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Abstract

This article presents the Monte Carlo method in
the context of simulation of stochastic models in fi-
nance. Our research aims to make practical use of
the main operative techniques of Monte Carlo sim-
ulation applied to finance. In fact, for some years,
finance specialists describe several phenomena and
work out computational methods using mathemat-
ical tools which are becoming increasingly sophis-
ticated. Thus, our work focuses on the problem of
the options considered the most prominent exam-
ple of methods of stochastic calculus in finance in
terms of pertinence. We describe in this part how
to elaborate Monte Carlo simulations in the pres-
ence of several risk factor Y.

Keywords: Monte Carlo, Simulation, Finance,
Risk Factor, Stochastic.

1 Introduction

This article aims to present an introduction to prob-
abilistic techniques to understand the most com-
mon financial models. Thus, our work deals funda-
mentally with the problem of options that presents
a striking example in the methods of stochastic cal-
culus in finance. In the context of simulation of
stochastic models, our study focuses on the Monte
Carlo method [1]. In fact, when we want to study
a system, we use simulation to measure the effects
resulting of the change of complex interactions con-
tained in the system in question. However, the
accurate representation of phenomena encounters
difficulties whose the cause is not explicit calcula-
tions. Thus, the simulation techniques [2] allows
to approach numerically these calculations. In this
sense, the Monte Carlo methods [3] are designed to
the use of repeated experiments in order to evalu-
ate the amount and solve a deterministic system.
These methods are used to calculate the integral
and solve partial derivative equations, linear sys-
tems and optimization problems.

2 Simulation of non-Gaussian
vector with correlated com-
ponents using a copula

Now it is to simulate a vector with non-Gaussian
components (X1, X2, ..., Xn). We note Fj law of
unconditional distribution (or marginal) xj . Re-
member that the marginal law (or unconditional)
Fj(x) = Proba(Xj ≤ x) is Xj in the absence of any
hypotheses about the Xk for k ≤ j and the joint law
J(x1, x2, ...., xm) = Proba(X1 ≤ x1and......andXm ≤
xm) differs from simple product F1(x1)F2(x2)....Fm(xm)

of marginal laws, except in the special case of xj
mutually independents. The use of a Gaussian cop-
ula permits to transform a Gaussian vector (U1, U2, ....., Um)
in a vector (X1, X2, ..., Xn) non-Gaussian, thus to
obtain indirectly a representation of the joint law of
(X1, X2, ..., Xn) and make simulations of the latter
vector.

2.1 Theory

2.1.1 Cholesky Decomposition:

It allows the toss of a Gaussian vector X by tak-
ing into account the variance-covariance matrix Σ
presumed known

Σ is symmetrical =⇒ Σ = ΛΛ′

X = µ+ ΛU

2.1.2 Decomposition of copula

It allows the toss of a non-Gaussian vector X whose
components are correlated, from the Gaussian vec-
tor from the Cholesky decomposition.

2.1.3 Proposal

1. Is some distribution law F and a variable U
Gaussian centered reduced. The variableX = F−1(N(U))
to F for distribution law.
2. Reciprocally, is a random variable X of any dis-
tribution law F . The random variable U = N−1(F (X))
is normal, centered reduced.

2.2 Example

2.2.1 Statement

Consider two variables T1 and T2 distributed ac-
cording to exponential laws, the two marginal dis-
tributions are respectively: F1(t) = Proba(T1 ≤
t) = 1 − exp(−λ1t)F2(t) = Proba(T2 ≤ t) = 1 −
exp(−λ2t) T1 and T2 are correlated λ1λ2 ∈ [0, 1].
We will associate with T1 and T2 two variables U1

and U2  N(0, 1) is linked mutually by a coefficient
ρ.

2.2.2 Algorithm

- We first simulate M couples (U i1, U
i
2)i=1,....,M

U i2 = ρU i1 +
√

1− ρV i]i=1,...,M

with V distributed N(0, 1) and independent of U1

. Realize M independent tosses of the two Gaus-
sian U i1 and V i

. Calculate U i2 from the previous relationship

. Place in a table the couples values (U i1, U
i
2)i=1,....,M
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- We associate to each couple (U1, U2) the cou-
ple (t1, t2) such as: N(U1) = 1 − exp(−λ1t1), is
t1 = ln(1−N(U1)) and t2 = ln(1−N(U2))
- (t1, t2) from the joint law of (T1, T2).

2.2.3 Parameter

- Λ1 = 5%andλ2 = 4% - = 0.34
Table (figure 1) below reproduces 19 tosses (V,U1)
of this simulation that permits to calculate 19 cou-
ples (U1, U2), then 19 couples (t1, t2) representing
the remaining time (in years) before the first faults.

t1 = − 1
λ1
ln(1−N(u1))

t2 = − 1
λ2
ln(1−N(u2))

Figure 1: Simulation of non-Gaussian vector

3 Simulation trajectories

3.1 Theory

The simulated trajectories of random vector of m

factors
−→
Y (t) between 0 and T must take into ac-

count the structure as expressed by the variance-
covariance matrix σ(t) of variables in the case of m
factors. Depending on whether a representation of

the dynamics of
−→
Y (t) in continuous time (equation:

dY = µ(t, Y (t))dt + σ(t, Y (t))dw Where dw is the
increment of a standard Brownian motion and µ()
and σ() are two known functions ) or discrete time
(equation: Y (tj)−Y (tj−1) = µ(tj−1, Y (tj−1))∆t+

σ(tj−1, Y (tj−1, Y (tj−1))
√

∆tUj Where uj a partic-
ular embodiment of U(j) (for j = 1, ....N). The
U(j) are normal variables, centered, reduced and
independently distributed) is used, the general term
of the matrix Σ(t) is:

σ′ij(t,
−→
Y (t)) = 1

dtcov(dYi; dYj) pour i, j = 1, .,m in
continuous time ;

σij(t,
−→
Y (t)) = σ′ij(t,

−→
Y (t))∆t et

σi =
√
σii = σ′i

√
∆t in discrete time .

Exceptionally, premiums here designate annualized
parameters to distinguish from parameters corre-
sponding to periods of time ∆t. As Monte Carlo
simulations require discretization of continuous pro-
cesses, this is the second formulation (in discrete
time) which is used in practice. In addition, we

note ρij(t,
−→
Y (t)) =

σ′
ij

σiσj
the correlation coefficient

between variables of factors i and j: −→µ (t,
−→
Y (t))

designates the drift of
−→
Y (t) between t and t + ∆t.

We decompose the period (0, T ) into N periods of
time ∆t = T

N noted (tj−1, tj)(j = 0, ...., N, t0 =
0andtN = T ) and we express the variations of the
first component Y1 between tj−1 and tj by using
the discretized equation of type (2)

Y1(tj)− Y1(tj−1) =

µ(tj − 1,
−→
Y (tj−1)) + λ11(tj−1,

−→
Y (tj−1))U1(j), for

j = 1, ., N

where the variables U1(j) are normal, centered, re-
duced and serially independents. The variations of
different Y must be mutually correlated. To repre-
sent them, we use a triangular Cholesky decompo-
sition as was shown previously that, in this context,
leds to ask:

Y1(tj)− Y1(tj−1) = µ1(.) + λ11(.)U1(j)
Y2(tj)−Y2(tj−1) = µ2(.)+λ21(.)U2(j)+λ22(.)U2(j)
...
Yi(tj)−Yi(tj−1) = µi(.)+λi1(.)Ui(j)+. . .+λii(.)Ui(j)
...
Ym(tj) − Ym(tj−1) = µm(.) + λm1(.)Um(j) + . . . +
λmm(.)Um(j)

Where the Ui(j) are normal variables, centered, re-
duced and serially independents and mutually in-
dependents and where, to simplify the writing, (.)

is (tj−1,
−→
Y (tj−1)). Two trajectories of N points for

−→
Y are obtained from MXN tosses U and their an-
titheticals. According to the procedure explained,
the λij(.) are determined step by step (starting with
λ11) from the variance-covariance matrix Σ(.) of
general term σij , and are solutions of i the fol-

lowing equations:
∑i
j=1 λ

2
ij = σij , to comply with

the presumed variance of Yi(tj)− Yi(tj−1), for k =
1, ......., i− 1, to respect the i − 1 covariances be-
tween the variation of Yi(t) and the one of YK(t).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 235

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



3.2 Example: Simulations of a three-
factor model (prices, rates and
stochastic volatility)

Now consider the case of a position depending on
three factors:
- Price action S
- Interest rate r
- Volatility sigma of the action that influences the
dynamics of S and of the price action ST

3.2.1 Statement

Consider a portfolio composed of TCN, an action
(or an index) and options on the action whose value
depends on the three previous random factors, these
three factors are presumed to follow the following
three-dimensional diffusion process
- dr = a(b− r(t))dt+ λ11dw1 (r)
- dS
S = (r(t) + θ)dt+ λ21(.)dw1 + λ22(.)dw2 (S)

- dσ = c((t) − σ(t))dt + λ31(.)dw1 + λ32(.)dw2 +
λ33(.)dw3 (σ)
where w1 and w2 w3 are independent standard Brow-
nian. These three equations (r) (S) and (σ) require
explanation. Equation (r): the rate r(t) follows a
Orstein-Uhlenberck process with a force of retrac-
tion force a that brings it to a normal value b. λ11
= annualized standard deviation σr of rate varia-
tions. - A, b and σr are assumed to be constant and
known. Equation (S): the return equation dS

S of
the action. - Θ = The assumed constant risk pre-
mium. - (R(t) + θ): The expected return of the
action - (.) (.) Λ21 and λ22 must be compatible
with the volatility σ(t) of the action following the
process represented by the third equation. - Λ2

21 +
λ221 = σ2(t) (C1) and λ(.)(.)21 = ρ1 sigma(t) (C2)
Theconditions (C1) and (C2) leadthereforetovaluesof

λ21 and λ22 λ21 = ρ1σ(t) and λ22 = σ(t)
√

1− ρ2
Equation of (σ): the volatility σ(t) follows a pro-
cess involving a retraction force towards a normal
value φS(t) which depends negatively on the level
of price S. The coefficients λ31 λ32 and λ33 allow a
correlation with r and S
- λ31 = 0
- λ232 + λ233 = k2

- λ32λ33 = ρ2kσ

So we can deduce λ32 = ρk2√
1−ρ21

and λ33 = k
√

1−ρ21−ρ22
1−ρ21

The diffusion process governing the three factors
that respects volatilities and correlations desired is
then:
- dr = a(b− r(t))dt+ σr dw1

−dS S = (r (t) + θ)dt+ρ1σ(t)dw1+σ(t)
√

1− ρ2dw2

- dσ = c(φS(t)−σ(t))dt+
ρk2
√

1−ρ21
d w2+k

√
1−ρ21−ρ22

1−ρ21
dw3

This three-dimensional process is written in con-
tinuous time where the Monte Carlo simulation is

based on a discretization of this process: r(tj) −
r(tj−1) = a(b− r(tj−1))∆t+ σr U1

S (tj)−S(tj−1) = S(tj)[(r(tj−1)+θ)∆t+ρ1σ(tj−1)U1+

σ(tj−1)
√

1− ρ2U2]

Σ(tj)−σ(tj−1) = c(φS(tj−1)−σ(tj−1))∆t+
ρk2
√

1−ρ21
U 2

+

k
√

1−ρ21−ρ22
1−ρ21

U3

3.2.2 Parameter values

For a numerical application we can choose, for ex-
ample, the following parameters:
- The steps are weekly ∆t = 1/52 = 0.1923
- a = 0.18, b = 0.04, σr = 0.2, θ = 0.05, ρ1 =
0.3, c = 0.5, ρ2 = −0.2; k = 0.08 We can choose
φ(S(t)) equal to a constant (e.g. 0.3) or a decreas-
ing function of S(t), for example: φ(S(t)) = 0.15×
(1+( 2S(0)

S(t)−S(O) )
2), the ”normal” annualized volatil-

ity is therefore equal to 0.3 for a price S(t) = S(0)
actual.

3.2.3 Generate the variables Ui]i=1,2,3

Using the Box-Muller method we generate the vari-
ables Ui]i=1,2,3

Ui =
√
−2 ∗ LOG(RAND())∗cos(2∗PI()RAND())

Figure 2: Generate the variables Ui]i=1,2,3

3.2.4 Calculation of three factors r(tj), S(tj) and σ(tj)

Two tosses of 52 weekly points are obtained from
152 tosses of U and their antitheticals; the simu-
lation of 1000 trajectories requires therefore 78,000
tosses in one year (counting Uj and its antithetical
to one toss).

Figure 3: Calculation of interest rate
r(tj)− r(tj−1) = a(b− r(tj−1))∆t+ σrU1
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Figure 4: Calculation of the price action
S(tj) − S(tj−1) = S(tj)[(r(tj−1) + θ)∆t +

ρ1σ(tj−1)U1 + σ(tj−1)
√

1− ρ2]U2

Figure 5: Calculation of the volatility of the action
σ(tj) − σ(tj−1) = c(φS(tj−1) − σ(tj−1))∆t +
ρ2k√
1−ρ21

U2 + k
√

1−ρ21−ρ22
1−ρ21

U3

3.2.5 Graph of the action price depending
on time

Figure 6 illustrates the graph of the action price
depending on time (step = Weekly)

Figure 6: Graph of the action price depending on
time

4 Conclusion

Our work focuses on the study of a generalization

of a position whose the value V (t,
−→
Y (t)) depends

on m risk factors
−→
Y = (Y1, Y2, ..., Ym), that are of-

ten correlated; so we can not simulate the realiza-
tions of the different factors Yi(t) independently of
each other. Indeed, we have distinguished the case

where the simulation trajectories of
−→
Y (t) between 0

and T where only terminal values
←−
Y (t) , V (t,

−→
Y (t))

are necessary. thus, we must distinguish the case

of a Gaussian vector
−→
Y (t) of non-Gaussian case.

The toss of a Gaussian vector
−→
Y (t) whose compo-

nents are correlated may be based on the Cholesky
decomposition. Copulas are used to represent and
simulate the realizations of non-Gaussian vector with
correlated components.
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