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Abstract 
Problem signatures are patterns that reveal a glimpse of the 

computational strategy most likely to be suitable for a given 

problem. Such a pattern could be the preferred choice of the 

activation and output functions for a given problem in neural 

networks that implement transfer functions optimization. We refer to 

these patterns as first-order signatures. Higher-order signatures 

capture information on a higher level, such as the likelihood of 

neural computational paths (i.e. connection between two or more 

transfer functions) used by the fittest models for specific problems. 

In addition, it also captures information about their weights. 

In this paper, we show that higher-order problem signatures meet 

our proposed criteria for problem signatures: specifically, that the 

signatures of the different datasets tested have a lot of neural 

computation paths in common that makes them similar at a glance, 

but after thresholding their differences are more apparent. In 

addition to that, we also show that the signatures were consistent 

regardless of size of the population (P), number of runs (R), or size 

of the subsample used for approximating the signatures (N). 

However, in the case of the subsample size (N), we found that this 

was provided the sample size was fixed during sampling.  

 

Keywords: Meta-feature, Neural Network, Optimization, Transfer 

functions. 

 

1. Introduction 

The transfer functions of Artificial Neural Networks play an 

important role in learning amongst other components. They 

enable neural networks to essentially compute decision 

boundaries in the input space; thus, giving it its ability to 

classify input data. The shapes and forms of these decision 

boundaries vary with the type of the transfer function being 

used. Traditional radial basis transfer functions effectively 

divide input space in a clustering-like manner.  On the other 

hand, Perceptron’s with linear transfer functions form 

decision boundaries with polygons when connected in 

multiple layers (i.e. MLP).  

 
 

 

The input space of real world problems is complex and is 

typically not easily separable by hyper geometries produced 

by canonical neural networks. It is difficult for neural 

network to project the decision boundaries that accurately 

defines the problem. One of the simplest solutions to this 

problem when using canonical neural networks -such as the 

Multilayer Perceptron (MLP) - is to adapt the complexity of 

the neural network (e.g. by adding or removing more nodes 

and connections). However, this increases the risk of either 

over fitting or under fitting, which in turn results in poor 

generalization ability. In addition to that, there is also the 

issue of scalability, which goes hand-in-hand with efficient 

learning. Both of these characteristics (i.e. generalization 

ability and scalability) are critical goals for any machine 

learning system.  Transfer functions optimization might hold 

a more efficient solution to this problem. 

 

Approaches to transfer function optimization in neural 

networks can generally be classified into two categories; 

transfer function optimization by parameterization, or 

hybridization. Parameterization methods [1]–[3] focus on 

enhancing the flexibility of the transfer functions, thus 

enabling them to exhibit a wider range of decision boundary 

shape and form. Bi-radial transfer functions [4], [5] are an 

example of this; they could be regarded as variants of radial 

basis functions that have two centers. This was found to 

enhance the flexibility of the transfer function. Other studies 

include that of [2], where they adapted the exponent 

parameter of a sigmoidal function and evaluated their feed 

-forward neural network on two function approximation 

tasks. They found that this can  lead to faster learning in 

FFANN [2]. A similar study was done by [3] where they used 

a q-exponential function that is capable of reproducing a 

Cauchy distribution amongst others. They found that the 

q-Gaussian model was very competitive when compared to 

other methods including support vector machines (SVM). 
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The second approach, transfer function optimization by 

hybridization, generally consists of approaches that use a 

blend of transfer functions in their neural networks. These are 

classified as Hybrid Artificial Neural Networks [6]. One 

example is the work of Gutierrez et al [7], where they used a 

blend of projection functions (sigmoid and product units) and 

kernel functions such as the radial basis function. They found 

that it was better on classification problems when compared 

to radial basis function (RBF) networks. A related work is 

Perceptron Radial Basis Net (PRBFN) by Cohen & Itrator [8] 

which also showed similar results. Maul [9] also proposed the 

use of projection and kernel functions, in addition to 

higher-order functions (such as higher-order product) in a 

framework termed: Neural Diversity Machines (NDM).  

Neuroevolution was used to optimize the neural networks 

weights, topology and choice of transfer functions. The 

results showed significant improvements compared to using 

multilayer perceptron’s (MLP – Matlab Implementation). 

Other studies include [10] which also found that the resulting 

neural network models was more compact. The approach 

optimized the choice of transfer functions for the hidden layer 

nodes from a set of basis functions, while using either a 

sigmoidal or Identity output function for the output node in 

the output layer. A statistical pruning technique was also used 

to control the models complexity by removing nodes that 

were considered as not important [10].  

 

Transfer function optimization can lead to increased 

dimensionality of the search space. This is because there are 

more possibilities of computational strategies introduced into 

the computational strategies search space as new transfer 

functions are added to the pool or flexibility is enhanced. The 

computational strategies search space consists of ways of 

projecting decision boundaries given the available transfer 

functions and their possible topologies. The increased 

dimensionality subsequently creates more local minima. 

 

The dimensionality of the search space can be increased by 

both transfer function optimization methods.  In the case of 

parameterization, the dimensionality is increased because 

there are a lot more parameters to control the shape and form 

the transfer functions’ decision boundary. On the other hand, 

transfer function optimization by hybridization increases the 

dimensionality by the number of possible choices for transfer 

function of each node.  

 

One approach used for handling local minima is to train 

artificial neural networks using evolutionary algorithms in 

what is known as Evolutionary Artificial Neural 

Networks[3], [11]–[19]. This is because evolutionary 

algorithms do not take into account gradients in their search. 

Another approach, which we propose in this paper, is to 

perform some preprocessing to discover the most likely 

neural computational biased and effective towards the given 

dataset. The transfer functions can then be restricted to those 

necessary for reproducing that neural computation 

strategy[20]. 

 

In this paper we evaluate the feasibility of discovering unique 

and consistent computational signatures for problems, which 

refer to as problem signatures. Specifically, our contribution 

concerns neural networks using transfer function 

optimization by hybridization.  

 

Computational signatures can potentially be used to 

understand some of the neural computation strategies evolved 

in neural networks. In addition, it could also be used for 

determining the initial architectural state that is most likely 

best for the neural network before training; thus, improving 

convergence [20]. The proposed method extends previous 

contributions by introducing a preprocessing technique 

inspired by graph theoretical analysis methods used in 

neuroscience [21], [22]. We adopt these methods for the 

purpose of approximating the most inclined architectural 

properties (e.g. choice of transfer functions) for a given 

problem. This is done by randomly generating a population of 

neural networks with hybrid transfer functions and evaluating 

them without training. The fittest N subsample of the neural 

networks is then used to gather statistical information on the 

architectural properties of this subsample of the population. 

Repeated independent runs of subsampling enables us to 

approximate some architectural properties that seemed to be 

associated with each problem. 

 

The organization of the paper is as follows: firstly we define 

the hybrid neural network used for experiments (i.e. Neural 

Diversity Machine Networks). This is followed by definitions 

of higher-order problem signatures, thresholding and 

proposed criteria for problem signatures. The next section 

describes the experimental setup and is followed by the 

results section where we reveal the results of the experiments. 

Afterwards, discussions on the results are made and 

conclusions drawn in the discussion and conclusion sections, 

respectively. 

 

In this paper, we refer to transfer function as the compound 

function,      ))  which consists of: the activation 

function,    ) and the output function,    ). We also refer to 

neural computation path as the connection path between two 

or more nodes. Signature is also used synonymously with 

pattern. However, in the case of signatures we are referring to 

a specific pattern rather than a generic one.  

 

2. Methodology 

In this section, we define higher-order problem signatures and 

our proposed criteria for problem signatures if they are to be 

regarded as features of problems. In addition to this, we also 

define thresholding – a popular tool also used in graph 

theoretical analysis of the brain [22], [23]. However, prior to 

this we define Neural Diversity Machines (NDM) [9] –the 

hybrid Neural Network used for the experiments. 

2.1 Neural Diversity Machine Networks 

In this paper, we use an NDM [9] as our neural network. A 

Neural Diversity Machine is essentially an architecture that is 

flexible in its constraints of the neural networks; primarily, in 
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the choice of transfer function, and network topology. An 

NDM can adopt any combination of activation and output 

function. In addition to that, connections between any two 

nodes are unrestricted. This gives it some flexibility in its 

bias. 

 

The topology at initialization is a full-connectivity topology 

with each node from the previous layer connecting to every 

node in the next layer. It is also worth noting that NDM has a 

single hidden layer at initialization. The topology and the 

number of layers of NDMs can be adapted to suite the 

problem during Neuroevolution. The architecture is also 

recurrent: the hidden layer is accompanied by a context layer 

for storing the outputs of the hidden units of the previous time 

frame; these outputs are used as inputs for the next time 

frame. The activation functions and output functions used in 

NDMs are listed in the tables (see table 1 & table 2).  

 

The genetic string of NDMs consists of information about: 

the fitness gene, connection weights, connection status, bias 

of nodes, node status, and node transfer functions: i.e. choice 

of activation and output function (See table 3). 

 

 
 

 

 

2.2 Higher-Order problem signatures 

In neuroscience, part of the analysis done to understand the 

brain’s network relies on the use of graph theory [21], [22]. 

Regions of interest in the brain are defined and their structural 

or functional connectivity are represented in a two 

dimensional connectivity matrix. 

 

We use a similar approach that also involved some graph 

theoretical analysis for discovering the signatures of 

problems. This produced two sorts of higher-order signatures 

in the form of matrices: coexist-on-path matrix, and 

connection strength matrix.  

 
The coexist-on-path matrix represents information about the 

frequency of connections between any two transfer functions, 

and the direction of that connection (see Fig.1). The transfer 

function is represented as a tuple     ) where,   and   are 

the indices of the activation function and output function, 

respectively (see table 1 & table 2). The direction of the 

connection is read from the y-axis to the x-axis. Darker 

regions indicate higher values, while lighter regions indicate 

lower values. In essence, this measure only grabs the 

likelihood of two transfer functions coexisting on the same 

TABLE 1 

ACTIVATION FUNCTIONS          ) 

Index Functions Definitions 

1 Inner Product 
   ∑          

 

 

 

2 Euclidean Distance 

   √∑      )
 

 

 

 

3 Higher-Order Product 
   ∏      

 

 

 

4 Higher-Order 

Subtractive    ∑|         |

 

 

 

5 Standard Deviation                    ) 

6 Min                  ) 

7 Max                 ) 

Activation functions available in the pool of NDMs for neuroevolution of 

transfer functions during learning. 

 

TABLE 2  

OUTPUT  FUNCTIONS         ) 

Index Functions Definitions 

1 Identity         

2 Sigmoid    
 

        

 

3 Gaussian 
    

   
 

  

4 Tanh (Hyperbolic 
tangent)     

        

        
 

5 Gaussian II 

    {    
   

 

      

         
 

Output functions available in the pool of NDMs for neuroevolution of 

transfer functions during learning. 

TABLE 3 

GENETIC STRING CONTENT 

 Information Definitions 

1 Fitness  Cost of the model on the given problem. 

2 Connection weights Weights between all connections in the 

model. 

3 Connection status Status of the connections, either active or 

deactivated.  

4 Node bias Bias values of nodes their weights. 
5 Node status Status of the node, either active or 

deactivated. 

6 Node activation 
function 

Activation functions adopted by the nodes. 

7 Node output 
function 

Output functions adopted by the nodes. 

Some of the contents stored on the genetic string about NDM models. 

 
Fig.1.  A coexist-on-path matrix showing the frequency of 

use for computation paths (from the hidden to the output 
layer ) in the Top N neural network models from a 

randomly initialized population of Neural Diversity 

Machines evaluated on the Iris dataset (where N, number 

of solution samples with the fittest cost).  
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path in the subset of the most accurate subset of models 

evaluated without training. 

 
 

Connection strength is similar to coexistence-on-path in 

representation, though it grabs information about the 

accumulated weight between connections of any two transfer 

functions (see Fig. 2). In essence, these two tools enable us to 

glimpse at some part of the neural computation strategies at 

work by knowing about their neural computation paths. The 

pattern extracted by these tools is what we refer to as a 

problem signature.  In this case, these signatures are 

higher-order problem signatures since they are signatures that 

reveal some information about connection paths and their 

direction. More atomic signatures, which we refer to as 

first-order problem signatures [20] reveal information on the 

combination of activation and output functions. However, the 

focus of this paper is on higher-order problem signatures. 

 

In this paper, we used subsampling to select solutions from a 

population of randomly initialized models of NDM networks. 

We select   (            ) of the top NDM models after 

randomly generating architectures from the pool of transfer 

functions and evaluating them without training on a given 

problem. Due to NDMs having a hybrid and diverse pool of 

transfer functions, it is possible to have a variation of neural 

network architectures with different transfer functions which 

in turn implies that there are more computation strategies 

available. By computation strategies in the context of 

classification problems, we mean ways of projecting decision 

boundaries that can divide the input space to some extent into 

the respective classes that describes the underlying principle 

of the problem that generated the datasets.  

 

The potential significance of problem signatures to efficient 

learning  in neural networks with hybrid transfer functions is 

that it could be used to determine a suitable initial state for 

training from which the complexity can be increased as 

required in a manner similar to that of NEAT [14]. This has 

the potential to improve convergence in addition to revealing 

interesting information about the relationship between 

problems in the context of computational strategies. Thus, it 

can potentially be used as a measure to estimate the distance 

between problems. Using Multidimensional Scaling (MDS), 

one might be able to visualize the problem-computational 

strategy space.  

2.3 Problem signature criteria 

As is apparent in the visualizations ( see Fig. 1 & Fig. 2) of the 

coexist-on-path and connection strength matrices, there is a 

consistent pattern: some strongly shaded vertical regions that 

show some neural computation paths being more likely to be 

found in the elite subsample of NDM models than others.  

 

The working hypothesis in this paper is that these signatures 

would differ between problems that are not related (i.e. in 

terms of the computation strategy applicable to solving them), 

and be similar between related problems. We also speculated 

that the difference or similarity between problems would be 

proportional to the degree of their relationship. Finally, we 

also expected the signatures for a problem to be consistent.  

 

In summary, we hypothesize that the criteria for problem 

signatures to be feasible as a reliable description of the 

computational strategy for problems are as follows: 

1. Consistency of signatures belonging to a problem. 

2. Discrimination/difference between signatures 

belonging to non-related problems. 

3. And vice versa; similarity between signatures of 

problems that are related. 

 

 2.4 Thresholding 

 

Thresholding is another common technique used in various 

analysis [21] to reveal more pronounced features by filtering 

out some that are below the threshold. The thresholding 

function implemented is given by the simple equation below: 

 

      )  {
       )   

     )      )   
 

 

Where,   is a     matrix, and   is the threshold. 

 

In this paper, thresholding was done to filter out the values 

that were below the mean ( ) to reveal information that could 

be of interest. The mean was chosen because it is relative to 

the range of intensities in the matrix. Thus, it makes it 

unlikely to filter out some information that might be 

important or not filter out signatures that are not useful. 

 

We also used another parameter; the plus value ( ), which 

can be used to increase the threshold ( ). Such that,  

       

 

Thus: when    , then     . 

 
Fig. 2.    An example of a connection strength matrix 
showing the weights of some neural computation paths 

(from the hidden to output layer) accumulated over the 

process of extracting signatures from the fittest (i.e. Top 
N) of randomly initialized NDM networks evaluated on 

the Iris dataset.  
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3. Experimental setup 

The datasets used for the experiments were: Iris, Sonar and 

XOR dataset. The Iris and Sonar datasets were retrieved from 

the UCI machine learning repository [24].   

 

For each of the datasets, the problem signature was extracted 

by generating a random population of genetic strings with 

gene values ranging from      to    . The size of the 

population generated,   is fixed. Some of the architectural 

properties encoded include, but are not limited to the 

following: the connection weights, the status of connections 

(i.e. on or off), status of nodes (i.e. switched on or off), the 

activation and output function of each node and its bias, and 

fitness of the gene.  

 

These genes are then decoded and evaluated on the dataset 

without training. A subsample of the solutions (particularly, 

the top   solutions) are then selected for extracting problem 

signatures. The process of extracting signatures simply 

records statistics of the likelihood and direction of 

connections between transfer functions (i.e. coexist-on-path) 

and the connection weights between them (i.e. connection 

strength) from the samples.  This is repeated for a number of 

runs,  . 

 

The experiments carried sought to answer if the following 

affected the signatures integrity: 

1. Subsample size N        ). 

2. Population size at initialization, P    
                                   ) . 

3. Number of subsampling runs, R (    
             ). 

 

We also applied thresholding to see if the change in plus 

value,  (         ) affects the signatures. 

4. Results  

In this section, we present the results of our preliminary 

feasibility assessments of problem signatures on the Iris, 

Sonar and XOR datasets.   

 

4.1 Signatures’ Discriminatory/Similarity Criteria and 

Thresholding 

It was observed that some neural computation paths were 

generally used for all the datasets consistently (i.e. for Iris, 

Sonar, and XOR – see Fig. 3, Fig. 4 & Fig. 5).  

 

 
 

 
 

However, by applying the thresholding function; the neural 

computation paths unique to each problem were more 

apparent. Thus, suggesting that the computational strategies 

 
Fig. 3. Coexist-on-path matrix of the Iris dataset 

showing vertical patterns indicating the connectivity 

patterns usually used.  

 
Fig. 4. Coexist-on-path matrix of the Sonar dataset 
also showing a similar pattern as the Iris, however 

with varied intensities at specific regions. 

 
Fig. 5. Coexist-on-path  matrix of the XOR dataset 

also showing a similar pattern with some varied 
regions. 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 12

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

 

used for problems were likely different. The illustrations (Fig. 

6 & Fig. 7) show how the correlation between problems 

decreases as the threshold ( ) is increased. 

 
 

 
 

Another observation was that the coexist-on-path and 

connection strength matrices were strongly correlated. A 

Pearson correlation coefficient (r) test on both of them was 

found to confirm this strong correlation for all the datasets 

tested (see table 4).  This also means that the relationship 

between the two is linear. This is because the Pearson 

correlation coefficient measures degree of linear 

relationships. 

 

 
 

 

 

 

 

4.2 Signature Consistency and Size of Subsample  

 

Tests made with various population sizes,   

(                                 ) showed that it 

had no significant effect on the signatures. Additionally, 

another experiment that involved adjusting the number of 

runs,   (              ) also showed no significant 

distortion of the signatures. 

 

The size of the subsample   (i.e.              ) had some 

effect on the signature, i.e. the vertical shaded regions are 

increased as the subsample size is increased (see Fig. 8, Fig. 9 

 
Fig. 6. Sonar-XOR correlation as threshold is increased by increasing 

the plus value  . The illustration shows the results of the varying 

sizes of the population size, P 

(                                       ) 

 
Fig. 7. Iris-Sonar correlation as threshold is increased by increasing 

the plus value   (                   ). 

TABLE 4 
PEARSON CORRELATION COEFFICIENT 

 Iris Sonar XOR 
  

Pearson 

Correlation 
Coefficient  (r) 

0.978 0.982 0.982   

2D Pearson correlation coefficient (r) between the coexist-on-path and 

connection strength matrices for the Iris, Sonar and XOR datasets. A 

correlation above     is usually considered to be a strong correlation.  

 
 
Fig. 8. Heat map showing the visualization of the coexist-on-path 

matrix for the Iris dataset as the subsample size,    increases; more 
vertical patterns can be seen as N increases indicating heavier use of 

some neural computation paths. 

 
 
Fig. 9. Heat map showing the visualization of the coexist-on-path matrix 

for the Sonar dataset as the subsample size,    increases; a similar pattern 

can be observed here as well. 

 
 
Fig. 10. Heat map of the coexist-on-path matrix for the XOR dataset as 

the subsample size,    increases: the pattern of increasing intensities is 

also noticeable here. 
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& Fig. 10); this further suggests that other NDM models in 

the population were using different computational strategies. 

However, the consistencies of the signatures were 

maintained: specifically, neural computation paths were still 

consistent as the subsample size was increased. It appeared to 

be that only neural computation paths were being detected. 

To further analyze this, we use some graph theory to analyze 

both the coexist-on-path and connection strength matrices. 

 

By using a weighted Networkx [25] directed graph we can 

visualize the coexist-on-path and connection strength 

matrices all together with the help of Matplotlib [26]. 

However, the graph was cluttered with lots of nodes and 

connections (see Fig. 11a, Fig. 12a & Fig. 13a), so we used 

thresholding to filter out some of them. This was done by only 

focusing on the node with the highest connection density (i.e. 

largest frequency of being connected to) as the sole terminal 

node. In other words, we only considered neural 

computational paths with connections to the node with the 

most connection density as their terminal node.  Furthermore, 

only nodes connected more frequently than average were 

included. This thresholding operation was necessary for 

confirming that different problems did indeed use different 

neural computation paths. It also helps in unveiling more 

interesting results. The results post thresholding can be seen 

in the illustrations below (see Fig. 11b, Fig. 12b & Fig. 13b). 

The directionality of the connection is represented by the 

thicker end being the origin to the thinner end of the line 

being the target. 

 

 
 

 

 
(a) 

 
(b) 

 

Fig. 11. The graph for the Iris dataset: (a) the graph 
before thresholding, (b) the graph after thresholding. 

The Thickness of the connection represents the 

connection strength.  

 
(a) 

 
(b) 

Fig. 12. Graph for the Sonar dataset: (a) graph prior to 

thresholding, (b) graph post thresholding. 

 
(a) 

 
(b) 

 

Fig. 13. Graph for XOR dataset: (a) pre-thresholding, 
(b) post-thresholding. 
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5. Discussion 

In terms of the signatures discriminatory/similarity criteria, 

higher-order problem signatures were found to have better 

discriminatory ability as the threshold was increased (see 

Fig.6 & Fig. 7). This was done by increasing the plus value    

(i.e. specifically between the range of          ).  The 

results were consistent regardless of the population size,  P. 

The correlation decreases almost linearly as the threshold was 

increased.  

 

The fact that the signatures were similar (i.e. vertical shaded 

regions of the graphs indicating some similarity in neural 

computation paths and the strong correlation prior to 

thresholding) for all the problems suggest that some neural 

computation paths are generic in their mode of use for the 

problem tested. Consequently, it also shows that other neural 

computation paths were more suitable for specific problems – 

as shown after thresholding filtered out the generic ones.  This 

suggests that different computational strategies were being 

used as can be seen in the illustrations (see Fig. 11b, Fig. 12b 

& Fig. 13b). 

 

As seen in the results, the pattern reveal vertical patterns 

suggesting the heavy connection of other transfer functions to 

a specific subset of transfer functions.  

 

For vertical patterns to appear in the matrices (i.e. 

coexist-on-path and connection strength) there has to be a set 

of vertices,    that is a subset of the all the vertices set  , 

which consists of vertices that have a set of edges,     

consisting of connections that connects others vertices from 

the global set   connects to a significant number of vertices 

in the set of vertices,   . 

 

The fact that vertical patterns were more prominent in the 

results of all the datasets is as a result of the fully connected 

topology of the initialized population of NDMs which also 

had a single hidden layer. Each solution is initialized with 

random transfer functions, weights, and bias values; however, 

in this experiment they are fully connected at initialization 

and there was no training operation applied to change this 

topology.  Given the fact that the population used had single 

layers, and that statistics of problem signatures was only 

captured for the hidden to output layer connections; the neural 

computation paths presented in the Figures (Fig. 11b, Fig. 

12b and Fig. 13b) represent to a large extent the most biased 

and fittest models (or instances of computational strategies) at 

initialization towards the given datasets. 

 

Regardless of the commonality of the architectural 

constraints used for all the datasets, there was bias of some 

neural computation paths for each problem (see Fig. 11b, Fig. 

12b and Fig. 13b). 

 

In the case of the Iris, the signatures after thresholding and 

visualization as a graph revealed that the node with the most 

input connection density was one that used an unusual 

combination of a Max with Gaussian output function.  Some 

 
(a) N = 1 

 
(b) N = 2 

 
(c) N = 3 

 
(d) N = 4 

 
 

Fig. 14.  Graphs for the Iris datasets as the subsample 

size N is increased: (a) N = 1, (b) N = 2, (c) N = 3, (d) 
N = 4. 
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of the nodes that connected to it often used; Euclidean 

distance with sigmoid, Inner product with Gaussian, Max 

with Gaussian II, Standard deviation with sigmoid, and 

Euclidean distance with Tan.  The ones that connected to it 

the least used: Higher-Order subtractive with sigmoid, and 

Min with Sigmoid. In earlier studies [9], it was observed that 

the Max and Min functions were used as relay functions when 

combined with a linear output function, such as Identity for 

some synthetic 2D datasets. In other occasions involving real 

world datasets such as the Australian credit card, they have 

been found to be utilized as filter-like functions when the 

difference between the ranges of input parameters is large. 

The filtering function enabled the neuron to filter out all other 

inputs parameter. In the case of the Iris, this seems to be the 

case; assuming the neuron with this transfer function is fed 

directly from the input layer and that the weights are not 

significantly different from each other, then the sepal length 

parameters could be the input parameter being favored over 

the others. This is because the sepal lengths’ mean and min is 

greater than the mean and min values of the other parameters, 

which include: sepal width, petal length and petal width. If 

the output function for the node is a Gaussian, it means that 

the sepal length values closer to the Gaussian function’s 

center would get higher outputs, while those with values 

farther away from the center would get the lowest outputs. If 

the output function was a Gaussian II (Gauss II), then there 

would be a bunch of values that would result in high outputs. 

This is because the Gauss II in essence flattens the peak of the 

Gaussian function; this in turn means the center is much 

wider.  In other words, a neural computation node using Max 

with Gaussian/Gaussian II functions could be providing 

normalized outputs of petal lengths. A node with Min is also 

likely to act in the same way, except that it would likely be 

working with the input parameter with the lowest mean, 

which is petal width in this case. Other similar variants such 

as Max/Min with Sigmoid/Hyperbolic Tangent have a related 

functionality, except that their normalization is by squashing 

the outputs within the range of their outputs. 

 

In the case of the Sonar dataset, the results reveals that the 

highest contributor nodes to the most densely connected to 

node, which was one that used an Euclidean distance with 

sigmoid, included nodes using: HO Product with sigmoid 

(HO Unit), HO Subtractive with Sigmoid (HO Unit-variant) 

Euclidean distance with Gaussian (RBF Unit), Inner product 

and tanh (Perceptron), and Euclidean distance and Hyperbolic 

Tangent. 

 

As for the XOR dataset, the most likely node to have the 

highest input connection density from other nodes was one 

that used an inner-product with a hyperbolic tangent 

(Perceptron node). The nodes most likely to connect to it in a 

path included nodes that used the following transfer 

functions: Euclidean distance or Max as the activation 

function with Gaussian/Gaussian II or Sigmoid/Tan as the 

output function.  Basically, they were mostly Radial Basis 

function unit, and filter functions (such as Max with 

Gaussian/Gaussian II or Sigmoid/Tan).  The Euclidean 

distance with sigmoid/Tanh function can be classified as a 

function that creates new information; in this case the 

summed distance between the input vector and the weight 

vector. The summed distance is then squashed by a 

sigmoid/Tanh. In the case of the XOR, the Euclidean distance 

could be valuable for finding simple computational strategies 

for the dataset. Assuming the weights between the input and 

hidden layer are all either     )  or     ) ; the Euclidean 

distance for the input values     )  and     ) would both 

produce a number of even parity, while     )  and     ) 

would produce a number of odd parity.  This is valuable 

information that can be used to discriminate between the two 

classes for the given dataset. 

 

In summary, a lot of these “unpopular” transfer functions are 

in essence performing some sort of filtering to the inputs. 

Specifically, they are usually being used to relay the 

normalized values of particular inputs from the input vector, 

while ignoring the rest. It would be interesting to see how a 

layer dedicated to evolving filter functions as preprocessors 

might improve the scalability and generalization of artificial 

neural networks. Each input node could be connected to a 

single preprocessing unit in the preprocessing layer, which 

can evolve any sort of transformation function from the 

activation and output functions pool. Multiple layers of these 

preprocessors with each layer having different connection 

topologies could also be explored. This is likely to appear in 

future works. 

 

Another interesting observation was the relationship of the 

size of the subsample and the higher-order problem 

signatures. It can be seen in the illustration (see Fig. 14.) that 

as the size of the subsample increases, so do the neural 

computation paths in the graph. The fact that there is a 

significant number of the neural computation paths still 

consistent in the graphs as N grows, suggests that 

higher-order problem signatures are consistent (see Fig. 11, 

Fig. 12, & Fig. 13). The difference is that new neural 

computation paths are introduced. Keeping in mind that the 

subsamples are chosen according to fitness, it can be 

speculated that neural computation paths have fitness too or at 

least an associated fitness. However, measuring this is 

another topic. Consequently, it can also be speculated that 

neural computation strategies - made up of these correction 

paths - also have fitness that can be measured too. However, 

this is not in the scope of this paper and might appear in future 

works. 

 

Considering the results of the size of the subsample   ), 

population size   ), and number of runs   ): we have found 

that the signatures are consistent. In addition, we have also 

shown that thresholding can be used to make them 

dissimilar/similar. However with regards to consistency with 

respect to the size of the subsample    ) ; the higher-order 

signatures are consistent given that the size of the subsample 

is kept fixed during sampling. Varying the size might results 

in some dormant signatures to become more pronounced. 

Thus, introducing new neural computation paths which could 

some cause inconsistencies between signatures from different 

runs. 
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6. Conclusion 

In conclusion, we have shown that higher-order problem 

signatures described have met the problem signatures criteria 

proposed (see section 2.3) for the datasets tested: specifically, 

that these signatures have a lot of neural computation paths in 

common that makes them similar at a glance, but after 

thresholding their difference are more apparent. As for 

signature consistency; the signatures were found to be 

consistent regardless of size of the population (P), number of 

runs (R), or subsample size (N). However, in the case of the 

subsample size (N), we have found that new neural 

computation paths that were dormant can be introduced into 

the signatures as the size is increased. Thus, it can be regarded 

as consistent if sample size is fixed during sampling. In other 

words, making the subsample size (N) variable during 

sampling process could introduce some inconsistency. 

 

In a nutshell, we have found that problem signatures could be 

analogous to thumb prints: similar at a glimpse because of the 

same pattern of whirls radially moving out from the center of 

the thumb, but they different when we are more specific of 

regions to look at. Future works might tell. 

7. Future works 

In the future we plan to introduce more variations of the 

higher-order problem signatures. Specifically, we intend to 

use two more coexist matrices that capture information not 

based on path, but on coexistence in layer or in the network 

model as a whole. This should provide rich information that 

would reveal more relationships between transfer functions 

and their role in neural network models in the context of 

various problems. 
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