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Abstract 
This paper analyses the local behavior of the cubic function 
approximation of the form 3( ) ( ) ( ) ( ) ( )P z f z Q z f z R z    

2( ),p q rO z    where ( ), ( ), ( )P z Q z R z  are algebraic polyno-

mials of degree p,q,r respectively, to a function which has a 
given power series expansion about the origin. It is shown that  
the cubic Hermite-Padé form always defines a cubic function and 
that this function is analytic in a neighbourhood of the origin. 
Keywords: Cubic function approximation, Hermite-Padé 
approximation, algebraic polynomials 

1. Introduction 

The Padé approximation theory has been widely used in 
problems of theoretical physics [1,3], numerical analysis 
[6] [7], and electrical engineering, especially in modal 
analysis model [2], order reduction of multivariable 
systems [4,8]. 
 
Let f(z) be a function, analytic in some neighbourhood of 
the origin, whose series expansion about the origin is 
known. In this paper we wish to consider the properties of 
the cubic Hermite-Padé approximation approximations to 
f(z) generated by finding polynomials P(z),T(z),Q(z) and 
R(z) such that  

3 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),p t q rP z f z T z f z Q z f z R z O z         

with P(z),T(z),Q(z),R(z) being algebraic polynomials of 
degree p,t,q,r respectively. But as is well known, if we set 

,
3

a
z y   

then any cubic  equation  
 3 2 0z az bz c     

 can be transformed into the following form   

 
2

3 32 1
( ) ( ) 0.

3 27 3

a
y b y a ab c       

So without loss of generality, in this paper we only 
consider approximations  to f(z)  generated by finding 
polynomials P(z),Q(z) and R(z) so that 

3 2( ) ( ) ( ) ( ) ( ) ( ).p q rP z f z Q z f z R z O z         (1) 

Note that such polynomials P,Q,R not all zero, must exist 
since (1) represents a homogenous system of p+q+r+2 
linear equations in the p+q+r+3 unknown coefficients of 
the P(z),Q(z),R(z). Then set  

3( ) ( ) ( ) ( ) ( ) 0P z u z Q z u z R z    

and attempt to solve this equation for u(z) in such a way 
that u(z) approximates f(z).  
 
In the well-known case of Padé approximation [1], the 
same procedure is followed by 

1( ) ( ) ( ) ( )p qP z f z Q z O z     

which gives 
( )

( ) .
( )

Q z
u z

P z
   

If (0) 0P   (not a serious restriction), it then follows that  

 1( ) ( ) ( ).p qu z f z O z     

 
In the case of quadratic Hermite-Padé approximation [5], 
the procedure is followed by 

 2 2( ) ( ) ( ) ( ) ( ) ( )p q rP z u z Q z u z R z O z       

which gives 
    ( ) ( ) ( ) 2 ( ) ,/u z Q z B z P z    

where 
 2( ) ( ) 4 ( ) ( ).B z Q z P z R z   

If (0) 0,B   it then follows that 

 2( ) ( ) ( ).p q ru z f z O z      

If B(0)=0, we set  
2( ) ( ), (0) 0sB z z g z g   

(since Ref. [5] has proved that B(z) never has a root of odd 
multiplicity at the origin). It then follows that  

 2( ) ( ) ( ),p q r su z f z O z       

 where 2s<p+q+r+1. 
 
However, in the cubic case it is not obvious that 

 3( ) ( ) ( ) ( ) ( ) 0P z u z Q z u z R z    

yields even an analytic approximation to f(z), still less that 
it defines a function u(z) such that 

 2( ) ( ) ( ).p q ru z f z O z      

The purpose of this paper is to show that an analogue of 
the Padé and quadratic Hermite-Padé results is in fact true. 

2. Notation 

It is assumed that 
 3 2( ) ( ) ( ) ( ) ( ) ( ),NP z f z Q z f z R z O z     

where N p q r    and that  

 | (0) | | (0) | | (0) | 0.P Q R    
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 Note that if sz  is the maximal common factor of P(z), 
Q(z),R(z), then 

 3 2( ) ( ) ( )
( ) ( ) ( )N s

s s s

P z Q z R z
f z f z O z

z z z
     

so that this second assumption is not a serious restriction. 
 
The following notation will be used: 
(i)  An approximation derived from 

 3 2( ) ( ) ( ) ( ) ( ) ( )NP z f z Q z f z R z O z     

will be referred to as a (p,q,r) cubic approximation to f(z). 
(ii) Let 

 2 31 1
( ) ( ) ( ) ( ).

4 27
D z P z R z Q z   

(iii) By 3( ) , ( )D z E z  we mean the principal square root 

of D(z),E(z) respectively.   

3. The Principal Results 

The problem divides itself into two cases, the case D(0)=0 
and the case (0) 0 .D   

3.1 The Case (0) 0D   

Theorem 1. If (0 ) 0,D   then there exists a unique 

function u(z), analytic in a neighbourhood of the origin, 
satisfying  

 3( ) ( ) ( ) ( ) ( ) 0P z f z Q z f z R z    

 and u(0)=f(0). 
 
Proof. (i) Suppose (0) (0) 0.P Q   The three possible 

expressions for u(z) in a neighbourhood of the origin are 
given by 

 

3 3
1 23 3

( ) ( ) ( ) ( )
( ) ,

2 ( ) ( ) 2 ( ) ( )
k k

k

R z D z R z D z
u z

P z P z P z P z
     

0,1, 2;k   

where 

 
1 2

1 3 1 3
, .

2 2

i i    
   

 
Since (0) (0) (0) 0,P Q D   these three functions are all 

analytic in a neighbourhood of the origin. Exactly one of 
them satisfies u(0)=f(0), because 

 3(0) (0) (0) (0) (0) 0P f Q f R    

3 3
1 23 3

(0) (0) (0) (0)
(0) ,

2 (0) (0) 2 (0) (0)
k kR D R D

f
P P P P

        

0,1,2.k   

(ii) Suppose Q(0)=0. Then (0) 0P  (since (0) 0D  ). 

The three possible expressions for u(z) in a neighbourhood 
of the origin are given by 

 

3 3
1 23 3

( ) ( ) ( ) ( )
( ) ( ) 3 ( ) ,

2 ( ) ( ) 2 ( ) ( )
/k k

k

R z D z R z D z
u z Q z P z

P z P z P z P z
 

 
    
 
 

 
0,1,2.k   

 
 Since (0) (0) 0,P D   these three functions are all analytic 

in a neighbourhood of the origin. Also exactly one of them 
satisfies u(0)=f(0), because 

 3(0) (0) (0) (0) (0) 0P f Q f R     

3 3
1 23 3

(0) (0) (0) (0)
(0) (0) 3 (0) ,

2 (0) (0) 2 (0) (0)
/k kR D R D

f Q P
P P P P

 
 
    
 
 

 

0,1,2.k   

 
(iii) Suppose  
 (0) 0, (0) 0.Q P   

Near the origin the three possible expressions ( )ku z  

(k=0,1,2) can be written as 
3 2

3
1 3

3 2

3
2 3

27
( ) 1

2 3 4

27
1 . (2)

2 3 4

k
k

k

R Q PR
u z

P P Q

R Q PR

P P Q





     
 

    
 

 
The right-hand sides of ( )ku z  (k=0,1,2) are unbounded as 

0,z   so we can exclude these possibilities. Since P(0)=0, 

close to the origin we can apply the binomial theorem to 
get from 

0 ( )u z  the convergent power series (analytic in a 

neighbourhood of the origin) expression for u(z). 
 
It follows that 

3 3
3 3

2

( ) ( ) ( ) ( )
,

2 ( ) ( ) 2 ( ) ( )

( ) 0

3 ( )
, 0

( )

R z D z R z D z

P z P z P z P z

u z z

R z
z

Q z


    

 

 



 

is the only function, analytic in a neighbourhood of the 
origin, satisfying 

 3( ) ( ) ( ) ( ) ( ) 0P z u z Q z u z R z    

with u(0)=f(0). 
 

Theorem 2. If (0) (0) 0,Q D   then there exists a unique 

function u(z), analytic in a neighbourhood of the origin, 
satisfying  
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 3( ) ( ) ( ) ( ) ( ) 0P z u z Q z u z R z    

 such that 

 2( ) ( ) ( ).Nu z f z O z    

 
Proof. Note that 
 

 3

0

( ) ( ) ( ) ( ) ( ) 0
j

j

d
P z u z Q z u z R z

dz
    

 

3

0

( ) ( ) ( ) ( ) ( ,)
j

j

d
P z f z Q z f z R z

dz
    

          (3) 

{0,1, ..., 1}.j N   

For j=1 

 3( ) ( ) ( ) ( ) ( ) ( )P z u z Q z u z R z u z
u

  
 

       3

0
( ) ( ) ( ) ( ) ( ) 0,P z u z Q z u z R z      

 

 3( ) ( ) ( ) ( ) ( ) ( )P z f z Q z f z R z f z
f

    
 

       3

0
( ) ( ) ( ) ( ) ( ) 0.P z f z Q z f z R z      

 

Differentiating again (j=2) gives 

 3( ) ( ) ( ) ( ) ( ) ( )P z u z Q z u z R z u z
u

  
 

 3( ) ( ) ( ) ( ) ( ) ( )
d

P z u z Q z u z R z u z
dz u

      
 

  3

0

( ) ( ) ( ) ( ) ( ) 0,
d

P z u z Q z u z R z
dz

     
 

 3( ) ( ) ( ) ( ) ) ( )"(P z f z Q z f z R z f z
f

 
 

 

 3( ) ( ) ( ) ( ) ( ) ( )
d

P z f z Q z f z R z f z
dz f

      
 

  3

0

( ) ( ) ( ) ( ) ( ) 0.
d

P z f z Q z f z R z
dz

     
 

 
In general, more compact form we have 

 3 ( )

0

( ) ( ) ( ) ( ) ( ) ( ) ( )j
jP z u z Q z u z R z u z u z

u

     
 

 3 ( )

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0, (4)j
jP z f z Q z f z R z f z v z

f

 
      

 

{1,2,..., 1}j N  . 

where  
3

1( ) ( ) ( ) ( ) ( ) ( ),u z P z u z Q z u z R z    

 3 ( )
1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( );)j j

j

du z d
u z P z u z Q z u z R z u z

dz dz u

      
 

3
1( ) ( ) ( ) ( ) ( ) ( ),v z P z f z Q z f z R z      

 3 ( )
1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ).)j j

j

dv z d
v z P z f z Q z f z R z f z

dz dz u

      
 

Now taking the unique u(z) from Theorem 1, it is easily 
proved that 

 3

0
( ) ( ) ( ) ( ) ( ) 0,P z u z Q z u z R z

u

     
 

since 

 2 3

0

1 1
(0) ( ) ( ) ( ) 0,

4 27
D P z R z Q z     

 

and 
 3

0
( ) ( ) ( ) ( ) ( ) 0.P z u z Q z u z R z      

Therefore it is seen that Eq.(4) with j=1 gives u'(0)=f'(0), 
which with j=2 gives u''(0)=f''(0). 
It follows that  

 ( ) ( )(0) (0), {1, 2,..., 1},j ju f j N    

i.e.  
 2( ) ( ) ( ).Nu z f z O z    

3.2 The Case D(0)=0. 

We now investigate the case D(0)=0. This implies that 
(0) 0P   (since if  

 2 31 1
(0) (0) (0) (0) 0

4 27
D P R Q    

 and P(0)=0, then Q(0)=0, which with  
 3(0) (0) (0) (0) (0) 0P f Q f R    

gives R(0)=0; this contradicts the assumption that 
 | (0) | | (0) | | (0) | 0).P Q R    

 
First, it is necessary to treat two special cases: 
 (i) Suppose ( ) 0.R z   

Then  
3 2( ) ( ) ( ) ( ) ( )NP z f z Q z f z O z    

 2 2( ) ( ) ( ) ( ) ( )NP z f z Q z f z O z     

so that  
 2 ( ) ( ) / ( ) ( ),Sf z Q z P z O z    

 and 
 ( ) ( ), where 2.Tf z O z S T N     

Choosing  

 ( ) / ( ), if S 2T
( )

0, otherwise

Q z P z
u z

   


 

 gives u(z) such that 
 3( ) ( ) ( ) ( ) ( ) 0P z u z Q z u z R z    

and 
 max{ /2, }( ) ( ) ( ).S Tu z f z O z   

 
Clearly max{ / 2, } ( 2) / 3.S T N   

 
(ii) Suppose ( ) 0.Q z   
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Then 
3 2( ) ( ) ( ) ( )NP z f z R z O z    

3 2( ) / ( ) ( ) ( )NR z P z f z O z     

so that 
3( ) ( ) / ( ) ( ) ( ), ( 2) / 3.Ku z R z P z f z O z K N       

 
and  

 3( ) ( ) ( ) ( ) ( ) 0.P z u z Q z u z R z    

 
Theorem 3. If ( ) 0D z  and ( ) 0,R z   then D(z) never 

has a oot of multiplicity greater than p+q+2r at the origin. 
 
Proof. Let M=p+q+2r and suppose ( )D z   

1 wh ( )e( r), eM
s sz D z D z is a polynomial of degree s. Since 

( ) 0, ( ) 0,P z R z    then 
3 1( ) 27 ( ) ( ),M

s tQ z z D z B z                (5 )  

where ( )tB z  is a nonzero polynomial of degree t. We 

must haveM+1+s=3q (since 2 1p r M M    ) so that 

 227
( ) ( ) ( ).

4tB z P z R z  

Also 2 1 3 2 .t q p q r M q s t s q            

Differentiating (5) gives 

 23 ( ) ( ) 27 ( 1) ( ) ( ) ( )M
s s tQ z Q z z M D z zD z B z       

 2 13 ( ) ( ) 27 ( 1) ( ) ( ) ( )M
s s tzQ z Q z z M D z zD z zB z        

1: 27 ( ) ( ),M
s tz D z B z           ( 6 )  

where   
 ( ) ( 1) ( ) ( ) (degree )s s sD z M D z zD z s    

 ( ) ( ) (degree )t tB z zB z t  

 
From (5) and (6) (eliminating the term in 1Mz  ) we have 

 2 ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( ) ( ).s s t s t sQ z D z Q z D z zQ z B z D z B z D z    

(7 )  

The left-hand side of (7) either has degree not less than 2q 
or is identically zero, while the right-hand side has degree 
not greater than t+s<2q. It follows that 

( ) ( ) 3 ( ) ( ) 0 ( ) ( ) ( ) ( ).s s t s t sD z Q z D z zQ z B z D z B z D z     

Hence 

 ( ) ( ) ( )( )

( ) 3 ( ) 3 ( ) 3 ( )
s t t

s t t

D z B z B zQ z

Q z zD z zB z B z


    

And integrating gives 
 3( ) ( ) , .tQ z c B z c  R  

But  
 3deg ( ) / 3tB z t q   

 so the result is proved by contradiction. 
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