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Abstract

In this paper, we introduce four new types of
the system of generalized vector quasi-equilibrium
problems in finitely continuous topological spaces
(in short, FC-spaces). By a maximal element the-
orem in product FC-spaces, we prove the existence
of solutions for such kinds of system of generalized
vector quasi-equilibrium problems. These theorems
improve, unify many important result in recent lit-
erature.
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1 Introduction

In recent years, the equilibrium problem with
vector-valued functions and set-valued maps have
been studied in [1-3] and the references therein.
Very recently, the system of vector quasi-
equilibrium problems, i.e., a family of quasi-
equilibrium problems for vector-valued bifunctions
defined on a product set, was introduced by Ansari
et al.[4] with applications in Debreu type equilib-
rium problem for vector-valued functions. This
problem was extensively investigated and general-
ized in [5-6] and existence results of a solution have
been proved.

Let I be a finite or a infinite index set. For
each i ∈ I, let Zi be Haudorff topological space
and (Xi, {ϕNi})i∈I , (Yi, {ϕMi})i∈I be FC-spaces.
We denote by 2X and 〈X〉the family of all subsets
of X and the family of all nonempty finite sub-
sets of X respectively. Let ∆n be the standard n-
dimensional simplex with vertices e0, . . . , en. If J

is a nonempty subset of {0, 1, . . . , n}, we denote by
∆J the convex hull of the vertices {ej : j ∈ J}. Let

Di : X =
∏

i∈I Xi → 2Xi , Ti : X =
∏

i∈I Xi → 2Yi

and Ci : X =
∏

i∈I Xi → 2Zi be set-valued maps
with nonempty values, Ci(x) is a proper closed con-
vex cone with apex at the origin and intCi(x) 6= ∅.
Let Fi : X × Y × Xi → 2Zi be a set-valued
map, where X =

∏
i∈I Xi, Y =

∏
i∈I Yi. Let

πi : X → Xi, θi : Y → Yi be projective mappings
from X to Xi and Y to Yi respectively.

In this paper, we study the following classes
of the system of the generalized vector quasi-
equilibrium problems:

(1) find (x̄, ȳ) ∈ X × Y such that for each
i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈ Ti(x̄) and
Fi(x̄, ȳ, zi) ⊂ Ci(x̄) for all zi ∈ Di(x̄).

(2) find (x̄, ȳ) ∈ X × Y such that for each
i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈ Ti(x̄) and
Fi(x̄, ȳ, zi) ∩ Ci(x̄) 6= ∅ for all zi ∈ Di(x̄).

(3) find (x̄, ȳ) ∈ X × Y such that for each
i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈ Ti(x̄) and
Fi(x̄, ȳ, zi) ∩ (−intCi(x̄)) = ∅ for all zi ∈ Di(x̄).

(4) find (x̄, ȳ) ∈ X × Y such that for each
i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈ Ti(x̄) and
Fi(x̄, ȳ, zi) * (−intCi(x̄)) for all zi ∈ Di(x̄).

Recently Lin et al. [7] studied the following
problems:

(i) find x̄ = (x̄i)i∈I ∈ X such that for all
i ∈ I, x̄i ∈ clSi(x̄), Fi(ti, x̄, yi) ⊂ Ci(x̄) for all
yi ∈ Si(x̄), and for all ti ∈ Ti(x̄)

(ii) find x̄ = (x̄i)i∈I ∈ X such that for all i ∈
I, x̄i ∈ clSi(x̄) and for each yi ∈ Si(x̄), there exists
ti ∈ Ti(x̄) such that Fi(ti, x̄, yi) ∩ Ci(x̄) 6= ∅.

(iii) find x̄ = (x̄i)i∈I ∈ X such that for each
i ∈ I, x̄i ∈ clSi(x̄), Fi(ti, x̄, yi) ∩ (−intCi(x̄)) = ∅
for all yi ∈ Si(x̄), and for all ti ∈ Ti(x̄)

(iv) find x̄ = (x̄i)i∈I ∈ X such that for all i ∈
I, x̄i ∈ clSi(x̄) and for each yi ∈ Si(x̄), there exists
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ti ∈ Ti(x̄) such that Fi(ti, x̄, yi) * (−intCi(x̄)).

where Zi is a Hausdorff t.v.s, Xi and Di are
nonempty subsets of two Hausdorff t.v.s Ei and Vi

respectively. Si : X → 2Xi , Ti : X → 2Di , Ci : X →
2Zi and Fi : Di × X × Xi → 2Zi are multivalued
maps.

Lin et al. [8] also studied the following problems:

(i’) find x̂, ŷ ∈ X such that for each i ∈ I, x̂i ∈
S̄i(x̂), ŷi ∈ T̄i(x̂) and fi(x̂, ŷ, ui) ⊂ Ci(x̂) for all ui ∈
Si(x̂).

(ii’) find x̂, ŷ ∈ X such that for each i ∈ I, x̂i ∈
S̄i(x̂), ŷi ∈ T̄i(x̂) and fi(x̂, ŷ, ui) ∩ Ci(x̂) = ∅ for all
ui ∈ Si(x̂).

(iii’) find x̂, ŷ ∈ X such that for each i ∈ I, x̂i ∈
S̄i(x̂), ŷi ∈ T̄i(x̂) and fi(x̂, ŷ, ui) ∩ (−intCi(x̂)) = ∅
for all ui ∈ Si(x̂).

(iv’) find x̂, ŷ ∈ X such that for each i ∈ I, x̂i ∈
S̄i(x̂), ŷi ∈ T̄i(x̂) and fi(x̂, ŷ, ui) * (−intCi(x̂)) for
all ui ∈ Si(x̂).

where fi : X×X×Xi → 2Zi , Ti : X → 2Xi , Ci :
X → 2Zi and Si : X → 2Xi are multivalued maps
and ŷi ∈ T̄i(x̂) means that (x̂, ŷi) ∈ GrTi

Our problems, our approaches and results are
different from [7-8].

2 Preliminaries

The following notions was introduced by Ding in
[9-12]

Definition 2.1. Let X and Y be topological
spaces. A subset A of X is said to be compactly
open (respectively, compactly closed) if for each
nonempty compact subset K of X, A ∩K is open
(respectively, closed) in K.

Definition 2.2. The compact interior and the
compact closure of A are defined by

cintA = ∪{B ⊂ X : B ⊂ A and B

is compactly open inX},
cclA = ∩{B ⊂ X : A ⊂ B and B

is compactly closed}
Clearly, we have X \ cintA = ccl(x \ A) and X \
cclA = cint(x \ A). For any compact subset K of
X, we have cintA∩K = intK(A∩K) and cclA∩K =
clK(A ∩K).

Definition 2.3. A set-valued mapping T : X →
2Y is said to be transfer compactly open-valued if

for x ∈ X and for each compact subset K of Y, y ∈
T (x) ∩K implies that there exist x′ ∈ X such that
y ∈ intK(T (x′) ∩K).

Definition 2.4. (Y, {ϕN}) is said to be a FC-
space if Y is a topological space and for each N =
{y0, . . . , yn} ∈ 〈Y 〉 where some elements in N may
be same, there exist a continuous mapping ϕN :
∆n → Y . A subset D of (Y, {ϕN}) is said to be a
FC-subspace of Y if for each N = {y0, . . . , yn} ∈
〈Y 〉 and for each {yi0 , . . . , yik

} ⊂ N ∩D, ϕN (∆k) ⊂
D where ∆k = co({eij : j = 0, . . . , k}).

Clearly, each FC-subspace D of a FC-space
(Y, {ϕN}) is also a FC-space.

Lemma 2.1. Let I be any index set. For
each i ∈ I, let (Yi, {ϕNi

}) be a FC-space. Let
Y =

∏
i∈I Yi and ϕN =

∏
i∈I ϕNi

. Then (Y, {ϕN})
is also a FC-space.

Theorem 2.1. [13] Let E1, E2 and Z be real
t.v.s., X and Y be nonempty subset of E1 and E2,
respectively. Let F : X × Y → 2Z , S : X → 2Y be
multivalued maps.

(i) if both S and F are l.s.c., then T : X → 2Z

defined by T (x) = ∪y∈S(x)F (x, y) is l.s.c. on X;

(ii) if both F and S are u.s.c., with compact
values, then T is an u.s.c. multivalued map with
compact values.

Theorem 2.2. [14] Let X and Y be topological
spaces, F : X → 2Y be a multivalued map.

(i) if F : X → 2Y is an u.s.c. multivalued map
with closed values, then F is closed.

(ii) if F is compact and F : X → 2Y is an u.s.c.
multivalued map with compact values, then F (X)
is compact.

Proposition 2.2. [15] Let X and Y be topo-
logical spaces, F : X → 2Y be a multivalued map.
Then F is l.s.c. at x ∈ X if and only if for any
y ∈ F (x) and for any net {xα} in X converging to
x, there is net {yα} such that yα ∈ F (xα) for every
α and yα converging to y.

We shall use the following maximal theorem due
to Ding [9].

Theorem 2.3. Let I be an any index set. For
each i ∈ I, let (Xi, {ϕNi

}) be a FC-space and let
X =

∏
i∈I Xi such that (X, {ϕN}) is a FC-space

defined as in lemma 2.1. For each i ∈ I, let Ai :
X → 2X

i such that

(i) for each x ∈ X, Ai(x) is a FC-subspace of
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Xi,

(ii)for each x ∈ x, xi = πi(x) /∈ Ai(x) and A−1
i :

Xi → 2X is transfer compactly open-valued.

(iii) for each x ∈ X, I(x) = {i ∈ I : Ai(x) 6= ∅}
is finite.

(iv) there exists a compact subset K of X and
for each i ∈ I and Ni ∈ 〈Xi〉, there exists a
nonempty compact FC-subspace LNi

of Xi con-
taining Ni such that for each x ∈ X \ K, there
exists y ∈ LN =

∏
i∈I LNi such that for each

i ∈ I(x), x ∈ cintA−1
i (πi(y)).

Then there exists x̂ ∈ K such that Ai(x̂) = ∅ for
each i ∈ I.

3 Existence theorems

Some existence results of a solution for the
four types of system of generalized vector quasi-
equilibrium problems are shown.

Theorem 3.1. Let I be an any index set. For
each i ∈ I, let (Xi, {ϕNi}) and (Yi, {ϕMi}) be FC-
spaces, let Di : X → 2Xi and Ti : X → 2Yi be
set-valued maps. For each i ∈ I, assume that

(i) for each x ∈ X, Di(x) and Ti(x) are
nonempty FC-subspaces of Xi and Yi respectively.

(ii) for all (x, y) ∈ X × Y , the set {zi ∈ Xi :
Fi(x, y, zi) * Ci(x)} is nonempty FC-subspace of
Xi.

(iii) for all (x, y) ∈ X × Y and each xi = πi(x),
we have Fi(x, y, xi) ⊂ Ci(x).

(iv)for each i ∈ I, Fi : X × Y × Xi → 2Zi is
lower semicontinuous on X × Y and Ci : X → 2Zi

is upper semicontinuous with closed values.

(v) for each yi ∈ Xi and ai ∈ Yi,
D−1

i (yi), T−1
i (ai) are compactly open.

(vi) the set Wi = {(x, y) ∈ X ×Y : xi = πi(x) ∈
Di(x) and yi = θi(y) ∈ Ti(x)} is compactly closed;

(vii) for each (x, y) ∈ X × Y , there exists zi ∈
Di(x) such that I(x, y) = {i ∈ I : Fi(x, y, zi) *
Ci(x)} is finite.

(viii) there exist nonempty and compact sub-
sets K ⊆ X and N ⊆ Y and for each i ∈ I and
Bi ⊂ 〈Xi〉, Ai ⊂ 〈Yi〉, there exist compact FC-
subspaces LBi of 〈Xi〉 and LAi of 〈Yi〉 containing
Bi and Ai respectively, such that for each (x, y) ∈
(X × Y ) \ (K ×N), there exists (u, v) ∈ LB × LA,

where LB =
∏

i∈I LBi
and LA =

∏
i∈I LAi

, such
that for each i ∈ I(x, y), Fi(x, y, πi(u)) * Ci(x) and
θi(v) ∈ Ti(x).

Then there exists (x̄, ȳ) ∈ X × Y such that for
each i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈
Ti(x̄), Fi(x̄, ȳ, zi) ⊂ Ci(x̄) for all zi ∈ Di(x̄)

Proof. For each i ∈ I, let us define a set-valued
map Pi : X × Y → 2Xi by

Pi(x, y) = {zi ∈ Xi : Fi(x, y, zi) * Ci(x)},
where ∀(x, y) ∈ X × Y . Then, Pi(x, y) is a FC-
subspace of Xi. By condition (iii), we have xi =
πi(x) /∈ Pi(x, y). By (iv) and Theorem 2.1 it fol-
lows that for each zi ∈ xi, P

−1
i (zi) is compactly

open. Indeed, if (x, y) ∈ X×Y \P−1
i (zi), then there

exists a net {xα, yα} in X × Y \ P−1
i (zi) such that

{xα, yα} → (x, y) ∈ X × Y , and Fi(xα, yα, zi) ⊂
Ci(xα). Let ui ∈ Fi(x, y, zi), by (iv) (x, y) →
Fi(x, y, zi) is l.s.c for each zi ∈ Xi. By Proposi-
tion 2.2, there exists a net {uα

i } in Fi(xα, yα, zi)
such that uα

i → ui. Therefore uα
i ∈ Ci(xα).

Since Ci : X → 2Z
i is an u.s.c multivalued map

with closed values, it follows from Theorem 2.2
that Ci is a closed multivalued map. Therefore,
ui ∈ Ci(x) and Fi(x, y, zi) ⊂ Ci(x). We saw that
(x, y) ∈ X×Y . Therefore, (x, y) ∈ X×Y \P−1

i (zi)
and X × Y \ P−1

i (zi) is closed for all zi ∈ Xi. This
shows that P−1

i (zi) is open for all zi ∈ Xi. Hence,
P−1

i (zi) is compactly open.

By lemma 2.1, (X×Y, {ϕN}) is also a FC-space
where X × Y =

∏
i∈I(Xi × Yi).

For each i ∈ I, we also define another set-valued
map Si : X × Y → 2Xi×Yi by

Si(x, y) =
{

[Di(x)× Pi(x, y)]× Ti(x), (x, y) ∈ Wi;
Di(x)× Ti(x), (x, y) /∈ Wi;

Then by (i) and Pi(x, y) is a FC-subspace, for each
i ∈ I and for each (x, y) ∈ X × Y, Si(x, y) is a FC-
subspace of Xi and so the condition (i) of Theorem
2.3 is satisfied. By (iii) and the definition of Wi,
we have (xi, yi) = (πi(x), θi(y)) /∈ Si(x, y) for each
i ∈ I and for any (x, y) ∈ X × Y . For each i ∈ I

and for any (ui, vi) ∈ Xi × Yi, we have

S−1
i (ui, vi) = [P−1(ui) ∩ (D−1

i (ui)× Y )∩
(T−1

i (vi)× Y )] ∪ [((X × Y ) \Wi)
∩(D−1

i (ui)× Y ) ∩ (T−1
i (vi)× Y )]

By the conditions (v) and (vi), S−1
i (ui, vi) is com-

pactly open-valued and hence S−1
i is transfer com-
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pactly open-valued on Xi×Yi. The condition (ii) of
Theorem 2.3 is satisfied. The condition (vii) implies
that the condition (iii) of Theorem 2.3 holds. Note
that S−1

i is compactly open-valued. From condition
(viii), we have

(X × Y ) \ (K ×N) ⊂ ∪{S−1
i (πi(u), θi(v)) :

(u, v) ∈ LN × LM}
= ∪{cintS−1

i (πi(u), θi(v)) :
(u, v) ∈ LN × LM}

and so the condition (iv) of Theorem 2.3 is satisfied.
By Theorem 2.1, there exists (x̂, ŷ) ∈ X × Y such
that Si(x̂, ŷ) = ∅ for all i ∈ I. If (x̂, ŷ) /∈ Wj for
some j /∈ I, then either Di(x̂) = ∅ or Ti(x̂) = ∅
which contradicts the fact that Di(x) and Ti(x) are
both nonempty for each x ∈ X and for any i ∈ I.
Therefore, we have (x̂, ŷ) ∈ Wi for all i ∈ I, and
hence for each i ∈ I, x̂i = πi(x̂) ∈ Di(x̂), ŷi =
θi(ŷ) ∈ Ti(x̂) and Di(x̂)∩Pi(x̂, ŷ) = ∅, for all i ∈ I.
Therefore, for all i ∈ I,

x̂i = πi(x̂) ∈ Di(x̂), ȳi = θi(ŷ) ∈ Ti(x̂),

Fi(x̂, ŷ, zi) ⊂ Ci(x̂) for all zi ∈ Di(x̂)

This completes the proof.

Following the same argument as Theorem 3.1,
we can prove the following theorem.

Theorem 3.2. For each i ∈ I, assume that

(i) for each x ∈ X, Di(x), Ti(x) are nonempty
FC-subspaces of Xi and Yi respectively.

(ii) for all (x, y) ∈ X × Y , the set {zi ∈ Xi :
Fi(x, y, zi) ∩ Ci(x) = ∅} is nonempty FC-subspace
of Xi.

(iii) for all (x, y) ∈ X × Y and each xi = πi(x)
we have Fi(x, y, xi) ∩ Ci(x) 6= ∅.

(iv) for each i ∈ I, Fi : X × Y × Xi → 2Zi

is upper semicontinuous with compact values and
Ci : X → 2Zi is upper semicontinuous.

(v) for each yi ∈ Xi and each ai ∈ Yi,
D−1

i (yi), T−1
i (ai) are compactly open.

(vi) the set Wi = {(x, y) ∈ X ×Y : xi = πi(x) ∈
Di(x) and yi = θi(y) ∈ Ti(x)} is compact closed.

(vii) for each (x, y) ∈ X × Y , there exists zi ∈
Di(x) such that I(x, y) = {i ∈ I : Fi(x, y, zi) ∩
Ci(x) = ∅} is finite.

(viii) there exist nonempty and compact subsets
K ⊆ X and N ⊆ Y and for each i ∈ I and Bi ⊂

〈Xi〉, Ai ⊂ 〈Yi〉, there exist compact FC-subspaces
LBi

of 〈Xi〉 and LAi
of 〈Yi〉 containing Bi and Ai

respectively, such that for each (x, y) ∈ X × Y \
K ×N , there exists (u, v) ∈ LB ×LA, where LB =∏

i∈I LBi
and LA =

∏
i∈I LAi

, such that for each
i ∈ I(x, y), Fi(x, y, πi(u)) ∩ Ci(x) = ∅ and θi(v) ∈
Ti(x).

Then there exists (x̄, ȳ) ∈ X × Y such that for
each i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈ Ti(x̄)
and Fi(x̄, ȳ, zi) ∩ Ci(x̄) 6= ∅ for all zi ∈ Di(x̄)

Proof. Let Pi : X × Y → 2Xi by Pi(x, y) =
{zi ∈ Xi : Fi(x, y, zi)∩Ci(x) = ∅},∀(x, y) ∈ X×Y .

Then, pi(x, y) is a FC-subspace of Xi. By
condition (iii), we have xi = πi(x) /∈ Pi(x, y).
By (ii) and Theorem 2.1 it follows that for each
zi ∈ Xi, P

−1
i (zi) is open. Indeed, if (x, y) ∈

X ×Y \P−1
i (zi), then there exists a net {xα, yα} ∈

(X × Y ) \ P−1
i (zi), such that {xα, yα} → (x, y) ∈

X × Y and Fi(xα, yα, zi) ∩ Ci(xα) 6= ∅. Let uα
i ∈

Fi(xα, yα, zi) ∩ Ci(xα). By (iv) and Theorem 2.2
that for each zi ∈ Xi, (x, y) → Fi(x, y, zi) is an u.s.c
multivalued map with compact values. It suffices
to find a subset {uαλ

i } of {uα
i }, which converges to

some ui ∈ Fi(x, y, zi). Since for each zi ∈ Xi, the
multivalued map (x, y) 7→ Fi(x, y, zi) and Ci are
u.s.c with compact values, it follows from Theorem
2.2 that for each fixed zi ∈ Xi, (x, y) 7→ Fi(x, y, zi)
and Ci are closed. Therefore, (x, y) ∈ X × Y and
ui ∈ Fi(x, y, zi) ∩ Ci(x) 6= ∅. This shows that
X \ P−1

i (zi) is closed for each zi ∈ Xi. Hence
P−1

i (zi) is open for each zi ∈ Xi.

By lemma 2.1, (X×Y, {ϕN}) is also a FC-space
where X × Y =

∏
i∈I(Xi × Yi).

For each i ∈ I, we also define another set-valued
map Si : X × Y → 2Xi×Yi by

Si(x, y) =
{

[Di(x)× Pi(x, y)]× Ti(x), (x, y) ∈ Wi;
Di(x)× Ti(x), (x, y) /∈ Wi;

Then by (i) and Pi(x, y) is a FC-subspace, for each
i ∈ I and for each (x, y) ∈ X × Y, Si(x, y) is a FC-
subspace of Xi and so the condition (i) of Theorem
2.3 is satisfied. By (b) and the definition of Wi,
we have (xi, yi) = (πi(x), θi(y)) /∈ Si(x, y) for each
i ∈ I and for any (x, y) ∈ X × Y . For each i ∈ I

and for any (ui, vi) ∈ Xi × Yi, we have

S−1
i (ui, vi) = [P−1(ui) ∩ (D−1

i (ui)× Y )∩
(T−1

i (vi)× Y )] ∪ [((X × Y ) \Wi)
∩(D−1

i (ui)× Y ) ∩ (T−1
i (vi)× Y )]
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By the conditions (v) and (vi), S−1
i (ui, vi) is com-

pactly open-valued and hence S−1
i is transfer com-

pactly open-valued on Xi × Yi. The condition (ii)
of Theorem 2.3 is satisfied. The condition (viii) im-
plies that the condition (iii) of Theorem 2.3 holds.
Note that S−1

i is compactly open-valued. From con-
dition (viii), we have

(X × Y ) \ (K ×N) ⊂ ∪{S−1
i (πi(u), θi(v)) :

(u, v) ∈ LN × LM}
= ∪{cintS−1

i (πi(u), θi(v)) :
(u, v) ∈ LN × LM}

and so the condition (iv) of Theorem 2.3 is satisfied.
By Theorem 2.3, there exists (x̂, ŷ) ∈ X × Y such
that Si(x̂, ŷ) = ∅ for all i ∈ I. If (x̂, ŷ) /∈ Wj for
some j /∈ I, then either Di(x̂) = ∅ or Ti(x̂) = ∅
which contradicts the fact that Di(x) and Ti(x) are
both nonempty for each x ∈ X and for any i ∈ I.
Therefore, we have (x̂, ŷ) ∈ Wi for all i ∈ I, and
hence for each i ∈ I, x̂i = πi(x̂) ∈ Di(x̂), ŷi =
θi(ŷ) ∈ Ti(x̂) and Di(x̂)∩Pi(x̂, ŷ) = ∅, for all i ∈ I.
Therefore, for all i ∈ I,

x̂i = πi(x̂) ∈ Di(x̂), ȳi = θi(ŷ) ∈ Ti(x̂),

Fi(x̂, ŷ, zi) ∩ Ci(x̂) 6= ∅ for all zi ∈ Di(x̂)

This completes the proof.

With the same argument as in Theorem 3.1 and
Theorem 3.2, we can prove the following Theorem
3.3 and Theorem 3.4 respectively.

Theorem 3.3. For each i ∈ I, suppose that

(i) for each x ∈ X, Di(x), Ti(x) are nonempty
FC-subspaces of Xi and Yi respectively.

(ii) for all (x, y) ∈ X × Y , the set {zi ∈ Xi :
Fi(x, y, zi) ∩ (−intCi(x)) 6= ∅} is nonempty FC-
subspace of Xi.

(iii) for all (x, y) ∈ X × Y and each xi = πi(x)
we have Fi(x, y, xi) ∩ (−intCi(x)) = ∅.

(iv)for each i ∈ I, Fi : X × Y × Xi → 2Zi is
lower semicontinuous on X × Y and Ci : X → 2Zi

is upper semicontinuous with closed values.

(v) for each yi ∈ Xi and ai ∈ Yi,
D−1

i (yi), T−1
i (ai) are compactly open.

(vi) the set Wi = {(x, y) ∈ X × Y : xi =
πi(x) and yi = θi(y) ∈ Ti(x)} is compactly closed

(vii) for each (x, y) ∈ X × Y , there exists zi ∈
Di(x) such that I(x, y) = {i ∈ I : Fi(x, y, zi) ∩
(−intCi(x)) 6= ∅} is finite.

(viii) there exist nonempty and compact subsets
K ⊆ X and N ⊆ Y and for each i ∈ I and Bi ⊂
〈Xi〉, Ai ⊂ 〈Yi〉, there exist compact FC-subspaces
LBi of 〈Xi〉 and LAi of 〈Yi〉 containing Bi and Ai

respectively, such that for each (x, y) ∈ (X × Y ) \
(K×N), there exists (u, v) ∈ LB×LA, where LB =∏

i∈I LBi
and LA =

∏
i∈I LAi

, such that for each
i ∈ I(x, y), Fi(x, y, πi(u)) ∩ (−intCi(x)) 6= ∅ and
θi(v) ∈ Ti(x).

Then there exists (x̄, ȳ) ∈ X × Y such that for
each i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈
Ti(x̄), Fi(x̄, ȳ, zi) ∩ (−intCi(x)) = ∅ for all zi ∈
Di(x̄)

Theorem 3.4. For each i ∈ I, assume that

(i) for each x ∈ X, Di(x), Ti(x) are nonempty
FC-subspaces of Xi and Yi respectively.

(ii) for all (x, y) ∈ X × Y , the set {zi ∈
Xi : Fi(x, y, zi) ⊂ (−intCi(x))} is nonempty FC-
subspace of Xi.

(iii) for all (x, y) ∈ X × Y and each xi = πi(x)
we have Fi(x, y, xi) * (−intCi(x)).

(iv) for each i ∈ I, Fi : X × Y × Xi → 2Zi

is upper semicontinuous with compact values and
Ci : X → 2Zi is upper semicontinuous.

(v) for each yi ∈ Xi and each ai ∈ Yi,
D−1

i (yi), T−1
i (ai) are compactly open.

(vi) the set Wi = {(x, y) ∈ X ×Y : xi = πi(x) ∈
Di(x) and yi = θi(y) ∈ Ti(x)} is compact closed.

(vii) for each (x, y) ∈ X × Y , there exists zi ∈
Di(x) such that I(x, y) = {i ∈ I : Fi(x, y, zi) ⊂
(−intCi(x))} is finite.

(viii) there exist nonempty and compact subsets
K ⊆ X and N ⊆ Y and for each i ∈ I and Bi ⊂
〈Xi〉, Ai ⊂ 〈Yi〉, there exist compact FC-subspaces
LBi

of 〈Xi〉 and LAi
of < Yi > containing Bi and

Ai respectively, such that for each (x, y) ∈ X ×
Y \ K × N , there exists (u, v) ∈ LB × LA, where
LB =

∏
i∈I LBi and LA =

∏
i∈I LAi , such that for

each i ∈ I(x, y), Fi(x, y, πi(u)) ⊂ (−intCi(x)) and
θi(v) ∈ Ti(x).

Then there exists (x̄, ȳ) ∈ X × Y such that for
each i ∈ I, x̄i = πi(x̄) ∈ Di(x̄), ȳi = θi(ȳ) ∈ Ti(x̄)
and Fi(x̄, ȳ, zi) * (−intCi(x̄)) for all zi ∈ Di(x̄).
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