
1

An Efficient Pipelined Technique for Signcryption

Algorithms

Ghada F. El Kabbany, Heba K. Aslan and Mohamed M. Rasslan

 Informatics Department, Electronics Research Institute

Cairo, Egypt

Abstract
Signcryption algorithms are based on public key cryptography.

The main advantage of signcryption algorithms is to provide both

confidentiality and authenticity in one step. Hence, signcryption

algorithms lower both communication and computation

overheads. This reduction, in communication and computation

overheads, makes signcryption algorithms more suitable for real-

time applications than other algorithms that combine encryption

and digital signature in separate blocks. Although, the

signcryption algorithms overcome the communication overhead

problem, they still suffer from the need to perform arithmetic

modular operations. The arithmetic modular operations have high

computation overhead. In this paper, we use a pipelined

technique to reduce the computation overhead of signcryption

algorithms. We apply the proposed pipelined technique to

Rasslan et. al signcryption algorithm. The proposed pipelined

technique is suitable for the selected signcryption algorithm.

Rasslan et. al. signcryption algorithm is more efficient than all

the previously presented algorithms. Rasslan et. al. signcryption

algorithm allows the recipient to recover the message blocks

upon receiving their corresponding signature blocks. This makes

Rasslan et. al signcryption algorithm perfect for some real-time

applications. Also, we illustrate the performance analysis of the

proposed solution. The performance analysis shows that the

proposed technique reduces the computation time required to

execute Rasslan et. al. signcryption algorithm with respect to its

corresponding values of sequential execution.

Keywords: Cryptography, Authentication, Encryption,

Signcryption, Pipelining, and Modular Multiplication

1. Introduction

Many real-time applications demand the necessity to lower

the communication and computation overheads that is

required to provide security. Signcryption algorithms [1-

5], which are based on public key cryptography, could be a

solution to such applications. Their main advantage is to

provide both confidentiality and authenticity in one step.

This lowers both communication and computation

overheads, which makes signcryption more suitable for

real-time applications. The term signcryption was

originally introduced and studied by Zheng in [1] with the

primary goal of reaching greater efficiency than that can

be accomplished when performing the signature and

encryption operations separately. Although, the

signcryption techniques overcome the communication

overhead problem, they still suffer from the need to

perform modular operations which requires large

computation operations. In the literature, many solutions

were proposed to improve the performance of

cryptographic algorithms using pipelined techniques [6-

14]. A pipeline is composed of a series of producer stages,

each one depends on the output of its predecessor.

Pipelines are used in cases where a parallel loop cannot be

used. With the pipeline pattern, the data is processed in a

sequential order, where the first input is transformed into

the first output, the second input into the second output,

and so on. In a simple pipeline, each stage of the pipeline

reads from a dedicated input and writes to a particular

output. All the stages of the pipeline can be executed at the

same time, because concurrent queues prevent any shared

inputs and outputs. Pipelines are useful specifically when

the data elements are received from a real-time event

stream. In addition, pipelines are used to process elements

from a data stream (i.e. in compression and encryption.) In

all of these cases, data elements are processed in a

sequential order [15].

In the present paper, in order to reduce the computation

overhead in signcryption algorithms, we use a pipelined

technique which is chosen due to its suitability for Rasslan

et. al. signcryption algorithm [5]. Rasslan et. al. signcryption

algorithm is more efficient than all previously presented

signcryption algorithms. It allows the recipient to recover

the message blocks upon receiving their corresponding

signature blocks, which makes Rasslan et. al. signcryption

algorithm perfect for some application requirements. The

proposed pipelined technique reduces the computation

time required to execute Rasslan et. al. algorithm with

respect to its corresponding values of a sequential

execution. This is applied for any number of messages 'N'.

This paper is organized as follows: in the next section,

background and related work are detailed. In section 3, a

description of Rasslan et. al. signcryption algorithm is

given. Next, the proposed pipeline solution is discussed in

section 4. Finally, the paper concludes in the last section.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 67

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2

2. Related Work

2.1 Pipelining cryptography

Many researchers have been working on accelerating the

computation process of various cryptographic algorithms

by using parallel and pipelined techniques. Some solutions

were proposed to enhance the performance of symmetric

encryption algorithms [8, 11-14]. Yang et. al. proposed a

method to efficiently implement block cipher on

Networked Processor Array (NePA) Network on Chip

(NoP) platform using parallel and pipeline execution. They

implement their solution for Data Encryption Standard

(DES), Triple-DES algorithm, and Advanced Encryption

Standard (AES). In addition, they proposed a new

programming model resulting in a good performance with

reduced development time. Agosta et. al. suggested a

solution which is based on tile architectures, which allows

high levels of instruction level parallelism. Alam et. al.

proposed an architecture that is based on pipelined threads.

Satoh achieved a high throughput for AES using

pipelining of rounds. Abdellatif et. al. use pipelined

technique to obtain high throughput for AES in Galois

Counter Mode (GCM).

The public key cryptographic algorithms are

computationally intensive, since it requires modular

operations over large numbers. Several researches have

been done to improve the performance of public

encryption algorithms [6, 9-10, and 16]. Lin used Single

Instruction Multiple Data (SIMD) technology to

implement Rivest-Shamir-Adleman (RSA) public key

encryption algorithm. To implement Elliptic Curve

Cryptography (ECC) using pipelined technique, he

achieved a high performance model with low power

consumption. To implement Elliptic Curve Cryptography

(ECC) using pipelined technique, Gutub proposed a

scheme, which is efficient with respect to power, area, and

throughput. Laue suggested a solution, which is based on

the examination of the degree of parallelism on each

abstraction level. He applied his solution to both RSA and

ECC algorithms. GroBschadl suggested a solution, which

is based on reducing the modular multiplication time, for

the implementation of RSA algorithms. One of the most

important issues in implementing public key encryption

algorithms is to reduce the time of modular multiplication,

since it is the most used in the majority of the public key

encryption algorithms. In literature, many solutions were

proposed [7, 10, and 17-19]. Mentens et. al., in their work,

presented a pipelined architecture of a modular

Montgomery multiplier, which is suitable to be used in

public key coprocessors. Their design makes use of 16-bit

integer multiplication blocks that are available on recently

manufactured Field Programmable Gate Arrays (FPGAs)

[7]. Orton et. al. presented serial-parallel concurrent

modular-multiplication architecture suitable for standard

RSA encryption [17]. Gutub et. al. proposed pipelined

cryptography modular multiplier architecture. That

architecture was implemented on Field Programmable

Gate Array (FPGA), designed in four stages to be properly

suitable for elliptic curve crypto computation [18].

Meulenaer et. al. proposed an architecture that is based on

a fully parallel and pipelined modular multiplier circuit.

Meulenaer et. al. claimed that their architecture exhibited a

15-fold improvement over throughput/hardware cost ratio

of previously published results [19]. GroBschadl et. al., in

their work [10], explained how three simple

multiplications and one addition result in a modular

multiplication, and how a modular exponentiation can be

calculated by continued modular multiplications. In their

work, they presented hardware algorithms for

exponentiation, modular reduction and modular

multiplication [10].

2.2 Parallel Pipelining

The pipeline pattern uses parallel tasks and concurrent

queues to process a sequence of input values. Each task

implements a stage of the pipeline. The queues act as

buffers that allow the stages of the pipeline to be executed

concurrently and in order. Pipelines can be considered as

analogous to assembly lines in a factory, where each item

in the assembly line is constructed in stages. The partially

assembled item is passed from one assembly stage to

another. The outputs of the assembly line occur in the

same order as that of the input. Pipeline is the simplest and

most fundamental architecture in parallelism. It can be a

single function pipeline, or a multifunction pipeline. The

single function pipeline precedes one operation on the

stream of data, at each stage of the line. In the

multifunction pipeline, different operations can be done at

different stages. Fig. 1 shows both single and

multifunction pipelines. In all pipelines, the data in the

pipe is shifted from stage "i" to stage "i+1", at the same

time, for all stages. At the shift time, all stages in the pipe

must have completed their operation on their local data.

The pipeline cycle time must not be less than the time

required for the slowest stage to be completed. The

execution unit consists of a number of stages, each of

which performs a specific function within a specific time

period. That is to say, a pipeline processor is the simplest

and most fundamental architecture in parallel processing.

In this model "M" processors are connected like an

assembly line [20-25].

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 68

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3

(a): A Single Functional Pipeline

....S1 S2
S3

S5

Result 1
F1

F2 S4

Result 2

(b): A Multifunction Pipeline

Fig. 1 The pipeline architecture.

3. Description of Rasslan e.t al. Signcryption

Algorithm

In this section, a description of Rasslan et. al. signcryption

algorithm is detailed [5]. This algorithm is more efficient

than all the previously presented schemes. It allows the

recipient (verifier) to recover the message blocks upon

receiving their corresponding signature blocks. The

scheme is perfect for some application requirements and it

is designed for packet switched networks. In order to

perform the proposed protocol, the following parameters

must be set. First, the System Authority (SA) selects a

large prime number p such that p-1 has a large prime

factor q. SA also picks an integer, g, with order q in

GF(p). Let "f " be a secure one way hash function. SA

publishes p, q, g and f. Each user, Ui, chooses a secret key

xi Zq and computes the corresponding public key yi =

 mod p. When a sender A wants to send a message to

receiver B, it divides the stream into blocks of L packets

(Pack1, Pack2, Pack3,…, PackL-2, PackL-1, PackL). The

value of these packets must be less than the value of p. The

sender A, with secret key xa and public key ya = , uses

the following steps before sending the multicast message:

(1) Pick random numbers k, l Zq
*

and set r0 = 0, then

compute
k

by mod p and t = g
k
 mod p.

(2) Compute: ri = Packi . f (ri-1 ⊕
k

by) mod p, for i = 1,

2, ….., L.

(3) Compute: s = k – r . xa mod q, where r = f (r1, r2, r3,...

, rL).

(4) Then, the sender computes c1 = g
l
 mod p and c2 = rL .

l

by mod p.

After receiving the sent message, the recipient checks the

signature by comparing ax
t to (

s
by .

r

aby mod p), where

yab =
bx

ay mod p. If the check doesn‟t hold, this indicates

that the received packets are modified and must be

discarded. On the other hand, if the check holds, then each

recipient calculates rL = c2 . mod p. Finally, each

recipient recovers message blocks using the following

equation: Packi = ri . f (ri-1 ⊕)
-1

 mod p, for i = 1, 2,

….., L and r0 = 0. One advantage of the proposed protocol,

since it is based on signcryption techniques, is that it

provides both confidentiality and authenticity in one step.

Consequently, the computation overhead decreases, this

makes the proposed protocol suitable for real-time

applications. In the next section, the proposed pipelined

technique is detailed.

4. Proposed Pipeline Design for Rasslan et. al.

Signcryption Algorithm

Pipelining is based on breaking a task into steps performed

by different processor units with inputs streaming through.

It is much like an assembly line. Due to the nature of

Rasslan et. al. algorithm, which is characterized by

repeating the same function for several packets, we

decided to use single-function multiple-input architecture.

The proposed technique uses 'M'' processors/stages to

perform the signcryption operation. Assuming that the data

stream is divided into „N‟ messages, where each message

contains „L‟ packets and the number of packets equals to

the number of functions/tasks to be executed. Each packet

‘Packij’, (where i ranges from 1 to L and j ranges from 1 to

N), is passed to the corresponding function unit (Packij . f

(ri-1j ⊕
k

by) mod p). The output of each function unit is

shifted from stage i to stage i+1 for all stages, at the same

time, as shown in Fig. 2. In our proposed design, there are

three cases:

(i) Single processor – Single task,

(ii) Multiple processors – Single task

(iii) Single processor – Multiple tasks

4.1 Single processor – Single task

In this case, the number of processors equals to the number

of function units per tasks to be executed (M=L). Assume

S2 S1 Sj SM ……….. F1 Result

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 69

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4

that each function unit needs „T’ units of time to be

processed. Therefore, the sequential time ‘Ts’ to execute

„N’ messages, each of „L’ packets, is given by the

following equation:

Ts = N*L*T (1)

In case of M=L, the total time to compute „N’ messages in

parallel (using pipelined architecture) is given by the

following equation:

Tpar = (N+L-1)*T (2)

Compared to the non-pipelined model, the speed-up ‘Sp’ is

given by:

Sp =

)1(

*

LN

LN (3)

In addition, the overall efficiency ‘Ep’ equals to:

Ep =
MLN

LN 1
*

)1(

*

 (4)

Moreover, it improves the total computation time of

Rasslan et. al. algorithm by:

)*(

)1(*)1(

LN

LN

T

TT

s

pars (5)

Fig. 3 shows Tpar for different cases of N and L. The first

case is N = L. The second case is L < N. The last case is L

> N. This figure shows that Tpar is not affected by the

relation between N and L, for all cases.

4.2 Multiple processors – Single task

In this case, M > L. When assigning one task per function

unit, to each processor, only ‘L' processors are needed and

'M-L’ processors are idle. This leads to load imbalance. In

this case only „L’ processors will be used for pipelining

and Tpar= ((N+L-1)*T), as discussed above. To avoid load

imbalance, more than one processor can cooperate to

compute different instructions of each function unit

(Packij. f (ri-1j ⊕
k

by)). This task can be divided into three

subtasks. The first task is to execute the modular

exponentiation. This task is calculated once for each

message. Therefore, it will be performed sequentially and

will not be considered in our calculations. The second task

is the execution of the XOR operation. The time to carry

out this operation is relatively very small compared to the

modular multiplication and exponentiation. Hence, it will

be neglected in our calculations. Finally, the third task is to

compute the modular multiplication operation. Thus, we

consider the time needed to compute a single function unit

„T’ is equal to the time needed to calculate one modular

multiplication function. As shown in [10], a modular

multiplication can be divided into three simple

multiplications and one addition. The modular

multiplication task is the most consuming time. Therefore,

our objective is to reduce the modular multiplication time.

This can be achieved by incorporating the idle processors

in the execution of each modular multiplication operation.

Each modular multiplication task is represented as shown

in Fig. 4. It can be computed by three processors in

parallel, as shown in Fig. 5. Let the time needed to

compute a simple multiplication operation equals to "tp"

and the time needed for computing simple addition

operation equals to "ta". Since, the addition operation

considerably needs less time than the multiplication

r1j

Pack1j . f (
k

by) Pack2j . f (r1j⊕
k

by)

……

r2j rLj

PackLj. . f (rL-1j⊕
k

by)

Pack1N

……….

Pack1j

………

Pack12

Pack11

r0

Pack2N

……….

Pack2j

………

Pack22

Pack21

PackLN

……….
PackLj

………

PackL2

PackL1

messN

……….

messj

………

mess2

mess1

…….

……

Fig. 2 Steps of Rasslan et. al. algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 70

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

5

F
1
 mess1

Pack1

mess2
Pack1

mess3

Pack1

mess4

Pack1

mess5

Pack1

mess6

Pack1

F2 mess1
Pack2

mess2

Pack2

mess3

Pack2

mess4

Pack2

mess5

Pack2

mess6
Pack2

F3 mess1

Pack3

mess2

Pack3

mess3

Pack3

mess4

Pack3

mess5

Pack3

mess6

Pack3

F4 mess1

Pack4

mess2
Pack4

mess3

Pack4

mess4

Pack4

mess5

Pack4

mess6

Pack4

F5 mess1

Pack5

mess2

Pack5

mess3

Pack5

mess4

Pack5

mess5

Pack5

mess6

Pack5

F6 mess1

Pack6

mess2

Pack6

mess3

Pack6

mess4

Pack6

mess5

Pack6

mess6

Pack6

Time T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T

(a) L = N and N= 6

F
1
 mess1

Pack1

mess2
Pack1

mess3

Pack1

mess4

Pack1

mess5

Pack1

mess6

Pack1

mess7

Pack1

F2 mess1

Pack2

mess2

Pack2

mess3

Pack2

mess4
Pack2

mess5
Pack2

mess6
Pack2

mess7

Pack2

F3 mess1

Pack3

mess2

Pack3

mess3

Pack3

mess4

Pack3

mess5

Pack3

mess6

Pack3

mess7

Pack3

F4 mess1

Pack4

mess2
Pack4

mess3

Pack4

mess4

Pack4

mess5

Pack4

mess6

Pack4

mess7

Pack4

F5 mess1

Pack5

mess2
Pack5

mess3

Pack5

mess4

Pack5

mess5

Pack5

mess6

Pack5

mess7

Pack5

F6 mess1

Pack5

mess2
Pack6

mess3

Pack6

mess4

Pack6

mess5

Pack6

mess6

Pack6

mess7

Pack6

Time T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T

(b) N >L and N=7

F
1
 mess1

Pack1

mess2
Pack1

mess3

Pack1

mess4

Pack1

mess5

Pack1

F2 mess1

Pack2

mess2

Pack2

mess3

Pack2

mess4
Pack2

mess5
Pack2

F3 mess1

Pack3

mess2

Pack3

mess3

Pack3

mess4

Pack3

mess5

Pack3

F4 mess1

Pack4

mess2
Pack4

mess3

Pack4

mess4

Pack4

mess5

Pack4

F5 mess1

Pack5

mess2
Pack5

mess3

Pack5

mess4

Pack5

mess5

Pack5

F6 mess1

Pack5

mess2
Pack6

mess3

Pack6

mess4

Pack6

mess5

Pack6

Time T 2T 3T 4T 5T 6T 7T 8T 9T 10T

 (c) N<L and N=5

Fig. 3 The total execution time after using pipelining for M = L =6

operation, the time "ta" can be neglected. Then, T= 3tp.

Given that the modular multiplication can be done through

using three simple multiplications, the maximum

improvement in the execution time of the modular

multiplication could be achieved through using three

single processors. That is to say, in our case, the optimal

number of processors to execute one function unit is three.

For each function unit, we need two processors to help

each overloaded processor. This means that to avoid load

imbalance, two volunteer processors are needed to help

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

6

Fig. 5 Distribution of tasks in case of multiple processors – single task.

each overloaded processor to finish its work. In case of the

number of volunteer processors is less than two, the

waiting time will increase. To start load balancing, (M-L)

must be greater than two. On the other hand, if the number

of volunteers is greater than two, more than one processor

will cooperate on the execution of each simple

multiplication (fine grained parallelization). Due to the

dependency in the execution of simple multiplication, the

communication overhead increases. Thus, we will only

consider the case of two volunteer processors to help in

each function unit. Hence, we have two cases:

3
2

 LM and
3

2

 LM .

Case 1:

3
2

 LM

In this case, the total time to compute „N’ messages in

parallel (using pipelined architecture) is given by the

following equation:

 pt

LM
T

LM
LN *3

2
*

2
)(=Tpar (6)

The speed-up ‘Sp’ is given by:

 pt

LM
T

LM
LN

TLN

*3
2

*
2

)(

)**(
=Sp

 (7)

In addition, the overall efficiency ‘Ep’ equals to:

M
t

LM
T

LM
LN

TLN

p

1
*

*3
2

*
2

)(

)**(
 = Ep

 (8)

Moreover, it improves the total computation time of

Rasslan et. al. algorithm by:

Improvement w.r.t sequential=

)**(

*3
2

*
2

)()**(

TLN

t
LM

T
LM

LNTLN p

 (9)

Improvement w.r.t before balance=

TLN

t
LM

T
LM

LNTLN p

*)1(

*3
2

*
2

)(*1

 (10)

Multipl
ier1

Multplie

r2

Addition

Inputs { Packij , f (ri-1j ⊕ k

by) }

Multplie

r3

 Fig. 4 Representation of modular multiplication.

……..
Multiplier3

Addition

Multiplier2 Multiplier1

P1

P2 P3

Multiplier3

Addition

Multiplier2 Multiplier1

P3

P4 P5

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

7

Fig. 6 presents Tpar for M > L, and
3

2

 LM

. As

shown in the previous subsection, the relation between N

and L will not affect the total execution time Tpar, thus we

use only N=L=6 as an example.

Case 2: 3
2

 LM

In this case, the total time to compute „N’ messages in

parallel (using pipelined architecture) is given by the

following equation:

 pt

LM
T

LM
LN *

2
*

2
)1(=Tpar

 (11)

The speed-up ‘Sp’ is given by:

 pt

LM
T

LM
LN

TLN

*
2

*
2

)1(

)**(
=Sp

 (12)

In addition, the overall efficiency ‘Ep’ equals to:

M
t

LM
T

LM
LN

TLN

p

1
*

*
2

*
2

)1(

)**(
 =Ep

 (13)

Moreover, it improves the total computation time of

Rasslan et. al. algorithm by:

Improvement w.r.t sequential =

)**(

*
2

*
2

)1()**(

TLN

t
LM

T
LM

LNTLN p

 (14)

Improvement w.r.t before balance =

TLN

t
LM

T
LM

LNTLN p

*)1(

*
2

*
2

)1()*1(

 (15)

Fig. 7 illustrates Tpar for M > L, and 3
2

 LM

.

4.3 Single processor – Multiple tasks

In this case, where M < L, to achieve the optimum

processor utility, each processor can execute one or more

consecutive tasks. Then, the first processor gives its output

to the subsequent processor. This is repeated for the

different processors as shown in Fig. 8. In the following

paragraphs, the total parallel (pipelined) time Tpar is

calculated for the following two cases:

 First, for (L mod M) = 0, where each processor

computes

M

L tasks.

 Second, for (L mod M) ≠ 0, where each processor of

the first (L mod M) processors computes
M

L
+1 tasks,

while each processor of the remaining processors

executes
M

L
 tasks.

Case 1: (L mod M) = 0

In this case, the total time to compute „N’ messages in

parallel (using pipelined architecture) is given by the

following equation:

TL
M

L
N **)1(= Tpar

 (16)

The speedup ‘Sp’ is given by:

Sp =

 L

M

L
N

LN

*)1(

* (17)

In addition, the overall efficiency ‘Ep’ equals to:

 L

M

L
N

LN

*)1(

*
= Ep

M

1
* (18)

Improvement w.r.t sequential=

)*(

)1()(

LN

L
M

L
NLN

 (19)

Improvement w.r.t before balance=

)1(

*)1(1

LN

L
M

L
NLN

 (20)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 73

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

8

F

1
 mess

1

Pack
1

mess
2

Pack
1

mess
3

Pack
1

mess
4

Pack
1

mess
5

Pack
1

mess
6

Pack
1

F2 mess
1

Pack
2

mess
2

Pack
2

mess
3

Pack
2

mess
4

Pack
2

mess
5

Pack
2

mess
6

Pack
2

F3 mess
1

Pack
3

mess
2

Pack
3

mess
3

Pack
3

mess
4

Pack
3

mess
5

Pack
3

mess
6

Pack
3

F4 mess
1

Pack
4

mess
2

Pack
4

mess
3

Pack
4

mess
4

Pack
4

mess
5

Pack
4

mess
6

Pack
4

F5 mess
1

Pack
5

mess
2

Pack
5

mess
3

Pack
5

mess
4

Pack
5

mess
5

Pack
5

mess
6

Pack
5

F6 mess
1

Pack
6

mess
2

Pack
6

mess
3

Pack
6

mess
4

Pack
6

mess
5

Pack
6

mess
6

Pack
6

 T 2T 4T 8T +tp

Fig. 6 The total execution time after using pipelining for
3

2

 LM , N=L=6 and M =15.

F

1
 mess

1

Pack
1

mess
2

Pack
1

mess
3

Pack
1

mess
4

Pack
1

mess
5

Pack
1

mess
6

Pack
1

F2 mess
1

Pack
2

mess
2

Pack
2

mess
3

Pack
2

mess
4

Pack
2

mess
5

Pack
2

mess
6

Pack
2

F3 mess
1

 Pack
3

mess
2

Pack
3

mess
3

Pack
3

mess
4

Pack
3

mess
5

Pack
3

mess
6

Pack
3

F4 mess
1

Pack
4

mess
2

Pack
4

mess
3

Pack
4

mess
4

Pack
4

mess
5

Pack
4

mess
6

Pack
4

F5 mess
1

Pac k
5

mess
2

Pack
5

mess
3

Pack
5

mess
4

Pack
5

mess
5

Pack
5

mess
6

Pack
5

F6 mess
1

Pack
6

mess
2

Pack
6

mess
3

Pack
6

mess
4

Pack
6

mess
5

Pack
6

mess
6

Pack
6

 10T+tp

Fig. 7 The total execution time after using pipelining for 3
2

 LM

, N=L=6 and M=9.

Fig. 8 Distribution of tasks in case of single processor – multiple tasks.

Case 2: (L mod M) ≠ 0

In this case, the total time to compute „N’ messages in

parallel (using pipelined architecture) is given by the

following equation:

TL
M

L
N

T
M

L
MML

M

L
N

1)1(Tpar

**mod1*)1(=Tpar

 (21)

The speed-up ‘Sp’ is given by:

 L

M

L
N

LN

1*)1(

*
= Sp (22)

In addition, the overall efficiency ‘Ep’ equals to:

M
L

M

L
N

LN 1
*

1*)1(

*
= Ep

 (23)

P0
P1

….. ……

…...

Pi
PM-1

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 74

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

9

P0 mess

1

Pack
1

mess
1

Pack
2

mess
2

Pack
1

mess
2

Pack
2

mess
3

Pack
1

mess
3

Pack
2

mess
4

Pack
1

mess
4

Pack
2

mess
5

Pack
1

mess
5

Pack
2

mess
6

Pack
1

mess
6

Pack
2

P
1
 mess

1

Pack
3

mess
1

Pack
4

mess
2

Pack
3

mess
2

Pack
4

mess
3

Pack
3

mess
3

Pack
4

mess
4

Pack
3

mess
4

Pack
4

mess
5

Pack
3

mess
5

Pack
4

mess
6

Pack
3

mess
6

Pack
4

P
2
 mess

1

Pack
5

mess
1

Pack
6

mess
2

Pack
5

mess
2

Pack
6

mess
3

Pack
5

mess
3

Pack
6

mess
4

Pack
5

mess
4

Pack
6

mess
5

Pack
5

mess
5

Pack
6

mess
6

Pack
5

mess
6

Pack
6

 T 4T 8T 12T 16T

Fig. 9 The total execution time after using pipelining for (L mod M) =0, M=3 and N= L =6.

P0 mess
1

Pack
1

mess
1

Pack
2

mess
2

Pack
1

mess
2

Pack
2

mess
3

Pack
1

mess
3

Pack
2

mess
4

Pack
1

mess
4

Pack
2

mess
5

Pack
1

mess
5

Pack
2

mess
6

Pack
1

mess
6

Pack
2

P
1
 mess

1

Pack
3

 mess
2

Pack
3

 mess
3

Pack
3

 mess
4

Pack
3

 mess
5

Pack
3

 mess
6

Pack
3

P
2
 mess

1

Pack
4

 mess
2

Pack
4

 mess
3

Pack
4

 mess
4

Pack
3

 mess
5

Pack
4

 mess
6

Pack
4

P
3
 mess

1

Pack
5

 mess
2

Pack
5

 mess
3

Pack
5

 mess
4

Pack
5

 mess
5

Pack
5

 mess
6

Pack
5

P
4
 mess

1

Pack
6

 mess
2

Pack
6

 mess
3

Pack
6

 mess
4

Pack
6

 mess
5

Pack
6

 mess
6

Pack
6

 T 4T 8T 12T 16T

Fig. 10 The total execution time after using pipelining for (L mod M)≠0, L=N = 6 and M=5.

Improvement w.r.t sequential =

)*(

1*)1()*(

LN

L
M

L
NLN

 (24)

Improvement w.r.t before balance =

)1(

1*)1(1

LN

L
M

L
NLN

 (25)

Fig. 9 shows Tpar for (L mod M) =0, while Fig. 10 shows

Tpar for (L mod M) ≠0.

4.4 Discussion of results

Signcryption algorithmss suffer from the high computation

overhead. In the present paper, we propose a pipeline

design to solve this problem. The proposed technique is

analyzed according to the following aspects: the parallel

time 'Tpar', the speed-up 'Sp', the efficiency 'Ep', and the

degree of improvement. Figures 11-13 show the system

performance: ' Tpar', ' Sp', ' Ep', and the improvement

degree. Fig. 11 shows the system performance in case of

single processor – single task. While, Fig. 12 illustrates the

performance in case of multiple processors – single task.

Finally, Fig. 13 presents the system performance in case of

single processor – multiple tasks. From the above figures,

the following observations are noted:

 The proposed pipelined technique reduces the

computation time required to execute Rasslan et. al.

algorithm, compared to its corresponding values of

sequential execution. This is applied for any number of

messages 'N'.

 For the case of single processor – single task (M=L), as

the number of messages increases, the usefulness of

using parallel computing increases. This is evident in

enhancing the system performance as illustrated in Fig.

11. The degree of improvement of the proposed

technique, compared to the performance prior to

parallelization is 62.5%, 71.4%, 74.1%, 76.9% and

77.7%, for L =M = 6 and N = 4, 7,9,13 and 15,

respectively.

 For the case of multiple processors – single task

(M>L), when the number of processors increases, the

total execution time decreases and consequently the

efficiency will decrease, as illustrated in Fig. 12. The

degree of improvement of the proposed technique,

compared to the performance of Rasslan et. al.

algorithm without using pipelining (serial), is 71.3%,

73.2%, 75%, and 76.8% for L =N = 6 and M = 8,10,13,

and 15 respectively. On the other hand, the degree of

improvement, compared to the performance prior to

balancing is 6%, 12.2%, 18.2%, and 24.3% for the M=

8,10,13, and 15 respectively. The performance of the

proposed pipelined design is better than both cases

(without pipelining and before balance.)

 In the case of single processor – multiple tasks (M<L),

as the number of processors increases, the system

performance enhances. This is shown in Fig. 13. This

figure illustrates that for some values where
M

L
 is

constant, the total execution time is constant until it

saturates at
M

L
=1. Therefore, in this case, the

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 75

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

10

5

15

25

35

45

55

65

75

85

N=4 N=5 N=7 N=9 N=13 N=15

Number of messages

T
o

ta
l

ti
m

e
(T

 u
n

it
s)

Ts Tpar

0

1

2

3

4

5

N=4 N=5 N=7 N=9 N=13 N=15

Number of messages

S
p

ee
d

u
p

Pipelining

0

0.2

0.4

0.6

0.8

N=4 N=5 N=7 N=9 N=13 N=15

Number of messages

E
ff

ic
ie

n
cy

Pipelining

0.6

0.64

0.68

0.72

0.76

0.8

N=4 N=5 N=7 N=9 N=13 N=15

Number of messages

D
eg

re
e

o
f

Im
p

ro
v

em
en

t

Pipelining

Fig. 11 M=L=6, for different values of N.

0

3

6

9

12

M=8 M=10 M=13 M=15

Number of processors

T
o

ta
l

ti
m

e
(T

 u
n

it
s)

after balace before balance

0

1

2

3

4

M=8 M=10 M=13 M=15

Number of processors

S
p

ee
d

u
p

after balace before balance

0

0.3

0.6

M=8 M=10 M=13 M=15

Number of processors

E
ff

ic
ie

n
cy

after balace before balance

0.6

0.65

0.7

0.75

0.8

M=8 M=10 M=13 M=15

Number of processors

 D
eg

re
e

o
f

Im
p

ro
v

em
en

t

after balace before balance

Fig. 12 M>L, L=N=6, for different values of M.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 76

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

11

15

25

35

45

55

65

M
=2

M
=3

M
=4

M
=5

M
=6

M
=7

M
=8

M
=9

M
=10

M
=11

Number of processors

T
o

ta
l

ti
m

e
(T

 u
n

it
s)

L=6 L=13 L=19

1.5

3.5

M
=2

M
=3

M
=4

M
=5

M
=6

M
=7

M
=8

M
=9

M
=10

M
=11

Number of processors

S
p

ee
d

u
p

L=6 L=13 L=19

0.3

0.5

0.7

0.9

M
=2

M
=3

M
=4

M
=5

M
=6

M
=7

M
=8

M
=9

M
=10

M
=11

Number of processors

E
ff

ic
ie

n
cy

L=6 L=13 L=19

0.3

0.5

0.7

M
=2

M
=3

M
=4

M
=5

M
=6

M
=7

M
=8

M
=9

M
=10

M
=11

Number of processors

D
eg

re
e

o
f

Im
p

ro
v

em
en

t

L=6 L=13 L=19

Fig. 13 M<L, N=6, for different values of L and M.

maximum number of processors should not

exceed
2

'L'
. Fig. 13 shows that for L=19, N=6, the

degree of improvement of the proposed technique is

39%, 61%, 65%, 70% and 74%, and for M = 2,4,6,8,

and 10, respectively. For the same number of messages

(and L=13), the degree of improvement is 38.4%,

57.61%, 64%, and 70%, and for M = 2, 4, 6, and 8,

respectively. Otherwise, for L =N= 6, the degree of

improvement is 41.6%, 55%, and 55%, and for M = 2,

4, and 6, respectively.

5. Conclusions

In the present paper, we address the problem of

computation in signcryption techniques. We have chosen

Rasslan et. al. signcryption algorithm over other

signcryption algorithms, because it has lower computation

and communication overheads than all previously

presented algorithms. However, Rasslan et. al. algorithm

still suffers from relatively high computation overhead. To

enhance the performance of Rasslan et. a.l algorithm, we

use a pipelined technique to speed-up the arithmetic

operations. Therefore, the total computation time is

reduced. Furthermore, we evaluate the performance of the

proposed solution with other techniques. The results show

that the proposed pipelined technique reduces the

computation time required to execute Rasslan et. al.

algorithm, compared to its corresponding values of

sequential execution. This is applied for any number of

messages 'N'. In our proposed design, there are three cases:

(i) Single processor – Single task (M=L), (ii) Multiple

processors – Single task (M>L), and (iii) Single processor

– Multiple tasks (M<L). For the first case, we assume that

L =M = 6. The degree of improvement of the proposed

technique, compared to the performance prior to

parallelization, is 62.5%, 71.4%, 74.1%, 76.9% and

77.7%, assuming that N = 4, 7,9,13, and 15 respectively.

For the case of multiple processors – single task, the

degree of improvement, compared to the performance of

Rasslan et. al. algorithm without using pipelining is

71.3%, 73.2%, and 75% assuming that L = N =6, and M=

8,10,13, and 15, respectively. Finally, for the last case, we

assume that L =19, N=6, the degree of improvement of the

proposed technique is 39%, 61%, 65%, 70% and 74%, for

M = 2,4,6,8, and 10, respectively.

References
[1] Y. Zheng , “Digital Signcryption or How to Achieve Cost (

Signature & Encryption) Cost (Signature) + Cost (

Encryption)”, International Conference of CRYPTO‟97,

LNCS 1294, Springer-Verlag, pp. 165-179, 1997.

[2] C. K. Li and D. S. Wong, “Signcryption from Randomness

Recoverable Public Key Encryption”, Inform. Sci., vol. 180,

pp.549-559, 2010.

[3] L. Pang, H. Li, L. Gao and Y. Wang , ”Completely

Anonymous Multi-Recipient Signcryption Scheme with

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 77

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

12

Public Verification”, PLos ONE, vol. 8, No. 5, pp. 1-10,

2013.

[4] F. Li, X. Xin and Y. Hu, “Identity-Based Broadcast

Signcryption”, Computer Standards and Interfaces, vol. 30,

pp. 89-94, 2008.

[5] M. Rasslan and H. Aslan, "On the Security of Two

Improved Authenticated Encryption Schemes", Accepted to

be published at Int. J. of Security and Networks, vol. 8, no.

4, pp. 194-199, 2013.

[6] B. Lin, "Solving Sequential Problems in Parallel: An SIMD

Solusion of RAS Cryptography", freescale Semiconductor,

Inc., 2004, 2006.

[7] N. Mentens, K. Sakiyama, B. Preneel and I. Verbauwhede,"

Efficient Pipelining for Modular Multiplication

Architectures in Prime Fields", International Conference of

GLSVLSI'07, Stresa-Lago Maggiore, Italy, pp. 11-13,

March 2007.

[8] Y. Yang, J. Bahn, S. Lee and N. Bagherzadeh," Parallel and

Pipeline Processing for Block Cipher Algorithms on a

Network –on- Chip", Sixth International Conference on

Information Technology: New Generations, IEEE Computer

Society, pp. 849-854, 2009.

[9] A. A. Gutub, "Merging GF(p) Elliptic Curve Point Adding

and Doubling on Pipelined VLSI Cryptographic ASIC

Architecture", International Journal of Computer Science

and Network Security (IJCSNS), vol.6, no.3A, pp. 44-52,

March, 2006.

[10] J. GroBschadl, "High-Speed RSA Hardware Based on

Barret's Modular Reduction Method", C_ .K. Ko_c and C.

Paar (Eds.): CHES 2000, LNCS 1965, 2000, pp. 191-203, ©

Springer-Verlag Berlin Heidelberg 2000.

[11] G. Agosta, L. Breveglieri, G. Pelosi, M. Sykora, and P. di

Milano," Programming Highly Parallel Reconfigurable

Architectures for Symmetric and Asymmetric

Cryptographic Applications ", Journal of Computers , vol. 2,

no. 9, pp. 50-59, Nov., 2007.

[12] M. Alam and W. B., and G. Jullien, "A Novel Pipelined

Threads Architecture for AES Encryption Algorithm",

International Conference on Application-Specific Systems,

Architectures, and Processors (ASAP‟02), IEEE Computer

Society, Washington, DC, USA, page 296, 2002.

[13] K. M. Abdellatif, R. Chotin-Avot, and H. Mehrez, "Efficient

Parallel-Pipelined GHASH for Message Authentication",

International Conference on ReConFigurable Computing

and FPGAs, Cancun, Quintana Roo, Mexico, pp. 1-6, IEEE,

2012.

[14] A. Satoh, "High- Speed Hardware Architectures for

Authenticated Encryption Mode GCM", IEEE International

Symposium on Circuits and Systems (ISCAS), Island of

Kos, Greece, pp 4831-4834, 21-24 May, 2006.

[15] http://msdn.microsoft.com/enus/library/ff963548.aspx.

[16] R. Laue, "Efficient and Flexible Co-processor for Server-

Based Public Key Cryptography Applications", Secure

Embedded Systems, LNEE 78, A. Biedermann and H.

Gregor Molter (Eds.): springerlink.com © Springer-Verlag

Berlin Heidelberg, pp. 129–149, 2010.

[17] G. Orton, Lloyd Peppard, and Stafford Tavares," A Design

of a Fast Pipelined Modular Multiplier Based on a

Diminished-Radix Algorithm", Journal of Cryptology, vol.

6, pp.183-208, 1993.

[18] A. Gutub, A. El-Shafei and M. Aabed", Implementation of a

pipelined modular multiplier architecture for GF(p) elliptic

curve cryptography computation", Kuwait Journal of

Science and Engineering, vol. 38(2B), pp. 125-153, 2011.

[19] G. de Meulenaer, F. Gosset, G. Meurice de Dormale, and J.-

J. Quisquater, "Integer Factorization Based on Elliptic

Curve Method: Towards Better Exploitation of

Reconfigurable Hardware", 15th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines

(FCCM), pp. 197-206, Napa-CA, 23-25 April, 2007.

[20] S. G. Aki, Parallel Computation: Models and Methods,

Prentice-Hall, Inc., 1997.

[21] Chalmers, and J. Tidmus, Practical Parallel Processing: An

Introduction to Problem Solving in Parallel, International

Thomson Computer Press,1996.

[22] M. J. Flynn, Computer Architecture: Pipelined and Parallel

Processor Design, Jones & Bartlett Learning Publications,

1995.

[23] D. Moldovan, Parallel Processing from Applications to

Systems, Morgan Kaufmann Publishers, 1993.

[24] E. V. Krishnamurthy, Parallel Processing Principles and

Practice, Addison-Wesley Publishing Company, Inc., 1989.

[25] C.V. Ramanoorthy, and H. F. Li, "Pipeline Architecture",

Computer Surveys, vol. 9, no. 1, pp. 61-103, March 1977.

Ghada F. ElKabbany is an Assistant Professor at Electronics
Research Institute, Cairo- Egypt. She received her B.Sc. degree,
M.Sc. degree and Ph.D. degree in Electronics and
Communications Engineering from the Faculty of Engineering,
Cairo University, Egypt. Her research interests include High
Performance Computing (HPC), Robotics, and Computer Network
Security.

Heba K. Aslan is an Associate Professor at Electronics Research
Institute, Cairo-Egypt. She received her B.Sc. degree, M.Sc.
degree and Ph.D. degree in Electronics and Communications
Engineering from the Faculty of Engineering, Cairo University,
Egypt in 1990, 1994 and 1998 respectively. Aslan has supervised
several masters and Ph.D. students in the field of computer
networks security. Her research interests include: Key Distribution
Protocols, Authentication Protocols, Logical Analysis of Protocols
and Intrusion Detection Systems.

Mohamed N. Rasslan: is an Assistant Professor at Electronics
Research Institute, Cairo, Egypt. He received the B.Sc., M.Sc.,
degrees from Cairo University and Ain Shams University, Cairo,
Egypt, in 1999 and 2006 respectively, and his his Ph.D. from
Concordia University, Canada 2010. His research interests
include: Cryptology, Digital Forensics, and Networks Security.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 78

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4297231
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4297231

