer from inequality (7) 
(i=j=1) that 0.   Let 

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

I I I

I I

I I I

I I

 
 
 
 
 
 

B
 

multiplying   by B  and TB  on its left and right side 
respectively, we obtain 

    2 2
2 1

0 0 0
2

0 0 0

diag 1 (1 ) , 1 (1 ) 0,

T

k k

P
G k

Q

e R e S   

     
      

     

     

I I

I I  

where 
.

0 0

I I 
  
 

I
 

Note that 0, 0, 0, 0, 0,0 1ik P Q R S         

( 1,2),i   0, 0,    thus G<0. Obviously, this 

contradicts with (10). The contradiction implies that  
( ) ( ).w wH H Hence, map H is injective. 

 
Next, we show that || ( ) ||w H  as || || .w    To prove 

this, it suffices to show that || ( ) (0) ||w   H H  as 

|| || .w    Similar to above proof, from Lemma 1 and 

assumptions (2),(3) we obtain 

 

11 13 12 23

1 1 11 13 12

23 2 2
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( ( ) (0)) [ ( )

( ( ) (0)) ] ( ( ) (0))
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2
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T

T
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G
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   
       
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   
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 

 

   

   

H H

H H  

 

 

2 2
2 1

( ) (0) ( ) (0)1
( )

2

( ) (0) ( ) (0)

2 ( ) ( ( ) (0)) ( ( ) (0))

( ( ) (0)) ( ( ) (0))

2 ( )

2 ( ) (1

{
}
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{

T

M

T T
M
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M

M M
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G
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G







 

   
       
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 
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2 2
2 1

2
2 1

( )) || || (1 ( )) || ||

2 ( )(2 ( ) ( )) || || ,

}M

M M M

x y

G w



  

   

    

 

where 

1 1 1 2

2 1 3 4

diag{ ,..., }, max{| |, | |},

diag{ ,..., }, max{| |, | |}, 1,..., .
n i i i

n i i i

l l

l l i n

    
   ñ ñ ñ

 

From assumptions (2),(3) and above discussion we have 
 

1 2( ) 0, ( ) 0, ( ) 0.M M M G        

By Schwarz inequality and assumptions (2),(3), we have 
2

2 1

11 13 12 23

1 1 11 13 12

23 2 2

11 13 12 23

1 1

2 ( )(2 ( ) ( )) || ||

|| [ ( ) ( ( ) (0)) ]
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T T

T

T
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w

      
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 
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H H
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H H 11 13 12

23 2 2
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1 23 2 2
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T

T

T
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w

   

   

     
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  
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where 
11 13 12 2 23 11|| || || || || || ||TP R P R Q         

13 12 1 23|| || || || || .TS Q S      That is 
2

1

|| ||
|| ( ) (0) || 2 ( ) 2 ( ) ,( )M M i

i

w
w G 



    
H H  

4. Exponential stability result of the 
equilibrium point 

In order to prove the robust stability of the equilibrium 
point * *( , )x y of neural network (1), we will first simplify 

neural network (1) as follows. Let *( ) ( ) ,u t x t x  ( )v t   
*( ) ,y t y  then we have  

1 1 1

1

2 2 2

2

( ) ( ) ( ( )) ( ( ( )))

( ( )),

( ) (
(11)

) ( ( )) ( ( ( )))

( ( )),

u t Au t B f v t C f v t t

D u t t

v t A v t B g u t C g u t t

D v t t







     
  


    
  








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where * *( ( )) ( ( ) ) ( ), ( ( ))i i i i i i i j jf v t f v t y f y g u t      
* *( ( ) ) ( )j j j j jg u t x g x    with (0) (0) 0, 1,2,i jf g i    

..., ; 1, 2, ..., .m j n  By assumptions (2) and (3), we can 

see that 

1 2
1 2

1 2

1 2
3 4

1 2

( ) ( )
, (12)

( ) ( )
. (13)

i i
i i

j j
j j

f s f s
l l

s s

g s g s
l l

s s


 




 


 

 
Next, we consider neural network (11) without 
uncertainties, that is 

1 1 1

1

2 2 2

2

( ) ( ) ( ( )) ( ( ( )))

( ( )),

( ) ( ) ( ( )) ( ( ( )))

( ( )).

u t A u t B f v t C f v t t

D u t t

v t A v t B g u t C g u t t

D v t t







    
  
     
  









  (14) 

 
Theorem 2. The unique equilibrium point of neural 
network (14) is stable with exponential convergence rate k 
if the conditions of Theorem 1 are satisfied. 

 
Proof.  Consider the following Lyapunov-Krasovskii 
functional: 

3

1

( ( )) ( ( ))i
i

V u t V u t


                   （15） 

with 

 

2 2
1

2
2 ( )

2

( )

( ( )) ( ) ( ) ( ) ( ),
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
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
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2
3 1
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2
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t ks T

t

t ks T

t

V u t s t e u s U u s s

s t e v s U v s s




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 





  

  




 

 

 

where ( ) [ ( ), ( ( ))],T T Tt u t u t t   ( ) [ ( ),T Tt v t   

( ( ))], ( ) [ ( ), ( ( )), ( )],T T T T Tv t t s u s g u s u s     

( ) [ ( ), ( ( )), ( )].T T T Ts v s f v s v s    

 
For convenience, we denote ( ( )),u u t t   ( ( )).v v t t    

The time derivative of functional (15) along the 
trajectories of neural network (14) is obtained as follows: 

2
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2
2
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
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Based on Leibniz-Newton formula, for any real matrix 

( 1, ..., 4)iX i  with compatible dimensions, we get 
2
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It is easy to get the following inequalities by using Lemma 
1: 
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where 
( ) [ ( ), , ( ), ( ( )), ( ),

( ( )), ( ), ( ), , ( ),

( ( )), ( ), ( ( )), ( ) ].
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On the other hand, one can infer from inequalities (12),(13) 
that  the following matrix inequalities hold for any 
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positive diagonal matrices ( 1, 2,3, 4)iT i   with compatible 

dimensions 
2
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To get less conservative criterion, we introduce the 
following equalities for any real matrices 

1 2,Z Z  with 

compatible dimensions 
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From (15)-(29), we obtain 
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Note that 0 ( ) , 0 ( ) ,t t        so 
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holds if and only if the following four inequalities 
2 1 2 1
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are true. From the well-known Schur complement, 
inequalities (30-33) are equivalent to (7) with i,j=1,2 
respectively, thus ( ( )) 0V u t   holds if (7) (i,j=1,2) are true. 

 
Furthermore, following the similar line in [27], from 
Lemma 1 we have 

 
* 2 2

1 2
0

* 2 2
3 4

0

( (0)) || ( ) || sup || ( ) ||

|| ( ) || sup || ( ) || ,

V u M t x M u

M t y M v
 

 

 

 
  

  

  

  





 

where 

 

2
1 1

3
2 1

2
3 2

3
4 2

4 ( ) 3 ( ) 1 ,

1
3 ( ) ( ),

2

4 ( ) 3 ( ) 1 ,

1
3 ( ) ( ),

2

( )

( )

M M

M M

M M

M M

M P R

M R U

M Q S

M S U

  

  

  

  

  

 

  

 

 

and
1 1 3 4 2 1 1 2max {| |,| |}, max {| |,| |}.i n i i i n i il l l l       

 
Meanwhile 

 

2 * 2
11 11

* 2

2
11 11

* * 2

( ( )) ( ) || ( ) || ( )

|| ( ) ||

1
min{ ( ), ( )}

2

|| ( ) || || ( ) || ,

(
)

( )

kt
m m

kt
m m

V u t e P t x Q

t y

e P Q

t x t y

  



 

 

  

 



   

 

by Lyapunov stability theory, the proof of Theorem 1 is 
completed. 
 
Remark 1. One can notice that the augmented Lyapunov 
functional approach of this paper is quite different from 
previous ones. New terms 2

22( ( )) ( ( ))kt Te u t t P u t t    

and 2
22( ( )) ( ( ))kt Te v t t Q v t t    are used to augment the 

Lyapunov functional, whose derivatives are directly 
coupled with both neutral and retarded systems. Therefore, 
the augmented Lyapunov functional can lead to an reduce 
in the conservativeness of the results, which will be 
illustrated by three examples. 
 
Remark 2. The proposed Lyapunov functional also 
includes the terms of  cross products 

2
12( ) ( ( )),kt Te u t P u t t 2

12( ) ( ( )),kt Te v t Q v t t and some 

integral terms of cross products, such 

as 2
12( )

( ) ( ( ))d ,
t ks T

t t
e u s R g u s s


2

12( )
( ) ( ( ))d ,

t ks T

t t
e v s S f v s s


which are not considered in previous results. This 
approach provides a quasi-full-size Lyapunov functional 
through augmentation. Moreover, the set of Lyapunov-
Krasovskii functional introduced in Park et al. [14] is just 
reduced form of the one proposed in this paper. It is well 
known that as the Lyapunov functional is reduced, the 
corresponding results become more conservative. 
Therefore the proposed novel augmented Lyapunov 
functional can yield less conservative results than the 
existing methods. 
 
Remark 3. It should be pointed out that the condition of 
Theorem 1 in [14] needs to be revised. In the proof, one 
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key step is the following proposition (see inequality (14) 
in Page 719 of [14]): 
 
Proposition. Let 

3 4.L L  The following inequality holds 

for any given 
4 0,L   positive definite matrices Z: 

 4 4( ( )) ( ( )) ( ) ( ).T Tg y t Zg y t y t L ZL y t          (34) 

 
Unfortunately, the above Proposition is not valid in 
general, this fact can be illustrated by the following 
example: 
 

Example 3.1. Obviously 
1 2

1
( ) ( ) (| 1| | 1|)

2
g s g s s s      

satisfy conditions (3) with 
4 .L I  Set ( ) [ 2 1] ,Ty t    

then ( ( )) [ 11].Tg y t    Further set 1 2
,

2 5
Z

 
  
 

 

we have 
 4 4( ( )) ( ( )) 2 1 ( ) ( ),T Tg y t Zg y t y t L ZL y t    

i.e. inequality (34) is false. 
 
Based on above analysis, the LMIs of Theorem 1 in [14] 
may not be sufficient conditions assumed that Z is a 
positive definite matrix. In fact, if Z is revised to be a 
positive scalar matrix, then the above Proposition and 
Theorem 1 in [14] are still valid. 
 
Remark 4. If any of ( ), ( )t t    are unknown or any of 

( ), ( )t t   are not differentiable, by setting 
2 2 0i iP Q   

( 1, 2), 0i R S   in functional (15) and adding the 

following zero equations to the time derivative along the 
trajectories of neural network (14): 

1 1 1

1 1

2 2 2

2 2

0 ( ( )) ( ) ( ) ( ( ))

( )) ( ( )) ,

0 ( ( )) ( ) ( ) ( ( ))

( ) ( ( )) ,

(
)

(
)

T

T

u t t K u t A u t B f v t

C f v D u t t

v t t K v t A v t B g u t

C g u D v t t













    

  

    

  

 



 



 

where ( 1, 2)iK i   are any real matrices with compatible 

dimensions. Following the similar line in Theorem 1 we 
can obtain a stability criterion similar to LMIs (7). 
 
Remark 5. In terms of LMIs, Theorem 1 and Remark 4 
provide a sufficient condition for the global exponential 
stability of the delayed neutral-type neural network in (14). 
One of the advantages of the LMI approach is that the 
LMI condition can be checked numerically very efficiently 
by using the interior-point algorithms, which have been 
developed recently in solving LMIs [1]. 
 
Next, consider system (14) with 

1 2 0,D D   that is  

1 1 1

2 2 2

( ) ( ) ( ( )) ( ),

( ) ( ) ( ( )) ( ).

u t A u t B f v t C f v

v t A v t B g u t C g u




   
    




           (35) 

 It is easy to see the following result holds from Theorem 
1. 
 
Corollary 1. Under assumptions (2),(3) and 0 ( ) ,t    

1 20 ( ) , 0 ( ) 1, 0 ( ) 1,t t t              given a 

constant 0,k   suppose that there exist positive definite 

symmetric matrices P,Q, nonnegative definite symmetric 
matrices , , , ( 1, 2),i iR S Z U i   positive diagonal matrices 

,jT real matrices , ( 1, 2,3, 4)j jX Y j   with compatible 

dimensions such that the LMIs (7) (i,j=1,2) with 

1 2 0D D   hold, then the equilibrium point of neural 

network (35) is exponential stable. 
 
Remark 6. In Corollary 1, by setting

2 2 0(i iP Q i    

1, 2), 0,R S  we can employ this criterion to analyze the 

stability of neural network  (35) when  any of ( ), ( )t t    

are unknown or any of ( ), ( )t t   are not differentiable. 

5. Robust exponential stability results of 
uncertain delayed neural network 

Now, based on Lemma 1 we investigate the robust 
exponential stability condition for neural network (11) 
with uncertainties satisfying (4) and (5). Firstly, by using 
the same functional as in Theorem 1, we can easily obtain 
the following result. 
 
Theorem 3. Under assumptions (2)-(5) and 
0 ( ) ,t    

1 20 ( ) , 0 ( ) 1, 0 ( ) 1,t t t              given a 

constant 0,k   suppose that there exist positive scalars 

0 1, ,   positive definite symmetric matrices P,Q, 

nonnegative definite symmetric matrices 
, , , ( 1,2),i iR S Z U i   positive diagonal matrices ,jT  real 

matrices , ( 1,2,3,4)j jX Y j   with compatible dimensions  

such that the following LMIs hold (i,j=1,2): 

0 0 1 1

0 0 0

1 1 1
2

1
2

2

0 0 0

0,0 0 0

0 0 0

0 0

(36)

0

T T T T
i j

T

T

k
i

k
j

H H

H I

H I

e U

e U












       
   
   
 

  
   

 

where 

0 1 4 2 3

1 4 2 3

[ 0 0 0 0 0 0 0 0 0 0 ]\

\[ 0 0 0 0 0 0 0 0 0 0 ]

TG G G G

G G G G

  
 
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1 6 7 5 8

6 7 5 8

0 11 13 12 23 1

1 11 13 12 23 2

[ 0 0 0 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 0 0 0 ],

[ 0 0 0 0 0 0 0 0 0 0],

[0 0 0 0 0 0 0 0 0 0 ]

\

,

\

\

\

\

T

T T T

T T T

G G G G

G G G G

P R P R Z

Q S Q S Z

 
 

  
  

 

and other parameters are all defined in Theorem 1, then 
the equilibrium point of neural network (1) is robust 
exponential stable 
 
Remark 7. Similar to Remark 4, if any of ( ), ( )t t   are 

not differentiable or any of ( ), ( )t t    are unknown, by 

setting 
2 2 0( 1,2), 0i iP Q i R S      in functional (15) 

and adding the following zero equations  

1 1 1

1 1

2 2 2

2 2

0 ( ( )) ( ) ( ) ( ( ))

( )) ( ( )) ,

0 ( ( )) ( ) ( ) ( ( ))

( ) ( ( )) ,

(
)

(
)

T

T

u t t K u t A u t B f v t

C f v D u t t

v t t K v t A v t B g u t

C g u D v t t













    

  

    

  

 



 



 

to the time derivative along the trajectories of neural 
network (11), following the similar line in Theorem 3 we 
can obtain a stability criterion similar to LMIs (36). 
 
Now, consider system (11) with 

1 2 0,D D   that is 

1 1 1

2 2 2

( ) ( ) ( ( )) ( ( ( ))),

( ) ( ) ( ( )) ( ( ( ))).

u t A u t B f v t C f v t t

v t A v t B g u t C g u t t




    
    




 

It is easy to see the following result holds from Theorem 3. 
 
Corollary 2. Under assumptions (2),(3) and 0 ( ) ,t    

1 20 ( ) , 0 ( ) 1, 0 ( ) 1,t t t              given 

a constant 0,k   suppose that there exist positive scalars 

0 1, ,   positive definite symmetric matrices P,Q, 

nonnegative definite symmetric matrices , , ( 1, 2),iR S U i   

positive diagonal matrices ,jT  real matrices , (j jX Y j   

1, 2, 3, 4)  with compatible dimensions such that the LMIs 

(36) with
1 2 0D D   hold, then the equilibrium point of 

neural network (37)  is robust exponential stable. 
 
Remark 8. In Corollary 2, by setting 

2 2 0( 1,i iP Q i    

2), 0,R S   we can employ this criterion to analyze the 

stability of neural network (37) when any of ( ), ( )t t    are 

unknown or any of ( ), ( )t t   are not differentiable. 

 

6. Comparison and Illustrative Examples 

Next, we provide two numerical examples to demonstrate 
the effectiveness and less conservativeness of our delay-
dependent stability criteria over some recent results in the 
literature. 
 
Example 5.1. Consider neural network (35) with 

 

1 2 1 2

1

2

1 3 2 4

, 4 , 0,

0.05 0.10 0.15

0.25 0.05 0.15 ,

0.05 0.15 0.05

0.75 0 0.15

0.75 0.50 0.95 ,

0.95 0.75 0.95

0, .

A I A I B B

C

C

L L L L I

   

 
   
  
 
   
  

   

 

This model was studied in [7], [8]. For this neural network, 
it is verified in [8] that the results given in [2], [3] fail to 
ascertain the stability for any time delay. Furthermore, if 
we set exponential convergence rate k be fixed as 0.35, 
none of the criteria of [4], [19] can guarantee the stability 
for any time delay with ( ) 0t   or ( ) 0.t   Set ( )t   

20.5110, 1,  all of the criteria given in [8], [17] fail to 

verify the stability for any time delay, the allowable time 
delay upper bound obtained by Gau et al. [7] is 0.5110, 
while our method shows that the equilibrium point of this 
neural network is exponentially stable for any time delay 
with ( ) 1.1061.t   This is much larger than the one of [7], 

which shows the less conservativeness of our developed 
method. 
 
Example 5.2. Consider neural network (6) with 

   

1 2

1 2

1 2

1 2

1 2 1 2

diag{2,1.5}, diag{3, 2},

0.3 1.0 0.2 0.5
, ,

0.1 0.2 1.1 0.2

1.1 0.2 0
, , 0,

1.0 0.5

0.2 0.1 0.1 0.2
, ,

0.1 0.2 0.2 0.1

6 2 , 4 2 ,

( ) ( ) ( ) ( )

T T

A A

B B

c
C C c

c c

D D

J E

f s f s g s g s

 

   
    
   

   
     
   
   

    
   

   

       0.5(| 1 | | 1 |).s s  

 

Obviously, the activation functions satisfy assumptions (2) 
and (3) with 

1 3 2 40, .L L L L I     

Obviously, none of the results in [2]–[4], [7], [8], [12], [15] 
and [19] can be applied to verify the stability of this model. 
However, if we set 1,   1 2 0.5,    from 

Theorems 1 and 2 we can conclude that this neural 
network has a unique equilibrium point 
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(1.1167, 1.4500, 1.7000,  1.6000)T  which is exponential stable 

for any c with 0 0.9506.c   

7. Conclusion 

In this paper we have investigated the global robust 
stability problem of uncertain BAM neural networks of 
neutral-type. By employing new Lyapunov-Krasovskii 
functional, we proposed several novel stability criteria for 
the considered neural networks. The obtained results are 
all in the form of LMI, which can be easily optimized. 
Finally, three examples are given to show the superiority 
of our proposed stability conditions to some existing ones. 
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