



Abstract
Problem signatures are patterns that reveal a glimpse of the

computational strategy most likely to be suitable for a given

problem. Such a pattern could be the preferred choice of the

activation and output functions for a given problem in neural

networks that implement transfer functions optimization. We refer to

these patterns as first-order signatures. Higher-order signatures

capture information on a higher level, such as the likelihood of

neural computational paths (i.e. connection between two or more

transfer functions) used by the fittest models for specific problems.

In addition, it also captures information about their weights.

In this paper, we show that higher-order problem signatures meet

our proposed criteria for problem signatures: specifically, that the

signatures of the different datasets tested have a lot of neural

computation paths in common that makes them similar at a glance,

but after thresholding their differences are more apparent. In

addition to that, we also show that the signatures were consistent

regardless of size of the population (P), number of runs (R), or size

of the subsample used for approximating the signatures (N).

However, in the case of the subsample size (N), we found that this

was provided the sample size was fixed during sampling.

Keywords: Meta-feature, Neural Network, Optimization, Transfer

functions.

1. Introduction

The transfer functions of Artificial Neural Networks play an

important role in learning amongst other components. They

enable neural networks to essentially compute decision

boundaries in the input space; thus, giving it its ability to

classify input data. The shapes and forms of these decision

boundaries vary with the type of the transfer function being

used. Traditional radial basis transfer functions effectively

divide input space in a clustering-like manner. On the other

hand, Perceptron’s with linear transfer functions form

decision boundaries with polygons when connected in

multiple layers (i.e. MLP).

The input space of real world problems is complex and is

typically not easily separable by hyper geometries produced

by canonical neural networks. It is difficult for neural

network to project the decision boundaries that accurately

defines the problem. One of the simplest solutions to this

problem when using canonical neural networks -such as the

Multilayer Perceptron (MLP) - is to adapt the complexity of

the neural network (e.g. by adding or removing more nodes

and connections). However, this increases the risk of either

over fitting or under fitting, which in turn results in poor

generalization ability. In addition to that, there is also the

issue of scalability, which goes hand-in-hand with efficient

learning. Both of these characteristics (i.e. generalization

ability and scalability) are critical goals for any machine

learning system. Transfer functions optimization might hold

a more efficient solution to this problem.

Approaches to transfer function optimization in neural

networks can generally be classified into two categories;

transfer function optimization by parameterization, or

hybridization. Parameterization methods [1]–[3] focus on

enhancing the flexibility of the transfer functions, thus

enabling them to exhibit a wider range of decision boundary

shape and form. Bi-radial transfer functions [4], [5] are an

example of this; they could be regarded as variants of radial

basis functions that have two centers. This was found to

enhance the flexibility of the transfer function. Other studies

include that of [2], where they adapted the exponent

parameter of a sigmoidal function and evaluated their feed

-forward neural network on two function approximation

tasks. They found that this can lead to faster learning in

FFANN [2]. A similar study was done by [3] where they used

a q-exponential function that is capable of reproducing a

Cauchy distribution amongst others. They found that the

q-Gaussian model was very competitive when compared to

other methods including support vector machines (SVM).

Assessing the feasibility of approximating higher-order

problem signatures in Artificial Neural Networks with

hybrid transfer functions

Adamu A. S1, M. Tomas2 and Bargiela A3

 1 Department of Computer Science, University of Nottingham Malaysia Campus

Semenyih, Selangor, Malaysia

2 Department Of Computer Science, University Of Nottingham Malaysia Campus

Semenyih, Selangor, Malaysia

3 Department Of Computer Science, University Of Nottingham Jubilee Campus

Wollatan Road, Nottingham, United Kingdom

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The second approach, transfer function optimization by

hybridization, generally consists of approaches that use a

blend of transfer functions in their neural networks. These are

classified as Hybrid Artificial Neural Networks [6]. One

example is the work of Gutierrez et al [7], where they used a

blend of projection functions (sigmoid and product units) and

kernel functions such as the radial basis function. They found

that it was better on classification problems when compared

to radial basis function (RBF) networks. A related work is

Perceptron Radial Basis Net (PRBFN) by Cohen & Itrator [8]

which also showed similar results. Maul [9] also proposed the

use of projection and kernel functions, in addition to

higher-order functions (such as higher-order product) in a

framework termed: Neural Diversity Machines (NDM).

Neuroevolution was used to optimize the neural networks

weights, topology and choice of transfer functions. The

results showed significant improvements compared to using

multilayer perceptron’s (MLP – Matlab Implementation).

Other studies include [10] which also found that the resulting

neural network models was more compact. The approach

optimized the choice of transfer functions for the hidden layer

nodes from a set of basis functions, while using either a

sigmoidal or Identity output function for the output node in

the output layer. A statistical pruning technique was also used

to control the models complexity by removing nodes that

were considered as not important [10].

Transfer function optimization can lead to increased

dimensionality of the search space. This is because there are

more possibilities of computational strategies introduced into

the computational strategies search space as new transfer

functions are added to the pool or flexibility is enhanced. The

computational strategies search space consists of ways of

projecting decision boundaries given the available transfer

functions and their possible topologies. The increased

dimensionality subsequently creates more local minima.

The dimensionality of the search space can be increased by

both transfer function optimization methods. In the case of

parameterization, the dimensionality is increased because

there are a lot more parameters to control the shape and form

the transfer functions’ decision boundary. On the other hand,

transfer function optimization by hybridization increases the

dimensionality by the number of possible choices for transfer

function of each node.

One approach used for handling local minima is to train

artificial neural networks using evolutionary algorithms in

what is known as Evolutionary Artificial Neural

Networks[3], [11]–[19]. This is because evolutionary

algorithms do not take into account gradients in their search.

Another approach, which we propose in this paper, is to

perform some preprocessing to discover the most likely

neural computational biased and effective towards the given

dataset. The transfer functions can then be restricted to those

necessary for reproducing that neural computation

strategy[20].

In this paper we evaluate the feasibility of discovering unique

and consistent computational signatures for problems, which

refer to as problem signatures. Specifically, our contribution

concerns neural networks using transfer function

optimization by hybridization.

Computational signatures can potentially be used to

understand some of the neural computation strategies evolved

in neural networks. In addition, it could also be used for

determining the initial architectural state that is most likely

best for the neural network before training; thus, improving

convergence [20]. The proposed method extends previous

contributions by introducing a preprocessing technique

inspired by graph theoretical analysis methods used in

neuroscience [21], [22]. We adopt these methods for the

purpose of approximating the most inclined architectural

properties (e.g. choice of transfer functions) for a given

problem. This is done by randomly generating a population of

neural networks with hybrid transfer functions and evaluating

them without training. The fittest N subsample of the neural

networks is then used to gather statistical information on the

architectural properties of this subsample of the population.

Repeated independent runs of subsampling enables us to

approximate some architectural properties that seemed to be

associated with each problem.

The organization of the paper is as follows: firstly we define

the hybrid neural network used for experiments (i.e. Neural

Diversity Machine Networks). This is followed by definitions

of higher-order problem signatures, thresholding and

proposed criteria for problem signatures. The next section

describes the experimental setup and is followed by the

results section where we reveal the results of the experiments.

Afterwards, discussions on the results are made and

conclusions drawn in the discussion and conclusion sections,

respectively.

In this paper, we refer to transfer function as the compound

function,)) which consists of: the activation

function,) and the output function,). We also refer to

neural computation path as the connection path between two

or more nodes. Signature is also used synonymously with

pattern. However, in the case of signatures we are referring to

a specific pattern rather than a generic one.

2. Methodology

In this section, we define higher-order problem signatures and

our proposed criteria for problem signatures if they are to be

regarded as features of problems. In addition to this, we also

define thresholding – a popular tool also used in graph

theoretical analysis of the brain [22], [23]. However, prior to

this we define Neural Diversity Machines (NDM) [9] –the

hybrid Neural Network used for the experiments.

2.1 Neural Diversity Machine Networks

In this paper, we use an NDM [9] as our neural network. A

Neural Diversity Machine is essentially an architecture that is

flexible in its constraints of the neural networks; primarily, in

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

the choice of transfer function, and network topology. An

NDM can adopt any combination of activation and output

function. In addition to that, connections between any two

nodes are unrestricted. This gives it some flexibility in its

bias.

The topology at initialization is a full-connectivity topology

with each node from the previous layer connecting to every

node in the next layer. It is also worth noting that NDM has a

single hidden layer at initialization. The topology and the

number of layers of NDMs can be adapted to suite the

problem during Neuroevolution. The architecture is also

recurrent: the hidden layer is accompanied by a context layer

for storing the outputs of the hidden units of the previous time

frame; these outputs are used as inputs for the next time

frame. The activation functions and output functions used in

NDMs are listed in the tables (see table 1 & table 2).

The genetic string of NDMs consists of information about:

the fitness gene, connection weights, connection status, bias

of nodes, node status, and node transfer functions: i.e. choice

of activation and output function (See table 3).

2.2 Higher-Order problem signatures

In neuroscience, part of the analysis done to understand the

brain’s network relies on the use of graph theory [21], [22].

Regions of interest in the brain are defined and their structural

or functional connectivity are represented in a two

dimensional connectivity matrix.

We use a similar approach that also involved some graph

theoretical analysis for discovering the signatures of

problems. This produced two sorts of higher-order signatures

in the form of matrices: coexist-on-path matrix, and

connection strength matrix.

The coexist-on-path matrix represents information about the

frequency of connections between any two transfer functions,

and the direction of that connection (see Fig.1). The transfer

function is represented as a tuple) where, and are

the indices of the activation function and output function,

respectively (see table 1 & table 2). The direction of the

connection is read from the y-axis to the x-axis. Darker

regions indicate higher values, while lighter regions indicate

lower values. In essence, this measure only grabs the

likelihood of two transfer functions coexisting on the same

TABLE 1

ACTIVATION FUNCTIONS)

Index Functions Definitions

1 Inner Product
 ∑

2 Euclidean Distance

 √∑)

3 Higher-Order Product
 ∏

4 Higher-Order

Subtractive ∑| |

5 Standard Deviation)

6 Min)

7 Max)

Activation functions available in the pool of NDMs for neuroevolution of

transfer functions during learning.

TABLE 2

OUTPUT FUNCTIONS)

Index Functions Definitions

1 Identity

2 Sigmoid

3 Gaussian

4 Tanh (Hyperbolic
tangent)

5 Gaussian II

 {

Output functions available in the pool of NDMs for neuroevolution of

transfer functions during learning.

TABLE 3

GENETIC STRING CONTENT

 Information Definitions

1 Fitness Cost of the model on the given problem.

2 Connection weights Weights between all connections in the

model.

3 Connection status Status of the connections, either active or

deactivated.

4 Node bias Bias values of nodes their weights.
5 Node status Status of the node, either active or

deactivated.

6 Node activation
function

Activation functions adopted by the nodes.

7 Node output
function

Output functions adopted by the nodes.

Some of the contents stored on the genetic string about NDM models.

Fig.1. A coexist-on-path matrix showing the frequency of

use for computation paths (from the hidden to the output
layer) in the Top N neural network models from a

randomly initialized population of Neural Diversity

Machines evaluated on the Iris dataset (where N, number

of solution samples with the fittest cost).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 10

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

path in the subset of the most accurate subset of models

evaluated without training.

Connection strength is similar to coexistence-on-path in

representation, though it grabs information about the

accumulated weight between connections of any two transfer

functions (see Fig. 2). In essence, these two tools enable us to

glimpse at some part of the neural computation strategies at

work by knowing about their neural computation paths. The

pattern extracted by these tools is what we refer to as a

problem signature. In this case, these signatures are

higher-order problem signatures since they are signatures that

reveal some information about connection paths and their

direction. More atomic signatures, which we refer to as

first-order problem signatures [20] reveal information on the

combination of activation and output functions. However, the

focus of this paper is on higher-order problem signatures.

In this paper, we used subsampling to select solutions from a

population of randomly initialized models of NDM networks.

We select () of the top NDM models after

randomly generating architectures from the pool of transfer

functions and evaluating them without training on a given

problem. Due to NDMs having a hybrid and diverse pool of

transfer functions, it is possible to have a variation of neural

network architectures with different transfer functions which

in turn implies that there are more computation strategies

available. By computation strategies in the context of

classification problems, we mean ways of projecting decision

boundaries that can divide the input space to some extent into

the respective classes that describes the underlying principle

of the problem that generated the datasets.

The potential significance of problem signatures to efficient

learning in neural networks with hybrid transfer functions is

that it could be used to determine a suitable initial state for

training from which the complexity can be increased as

required in a manner similar to that of NEAT [14]. This has

the potential to improve convergence in addition to revealing

interesting information about the relationship between

problems in the context of computational strategies. Thus, it

can potentially be used as a measure to estimate the distance

between problems. Using Multidimensional Scaling (MDS),

one might be able to visualize the problem-computational

strategy space.

2.3 Problem signature criteria

As is apparent in the visualizations (see Fig. 1 & Fig. 2) of the

coexist-on-path and connection strength matrices, there is a

consistent pattern: some strongly shaded vertical regions that

show some neural computation paths being more likely to be

found in the elite subsample of NDM models than others.

The working hypothesis in this paper is that these signatures

would differ between problems that are not related (i.e. in

terms of the computation strategy applicable to solving them),

and be similar between related problems. We also speculated

that the difference or similarity between problems would be

proportional to the degree of their relationship. Finally, we

also expected the signatures for a problem to be consistent.

In summary, we hypothesize that the criteria for problem

signatures to be feasible as a reliable description of the

computational strategy for problems are as follows:

1. Consistency of signatures belonging to a problem.

2. Discrimination/difference between signatures

belonging to non-related problems.

3. And vice versa; similarity between signatures of

problems that are related.

 2.4 Thresholding

Thresholding is another common technique used in various

analysis [21] to reveal more pronounced features by filtering

out some that are below the threshold. The thresholding

function implemented is given by the simple equation below:

) {
)

))

Where, is a matrix, and is the threshold.

In this paper, thresholding was done to filter out the values

that were below the mean () to reveal information that could

be of interest. The mean was chosen because it is relative to

the range of intensities in the matrix. Thus, it makes it

unlikely to filter out some information that might be

important or not filter out signatures that are not useful.

We also used another parameter; the plus value (), which

can be used to increase the threshold (). Such that,

Thus: when , then .

Fig. 2. An example of a connection strength matrix
showing the weights of some neural computation paths

(from the hidden to output layer) accumulated over the

process of extracting signatures from the fittest (i.e. Top
N) of randomly initialized NDM networks evaluated on

the Iris dataset.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 11

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3. Experimental setup

The datasets used for the experiments were: Iris, Sonar and

XOR dataset. The Iris and Sonar datasets were retrieved from

the UCI machine learning repository [24].

For each of the datasets, the problem signature was extracted

by generating a random population of genetic strings with

gene values ranging from to . The size of the

population generated, is fixed. Some of the architectural

properties encoded include, but are not limited to the

following: the connection weights, the status of connections

(i.e. on or off), status of nodes (i.e. switched on or off), the

activation and output function of each node and its bias, and

fitness of the gene.

These genes are then decoded and evaluated on the dataset

without training. A subsample of the solutions (particularly,

the top solutions) are then selected for extracting problem

signatures. The process of extracting signatures simply

records statistics of the likelihood and direction of

connections between transfer functions (i.e. coexist-on-path)

and the connection weights between them (i.e. connection

strength) from the samples. This is repeated for a number of

runs, .

The experiments carried sought to answer if the following

affected the signatures integrity:

1. Subsample size N).

2. Population size at initialization, P
) .

3. Number of subsampling runs, R (
).

We also applied thresholding to see if the change in plus

value, () affects the signatures.

4. Results

In this section, we present the results of our preliminary

feasibility assessments of problem signatures on the Iris,

Sonar and XOR datasets.

4.1 Signatures’ Discriminatory/Similarity Criteria and

Thresholding

It was observed that some neural computation paths were

generally used for all the datasets consistently (i.e. for Iris,

Sonar, and XOR – see Fig. 3, Fig. 4 & Fig. 5).

However, by applying the thresholding function; the neural

computation paths unique to each problem were more

apparent. Thus, suggesting that the computational strategies

Fig. 3. Coexist-on-path matrix of the Iris dataset

showing vertical patterns indicating the connectivity

patterns usually used.

Fig. 4. Coexist-on-path matrix of the Sonar dataset
also showing a similar pattern as the Iris, however

with varied intensities at specific regions.

Fig. 5. Coexist-on-path matrix of the XOR dataset

also showing a similar pattern with some varied
regions.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 12

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

used for problems were likely different. The illustrations (Fig.

6 & Fig. 7) show how the correlation between problems

decreases as the threshold () is increased.

Another observation was that the coexist-on-path and

connection strength matrices were strongly correlated. A

Pearson correlation coefficient (r) test on both of them was

found to confirm this strong correlation for all the datasets

tested (see table 4). This also means that the relationship

between the two is linear. This is because the Pearson

correlation coefficient measures degree of linear

relationships.

4.2 Signature Consistency and Size of Subsample

Tests made with various population sizes,

() showed that it

had no significant effect on the signatures. Additionally,

another experiment that involved adjusting the number of

runs, () also showed no significant

distortion of the signatures.

The size of the subsample (i.e.) had some

effect on the signature, i.e. the vertical shaded regions are

increased as the subsample size is increased (see Fig. 8, Fig. 9

Fig. 6. Sonar-XOR correlation as threshold is increased by increasing

the plus value . The illustration shows the results of the varying

sizes of the population size, P

()

Fig. 7. Iris-Sonar correlation as threshold is increased by increasing

the plus value ().

TABLE 4
PEARSON CORRELATION COEFFICIENT

 Iris Sonar XOR

Pearson

Correlation
Coefficient (r)

0.978 0.982 0.982

2D Pearson correlation coefficient (r) between the coexist-on-path and

connection strength matrices for the Iris, Sonar and XOR datasets. A

correlation above is usually considered to be a strong correlation.

Fig. 8. Heat map showing the visualization of the coexist-on-path

matrix for the Iris dataset as the subsample size, increases; more
vertical patterns can be seen as N increases indicating heavier use of

some neural computation paths.

Fig. 9. Heat map showing the visualization of the coexist-on-path matrix

for the Sonar dataset as the subsample size, increases; a similar pattern

can be observed here as well.

Fig. 10. Heat map of the coexist-on-path matrix for the XOR dataset as

the subsample size, increases: the pattern of increasing intensities is

also noticeable here.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 13

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

& Fig. 10); this further suggests that other NDM models in

the population were using different computational strategies.

However, the consistencies of the signatures were

maintained: specifically, neural computation paths were still

consistent as the subsample size was increased. It appeared to

be that only neural computation paths were being detected.

To further analyze this, we use some graph theory to analyze

both the coexist-on-path and connection strength matrices.

By using a weighted Networkx [25] directed graph we can

visualize the coexist-on-path and connection strength

matrices all together with the help of Matplotlib [26].

However, the graph was cluttered with lots of nodes and

connections (see Fig. 11a, Fig. 12a & Fig. 13a), so we used

thresholding to filter out some of them. This was done by only

focusing on the node with the highest connection density (i.e.

largest frequency of being connected to) as the sole terminal

node. In other words, we only considered neural

computational paths with connections to the node with the

most connection density as their terminal node. Furthermore,

only nodes connected more frequently than average were

included. This thresholding operation was necessary for

confirming that different problems did indeed use different

neural computation paths. It also helps in unveiling more

interesting results. The results post thresholding can be seen

in the illustrations below (see Fig. 11b, Fig. 12b & Fig. 13b).

The directionality of the connection is represented by the

thicker end being the origin to the thinner end of the line

being the target.

(a)

(b)

Fig. 11. The graph for the Iris dataset: (a) the graph
before thresholding, (b) the graph after thresholding.

The Thickness of the connection represents the

connection strength.

(a)

(b)

Fig. 12. Graph for the Sonar dataset: (a) graph prior to

thresholding, (b) graph post thresholding.

(a)

(b)

Fig. 13. Graph for XOR dataset: (a) pre-thresholding,
(b) post-thresholding.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 14

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

5. Discussion

In terms of the signatures discriminatory/similarity criteria,

higher-order problem signatures were found to have better

discriminatory ability as the threshold was increased (see

Fig.6 & Fig. 7). This was done by increasing the plus value

(i.e. specifically between the range of). The

results were consistent regardless of the population size, P.

The correlation decreases almost linearly as the threshold was

increased.

The fact that the signatures were similar (i.e. vertical shaded

regions of the graphs indicating some similarity in neural

computation paths and the strong correlation prior to

thresholding) for all the problems suggest that some neural

computation paths are generic in their mode of use for the

problem tested. Consequently, it also shows that other neural

computation paths were more suitable for specific problems –

as shown after thresholding filtered out the generic ones. This

suggests that different computational strategies were being

used as can be seen in the illustrations (see Fig. 11b, Fig. 12b

& Fig. 13b).

As seen in the results, the pattern reveal vertical patterns

suggesting the heavy connection of other transfer functions to

a specific subset of transfer functions.

For vertical patterns to appear in the matrices (i.e.

coexist-on-path and connection strength) there has to be a set

of vertices, that is a subset of the all the vertices set ,

which consists of vertices that have a set of edges,

consisting of connections that connects others vertices from

the global set connects to a significant number of vertices

in the set of vertices, .

The fact that vertical patterns were more prominent in the

results of all the datasets is as a result of the fully connected

topology of the initialized population of NDMs which also

had a single hidden layer. Each solution is initialized with

random transfer functions, weights, and bias values; however,

in this experiment they are fully connected at initialization

and there was no training operation applied to change this

topology. Given the fact that the population used had single

layers, and that statistics of problem signatures was only

captured for the hidden to output layer connections; the neural

computation paths presented in the Figures (Fig. 11b, Fig.

12b and Fig. 13b) represent to a large extent the most biased

and fittest models (or instances of computational strategies) at

initialization towards the given datasets.

Regardless of the commonality of the architectural

constraints used for all the datasets, there was bias of some

neural computation paths for each problem (see Fig. 11b, Fig.

12b and Fig. 13b).

In the case of the Iris, the signatures after thresholding and

visualization as a graph revealed that the node with the most

input connection density was one that used an unusual

combination of a Max with Gaussian output function. Some

(a) N = 1

(b) N = 2

(c) N = 3

(d) N = 4

Fig. 14. Graphs for the Iris datasets as the subsample

size N is increased: (a) N = 1, (b) N = 2, (c) N = 3, (d)
N = 4.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 15

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

of the nodes that connected to it often used; Euclidean

distance with sigmoid, Inner product with Gaussian, Max

with Gaussian II, Standard deviation with sigmoid, and

Euclidean distance with Tan. The ones that connected to it

the least used: Higher-Order subtractive with sigmoid, and

Min with Sigmoid. In earlier studies [9], it was observed that

the Max and Min functions were used as relay functions when

combined with a linear output function, such as Identity for

some synthetic 2D datasets. In other occasions involving real

world datasets such as the Australian credit card, they have

been found to be utilized as filter-like functions when the

difference between the ranges of input parameters is large.

The filtering function enabled the neuron to filter out all other

inputs parameter. In the case of the Iris, this seems to be the

case; assuming the neuron with this transfer function is fed

directly from the input layer and that the weights are not

significantly different from each other, then the sepal length

parameters could be the input parameter being favored over

the others. This is because the sepal lengths’ mean and min is

greater than the mean and min values of the other parameters,

which include: sepal width, petal length and petal width. If

the output function for the node is a Gaussian, it means that

the sepal length values closer to the Gaussian function’s

center would get higher outputs, while those with values

farther away from the center would get the lowest outputs. If

the output function was a Gaussian II (Gauss II), then there

would be a bunch of values that would result in high outputs.

This is because the Gauss II in essence flattens the peak of the

Gaussian function; this in turn means the center is much

wider. In other words, a neural computation node using Max

with Gaussian/Gaussian II functions could be providing

normalized outputs of petal lengths. A node with Min is also

likely to act in the same way, except that it would likely be

working with the input parameter with the lowest mean,

which is petal width in this case. Other similar variants such

as Max/Min with Sigmoid/Hyperbolic Tangent have a related

functionality, except that their normalization is by squashing

the outputs within the range of their outputs.

In the case of the Sonar dataset, the results reveals that the

highest contributor nodes to the most densely connected to

node, which was one that used an Euclidean distance with

sigmoid, included nodes using: HO Product with sigmoid

(HO Unit), HO Subtractive with Sigmoid (HO Unit-variant)

Euclidean distance with Gaussian (RBF Unit), Inner product

and tanh (Perceptron), and Euclidean distance and Hyperbolic

Tangent.

As for the XOR dataset, the most likely node to have the

highest input connection density from other nodes was one

that used an inner-product with a hyperbolic tangent

(Perceptron node). The nodes most likely to connect to it in a

path included nodes that used the following transfer

functions: Euclidean distance or Max as the activation

function with Gaussian/Gaussian II or Sigmoid/Tan as the

output function. Basically, they were mostly Radial Basis

function unit, and filter functions (such as Max with

Gaussian/Gaussian II or Sigmoid/Tan). The Euclidean

distance with sigmoid/Tanh function can be classified as a

function that creates new information; in this case the

summed distance between the input vector and the weight

vector. The summed distance is then squashed by a

sigmoid/Tanh. In the case of the XOR, the Euclidean distance

could be valuable for finding simple computational strategies

for the dataset. Assuming the weights between the input and

hidden layer are all either) or) ; the Euclidean

distance for the input values) and) would both

produce a number of even parity, while) and)

would produce a number of odd parity. This is valuable

information that can be used to discriminate between the two

classes for the given dataset.

In summary, a lot of these “unpopular” transfer functions are

in essence performing some sort of filtering to the inputs.

Specifically, they are usually being used to relay the

normalized values of particular inputs from the input vector,

while ignoring the rest. It would be interesting to see how a

layer dedicated to evolving filter functions as preprocessors

might improve the scalability and generalization of artificial

neural networks. Each input node could be connected to a

single preprocessing unit in the preprocessing layer, which

can evolve any sort of transformation function from the

activation and output functions pool. Multiple layers of these

preprocessors with each layer having different connection

topologies could also be explored. This is likely to appear in

future works.

Another interesting observation was the relationship of the

size of the subsample and the higher-order problem

signatures. It can be seen in the illustration (see Fig. 14.) that

as the size of the subsample increases, so do the neural

computation paths in the graph. The fact that there is a

significant number of the neural computation paths still

consistent in the graphs as N grows, suggests that

higher-order problem signatures are consistent (see Fig. 11,

Fig. 12, & Fig. 13). The difference is that new neural

computation paths are introduced. Keeping in mind that the

subsamples are chosen according to fitness, it can be

speculated that neural computation paths have fitness too or at

least an associated fitness. However, measuring this is

another topic. Consequently, it can also be speculated that

neural computation strategies - made up of these correction

paths - also have fitness that can be measured too. However,

this is not in the scope of this paper and might appear in future

works.

Considering the results of the size of the subsample),

population size), and number of runs): we have found

that the signatures are consistent. In addition, we have also

shown that thresholding can be used to make them

dissimilar/similar. However with regards to consistency with

respect to the size of the subsample) ; the higher-order

signatures are consistent given that the size of the subsample

is kept fixed during sampling. Varying the size might results

in some dormant signatures to become more pronounced.

Thus, introducing new neural computation paths which could

some cause inconsistencies between signatures from different

runs.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 16

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

6. Conclusion

In conclusion, we have shown that higher-order problem

signatures described have met the problem signatures criteria

proposed (see section 2.3) for the datasets tested: specifically,

that these signatures have a lot of neural computation paths in

common that makes them similar at a glance, but after

thresholding their difference are more apparent. As for

signature consistency; the signatures were found to be

consistent regardless of size of the population (P), number of

runs (R), or subsample size (N). However, in the case of the

subsample size (N), we have found that new neural

computation paths that were dormant can be introduced into

the signatures as the size is increased. Thus, it can be regarded

as consistent if sample size is fixed during sampling. In other

words, making the subsample size (N) variable during

sampling process could introduce some inconsistency.

In a nutshell, we have found that problem signatures could be

analogous to thumb prints: similar at a glimpse because of the

same pattern of whirls radially moving out from the center of

the thumb, but they different when we are more specific of

regions to look at. Future works might tell.

7. Future works

In the future we plan to introduce more variations of the

higher-order problem signatures. Specifically, we intend to

use two more coexist matrices that capture information not

based on path, but on coexistence in layer or in the network

model as a whole. This should provide rich information that

would reveal more relationships between transfer functions

and their role in neural network models in the context of

various problems.

Acknowledgment

We would like to acknowledge the role of the family and

friends of all the authors in support of this humble piece of

contribution to knowledge.

References

[1] W. Duch and N. Jankowski, “Bi-radial transfer

functions,” Proc. Second Conf. neural networks their

Appl., pp. 131–137, 1996.

[2] P. Chandra and Y. Singh, “A case for the

self-adaptation of activation functions in FFANNs,”

Neurocomputing, vol. 56, pp. 447–454, Jan. 2004.

[3] F. Fernández-Navarro, C. Hervás-Martínez, P. a

Gutiérrez, and M. Carbonero-Ruz, “Evolutionary

q-Gaussian radial basis function neural networks for

multiclassification.,” Neural Networks, vol. 24, no. 7,

pp. 779–84, Sep. 2011.

[4] N. Jankowski, “Flexible transfer functions with

ontogenic neural networks,” Toru, Pol., vol. 1, no. 6,

pp. 1–6, 1999.

[5] W. Duch and N. Jankowski, “Transfer functions:

hidden possibilities for better neural networks,” 9th

Eur. Symp. Artif. Neural Networks, pp. 81–94, 2001.

[6] P. A. Guti rrez and C. erv s-Mart nez, “ ybrid

Artificial Neural Networks : Models , Algorithms and

Data,” Lect. Notes Comput. Sci., vol. 6692, no. PART

2, pp. 177–184, 2011.

[7] P. Gutiérrez, C. Hervás, M. Carbonero, and J.

Fern ndez, “Combined projection and kernel basis

functions for classification in evolutionary neural

networks,” Neurocomputing, vol. 72, no. 13–15, pp.

2731–2742, 2009.

[8] S. Cohen and N. Intrator, “A ybrid Projection-based

and Radial Basis Function Architecture: Initial

Values and Global Optimisation,” Pattern Anal.

Appl., vol. 5, no. 2, pp. 113–120, Jun. 2002.

[9] T. Maul, “Early experiments with neural diversity

machines,” Neurocomputing, Mar. 2013.

[10] N. Jankowski and W. Duch, “Optimal transfer

function neural networks,” in In 9th European

Symposium on Artificial Neural Networks, 2001, no.

I, pp. 101–106.

[11] X. Yao, “Evolving Artificial Neural Networks,” in

Proceedings of the IEEE, 1999, vol. 87, no. 9, pp.

1423–1447.

[12] S. Nolfi and D. Parisi, “Evolution of Artificial Neural

Networks,” Handb. Brain Theory Neural Networks,

2002.

[13] X. Yao and Y. Liu, “Towards designing artificial

neural networks by evolution,” Appl. Math. Comput.,

vol. 91, no. 1, pp. 83–90, 1998.

[14] K. O. Stanley and R. Miikkulainen, “Efficient

Reinforcement Learning Through Evolving Neural

Network Topologies,” in Proceedings of the Genetic

and Evolutionary Computation Conference

(GECCO-2002), 2002.

[15] X. Yao, “A review of evolutionary artificial neural

networks,” Int. J. Intell. Syst., vol. 8, no. 1, pp. 539–

567, 1993.

[16] . Abbass, “Pareto neuro-evolution: Constructing

ensemble of neural networks using multi-objective

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 17

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

optimization,” in The 2003 Congress on Evolutionary

Computation 2003 CEC 03 (2003), 2003, vol. 3, no.

4, pp. 2074–2080.

[17] G. Brown, “Diversity in neural network ensembles,”

2004.

[18] A. Chandra and X. Yao, “Ensemble Learning Using

Multi-Objective Evolutionary Algorithms,” J. Math.

Model. Algorithms, vol. 5, no. 4, pp. 417–445, Mar.

2006.

[19] M. M. I. Islam, X. Yao, and K. Murase, “A

constructive algorithm for training cooperative neural

network ensembles.,” IEEE Trans. Neural Networks,

vol. 14, no. 4, pp. 820–34, Jan. 2003.

[20] A. S. Adamu, T. . Maul, and A. Bargiela, “On

Training Neural Networks with Transfer function

Diversity,” in International Conference on

Computational Intelligence and Information

Technology (CIIT 2013), 2013.

[21] M. Rubinov and O. Sporns, “Complex network

measures of brain connectivity: uses and

interpretations.,” Neuroimage, vol. 52, no. 3, pp.

1059–69, Sep. 2010.

[22] O. Sporns, “Graph theory methods for the analysis of

neural connectivity patterns,” in Neuroscience

Databases, 2003, pp. 169–183.

[23] E. Bullmore and O. Sporns, “Complex brain

networks: graph theoretical analysis of structural and

functional systems.,” Nat. Rev. Neurosci., vol. 10, no.

3, pp. 186–98, Mar. 2009.

[24] K. Bache and M. Lichman, “{UCI} Machine

Learning Repository.” 2013.

[25] A. A. Hagberg, D. A. Schult, and P. J. Swart,

“Exploring network structure, dynamics, and

function using {NetworkX},” in Proceedings of the

7th Python in Science Conference (SciPy2008), 2008,

pp. 11–15.

[26] J. D. unter, “Matplotlib: A 2D graphics

environment,” Comput. Sci. Eng., vol. 9, no. 3, pp.

90–95, 2007.

Adamu A.S received his B.S (Hons.) degree in computer science
from the University of Nottingham – Malaysia Campus in 2011 and is
currently a PhD candidate at the same university with the faculty of
computer science. His current research interests include: neural

networks, optimization and some other machine learning fields such
as image processing.

M. Tomas received his M.Sc. degree in Computer Science from
Imperial College London, United Kingdom; and a Ph.D. in computer
science from the University Malaya, Malaysia. Currently, he is an
assistant professor with University of Nottingham - Malaysia Campus,
Malaysia.

Bargiela A. was conferred full professorship from the president of
Poland in October 2005. He has worked with several universities
including, Nottingham Trent University, and the University of Durham.
Currently he is an associate professor with University of Nottingham -
Jubilee Campus, United Kingdom.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 18

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

