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Abstract 

Round Robin (RR) CPU scheduling algorithm has been designed 
chiefly for time sharing systems. The RR algorithm has proven to 
be more useful in multiprogramming environment in which time 
slice or quantum is given to processes in the ready queue. An 
ideal classical RR uses a static quantum time which is gotten 
from the average of processes in the ready queue. One of the 
major challenges in classical RR is poor timing in performing 
context switching. This will eventually lead to unnecessary 
context switching. Using Dynamic Round Robin with Controlled 
Preemption (DRRCP), variable quantum time is used to 
eliminate this shortcoming. In an attempt to eliminate 
unnecessary context switching, the average waiting time, average 
turnaround time and number of context switching were as well 
improved. All dataset used for this analysis are generated using 
normal distribution function. 
Keywords: DRRCP, Quantum time (TQ), Waiting time, 
Turnaround time, Round Robin, Context switching. 

1. Introduction 

In computing system many processes are created. These 
processes are in need of one or more system resource(s) 
that are highly limited. It implies that processes will have 
to compete for these available resources. Since that is the 
case, how are these resources allocated to these processes? 
Which process should wait for a resource and for how 
long? Which process should be assign a resource (CPU)? 
These questions are answered by a technique used by the 
operating system called scheduling. The basic CPU 
scheduling algorithms are: First come First Serve (FCFS), 
Shortest Job First (SJF), Priority Scheduling and Round 
Robin (RR).  
 
The idea of Round Robin (RR), one of the basic CPU 
scheduling algorithms is to allocate equal time slice 
(quantum time) in a circular manner to processes in the 
ready queue.  Peradventure the quantum time is greater or 
equal to the burst time of the process it will run to 
completion without being preempted. Otherwise, the 
process must be preempted after it must have exhausted its 
quantum time and then return to the tail of the ready queue 
to take turn. The beauty of RR is fairness in assigning CPU  
 
 

 
to all the processes in the ready queue because equal time 
slice is given to each. Its greatest challenge is what should 
be the quantum time. Having a small quantum time will 
increase the number of context switching thereby reducing 
the general performance of the system. A larger one will 
practically degrade the system to First Come First Serve 
(FCFS) scheduling.  
Just like any other CPU scheduling algorithm, RR has its 
peculiar features that make it unique. Each time RR 
algorithm is evaluated against SJF and FCFS through any 
of the evaluation techniques; it average waiting time and 
average turnaround time is always higher. But it has gained 
more popularity and application in time sharing systems, 
and as such the most widely use CPU scheduling 
algorithm. This is to say that apart from average waiting 
time and average turnaround time, there are other factors 
that were considered for it acceptance. Among these 
factors are: multiprogramming, response time and so on.  

1. 1. Preliminaries 

A process is an instance of a program in execution [5]. 
You might think of it as the collection of data structures 
that fully describes how far the execution of the program 
has progressed [5]. Processes are like human beings: they 
are generated, they have a more or less significant life, they 
optionally generate one or more child processes, and 
eventually they die. A program by itself is not a process; a 
program is a passive entity, such as a file containing a list 
of instructions stored on disk, whereas a process is an 
active entity, with a program counter specifying the next 
instruction and set of associated resources. A program 
becomes a process when an executable file is loaded into 
memory [10]. It is these processes that are schedule for 
resources (CPU), and these processes can be in the 
following states: 

• New: when a new process is just created. 
• Running: the process is being executed. 
• Waiting: the process is waiting for some event to 

occur such as I/O event and so on.  
• Ready: the process is ready to be assign a 

processor. 
• Terminated: the process has finished execution. 
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Fig 1 shows that when a new process is created it is being 
admitted in to the ready queue. The scheduler will dispatch 
the process in the ready queue for the processor. At this 
point, the process is said to be in a running state. The 
running process upon completion will exit thereby 
changing its state to terminated. Sometimes, running 
process may be preempted caused by an interrupt. This 
will force the running process to change its state to ready 
state which will be schedule later. Also, a running process 
may change its state to waiting state because it is waiting 
for an I/O event to occur. Similarly, the same process in its 
waiting state may return to ready state upon completion of 
I/O event. It is important to note that only one process can 
be assign a CPU at a time. However, many processes may 
be waiting and ready at the same time.  

3. Scheduling criteria 

• CPU utilization: The idea is to keep the CPU as busy as 
possible. This criterion should be maximized. The CPU 
should be busy 100%. 

• Throughput: This is the number of tasks that can be 
completed per unit amount of time. If the CPU is highly 
utilized, then the number of tasks that can be completed 
within a time unit will be high. Just as CPU utilization, 
throughput should be maximized. 

• Turnaround Time: This is concern on how long it takes 
to finish executing a process. The time a process will 
take from when it is submitted for execution to when it 
finishes execution. Turnaround time is the sum of the 
periods spent waiting to get into memory, waiting in the 
ready queue, executing on the CPU and doing I/O [10]. 
The turnaround time should be minimized. 

• Waiting Time: This is the sum of the time spend waiting 
in the ready queue. As for waiting time, the goal is to 
minimize it. 

• Response Time: In an interactive system, turnaround 
time may not be the best criterion. Often, a process may 
produce some output fairly early and continue 
computing new results while previous results are being 
output to the user. Response time is the time from the 
submission of a request to when the first response is 
produced. It is the time taking to starts responding. This 
also should be minimized. 

• Number of context switching: Context switching (CS) is 
the act of switching the CPU to another process while 
performing a state save of the current process and a state 
restore of a different process. Even though switching is 
pure overhead because the system does no useful work 
while switching, it is needed in time sharing systems 
[10]. So, an optimal switching is required for high 
system performance. 

2. Motivation 

The major challenge of RR algorithm is what should be the 
quantum time (QT). Having a small quantum time will 
increase the number of context switching thereby reducing 
the general performance of the system. A larger one will 
practically degrade the system to First Come First Serve 
(FCFS) scheduling. The classical RR uses the average of 
processes in the ready queue as its QT, and it is static. But 
this will always create even greater problems of 
unnecessary context switching. This will lead to poor 
average waiting time, poor average turnaround time and 
poor number of context switch. If a process using the CPU 
is preempted with a little left over time, preempting the 
process should be considered unnecessary. The 
unnecessary switching that was done shall lead to poor 
average waiting time and poor average turnaround time. In 
this kind of scenario, if some of the preempted processes 
with little left over time are allowed to run to completion 
without preemption, it will produce a better result. 

4. Related Works 

In recent past years, various researches have been 
conducted to improve on the setbacks on the classical 
Round Robin CPU scheduling algorithm. Among these are: 
Variable Quantum Time (VQT) algorithm which is based 
on averaging technique to allocated a variable quantum 
time (QT) to each process in the ready queue[13]. In Even 
Odd Round Robin (EORR), there are two QT (QT1 and 
QT2). QT1 is the average of processes that are in odd 
position in the ready queue, while QT2 is the average of 
processes in even position in the ready queue. QT1 is 
compared to QT2 and the greatest is use as the QT in that 
round [6]. Dynamic Quantum Time using Mean Average 

Fig 1: Process state diagram 
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uses the average of processes in the ready queue in each 
cycle as its QT [1]. It implies that each cycle will have a 
different QT. In Average Mid Max Round Robin 
(AMMRR), quantum time is the mean of the summation of 
the average and the maximum burst time of the processes 
in the ready queue in each cycle. As for Ascending 
Quantum Minimum and Maximum Round Robin 
(AQMMRR), QT is calculated by multiplying the 
summation of the minimum and maximum CPU burst by 
80 percent [2]. Multi Dynamic Quantum time Round 
Robin (MDQTRR) uses two different QT in single cycle. 
Up to the median process, the quantum time used is gotten 
using the median quartile formula MQT (Median Quantum 
Time) while for the succeeding processes, the Upper 
Quartile formula is used to calculate the quantum time, 
UQT (Upper Quartile Quantum time) [4]. 

5. Proposed Approach 

The main concern of DRRCP technique is the control 
applied on preemption to processes that are using the CPU 
in RR scheduling.  As much as possible, DRRCP tries not 
to ruin the basic RR idea but to improve on its preemptive 
technique. The classical RR uses the average of processes 
in the ready queue as the quantum time, so is DRRCP. The 
only addition to classical RR is avoidance to unnecessary 
preemption of processes. This is the reason why this 
technique has a dynamic QT as opposed to the classical 
RR which has a static QT. Let us look at it this way, why 
should a process be preempted with left over job of 5 
percent or less having completed 95 percent of its job? In 
fact, there are cases where 1 or less than 1 percent is 
preempted. At least, even if multiprogramming cannot be 
achieved in a particular set of processes in the ready queue, 
you should be able to achieve minimal average waiting 
time and average turnaround time. But this is not the case 
with classical RR, it always incur unnecessary preemption 
cost which can be avoided. The proposal is if the quantum 
time allows a process to execute up to 95 percent of its job, 
it should be allowed to execute its left over job without 
being preempted. In this scheduling, a process using the 
CPU may or may not be preempted even if its quantum 
time is exhausted. It can only be preempted if its quantum 
time finishes and within the time slice it only processed 
less than 95 percent of its job. On the other hand, if the 
quantum time finishes and greater than or equal to 95 
percent of the job is processed, that process should be 
allowed to run to completion, otherwise, it should be 
preempted. This technique can be applied to all RR 
algorithms, classical or dynamic. It gives priority to 
processes using the CPU while having a smaller left over 
time of 5 percent or less to run to completion. The 
dynamism has to do with allowing a process not to be 

preempted unnecessarily. As long as 95 percent of a 
process job is executed, quantum time increases 
automatically from the average value to its actual CPU 
burst.  
 

Algorithm 1: DRRCP ALGORITHM  

1. //N= Number of processes 
//Pi= ith Process 
//i=1 Loop variable 
QT = quantum time 
//BT= Burst time of the processes 
 
2. While(RQ !=NULL) 
// RQ= Ready Queue 
Set Sum=0, Count=0 
// Count= Counts number of processes in the ready queue. 
//Calculation of Quantum time (QT) 
for i=1 to N Loop 
{ Sum = Sum + BTi 
Count++  } 
QT =Sum/Count       // take the floor value 
 
3. // Assign QT to (1 to N) processes. 
for i=1 to N loop 
{ If  P i*95% >= QT 
QT = BTi 
Else  
QT: remain unchanged 
End if } 
Pi=QT 
Calculate the remaining Pi Burst time of the process. 
End of for 
 
4. If (new process arrived) 
 then go to step1 
else if (new process is not arrived and BT!=0) 
go to step 3 
else 
go to step 5 
end of if 
end of while 
 
5. Calculate  AWT, ATAT, CS 
//ATAT=Average Turnaround time. 
//AWT=Average waiting time. 
//CS=Number of context switch. 
 
6. End 
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Figure 1: DRRCP FLOW CHART 
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6. Illustrations/Analysis 

Case1: 
Using mean =80 and deviation=60, the following processes 
and their associated CPU burst are generated. 
{P1=110, P2=89, P3=113, P4=137, P5=86, P6=131, 
P7=95} 

6.1. Classical RR 

In a classical RR the quantum time is the average of 
processes CPU burst time in the ready queue. 
Quantum time (QT) = (110+89+113+137+86+131+95)/7 
=761/7 = 109. 
The following left over time are obtained after applying 
Round Robin:  
Processes left over time are::  P1=1, P3=4, P4=28, P6=22.  
These lefts over will be use in round two (2) with same 
QT. 

6.1.1. Analysis 

Context switching: According to case1,  in classical RR, 
P1, P3, P4 and P6 having associated left over time of 1, 4, 
28 and 22 respectively, went for second round while the 
rest ran to completion in the first round. They displayed 
some level of multiprogramming in which some were 
unnecessary. What is the use of preempting P1 and P3 
having just a little left over time of 1 and 4 respectively? If 
P1 with burst time of 110 and P3 with burst time 113 will 
be allowed to run up to QT of 109 time unit in their first 
round, it does not make much sense to preempt these 
processes for just 1 and 4 left over time for P1 and P3 
respectively. It may not be a good practice to preempt a 
process which is very close to finishing its task. P1 and P3 
do not deserve to go for the next round. In other word, 
their switching time was not good at all. This problem is 
common in an ideal classical RR. Their average results are: 
AWT=509,         ATAT=617.71,                  CS=11 

6.2. DRRCP 

In DRRCP, QT is the same as the classical RR. That is: 
Quantum time (QT) = (110+89+113+137+86+131+95)/7 
=761/7 = 109. It only addition is that a process may run to 
completion even if it should have a left over time. Once its 
QT will allow up to 95 percent a process’ job to be 
executed, it will run to completion, otherwise it will be 
preempted. 
 

Method:  
Step1: Calculate 95% of each processes burst. 

P1=110, its 95% = 110*0.95=104.5,  P2=89, its 95%= 
89*0.95=84.6,  P3=113, its 95%=113*0.95=107.4,   
P4=137, its 95%=137*0.95=130.1,   P5=86, its 
95%=86*0.95=81.7,   P6=131, its 95%=131*0.95=124.5,   
P7=95, its 95%=95*0.95=90.3. 
Step2: Compare QT (109) with 95% of each processes 
burst. 
Once the QT is greater than or equal to 95 percent of the 
process’ burst, that process will be allowed to run to 
completion. In this case, it implies that P1, P2, P3, P5, and 
P7 will run to completion. But P4 and P6 will be 
preempted for the next round because QT is less than 95 
percent of each of their processes burst. In the case of P4 
and P6, the QT which is 109 will be use, leading to left 
over time of 28 and 22 for P4 and P6 round respectively. 
This will then be use in the second round. 

6.2.1. Analysis 

Context switching: According to case1, In DRRCP, P4 
and P6 are the only processes that went for second round. 
All the rest processes ran to completion in the first round. 
Surely, this takes care of P1 and P3 that went for second 
round in the classical RR which were considered 
unnecessary. It provides a better switching time for P1 and 
P3 by allowing them to run to completion. This solution is 
common with DRRCP. Their average results are: 
AWT=368.27,        ATAT=312,            CS=9 
 
Figure 1 below shows the Gantt between Classical RR and 
DRRCP of case 1. 
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Fig 2: Classical RR and DRRCP Gantt chart  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case2: 
Using mean=54 and deviation=32, the following processes 
and their associated CPU burst are generated.{P1=74, 
P2=62, P3=51, P4=61, P5=64, P6=58, P7=46} 
QT=(74+62+51+61+64+58+46)/7=59 
 
Classical RR: 
Context switching: P1, P2, P4 and P5 went for second 
round while the rest ran to completion in the first round. 
After the first round, P1 has left over time of 15, P2 has 3, 
P4 has 2 and P5 has 5. At least, looking at their left over 
time, P2 and P4 were not supposed to go for the second 
round. Their average results are:   
AWT=304.43,         ATAT=363.86,              CS=11 
 
DRRCP: 
Context switching: Only P1 and P5 went for second 
round while the rest ran to completion in the first round. 
The problem encountered for allowing P1 and P5 to go for 
next round in the classical RR is solve here. P2 and P4 
need not to go for next round with just left over time of 2 
and 3 time unit respectively. 
AWT=240.43,        ATAT=299.85,              CS=9  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Case3: 
Using mean=163 and deviation=76, the following 
processes and their associated CPU burst are generated. 
{P1=191, P2=187, P3=191, P4=219, P5=202, P6=178, 
P7=165} 
QT= (191+187+191+219+202+178+165)/7=190 
 
 

Classical RR: 
Context switching: Only P1, P3, P4 and P5 went for the 
next round having associated burst of 1, 1, 29 and 12 
respectively, while the rest ran to completion in the first 
round. Clearly, P1 and P3 were not supposed to go the 
second round. Their left over burst is too little which 
should have been completed in the first round. 
AWT=956.57,          ATAT=1147,              CS=11 
 
DRRCP: 
Context switching: Only P4 and P5 went for the next 
round while the rest ran to completion in the first round. 
The problem encountered for allowing P1 and P3 to go for 
next round in the classical RR is solve here. P2 and P4 
need not to go for next round with just left over time of 1 
for each. They ran to completion.               

AWT=696.86,              ATAT=887.29,             CS=9  

7. Description of the Simulation 
 

The simulator is designed using Visual Basic 6.0 as the programming language and was executed on windows 7operating 
system. The size of the ram used is 2.0GB, the speed is 1.56GHz and the size of the hard disk is 300GB. The simulator 
considers all processes to be in the ready queue and their arrival time set to be zero. Also, processes are considered to be of 
same priority. The simulator uses normal distribution function which requires three input parameters to generate processes 

Classical RR Gantt chart:  AWT=509,                        ATAT=617.71,     CS=11 

Round1 Round2 

0            109                     198                  307                   416            502                611           706   707  711  739   761 

 P1                     P2                      P3                       P4                    P5         P6               P7          P1    P3    P4    P6

D RRCP Gantt chart:  AWT=368.27,                        ATAT=477,     CS=9 

Round1 Round

0     110                 199                   312            421      507        616              711            739     761 

       P1  P2          P3                            P4                P5             P6     P7             P4       P6
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and their associated CPU burst. The input parameters are: mean (µ), standard deviation( )σ , and number of process. These 

parameters are variables, meaning they can assume any value. The maximum number of process is set to be 100 while the 
maximum number of the mean and standard deviation is set to be 1000 each. When the program is executing, it will request 
the user to supplier number of process, the mean and the standard deviation.  The simulator computes the average waiting 
time, average turnaround time, and number of context switching for each algorithm (Classical RR and DRRCP). The results 
of the experiments are given in the table and figure below when the simulator is run for 10 times with number of processes 
starting with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The simulator is able to find the average waiting time, average 
turnaround time and the number of context switch. Fig 3 below shows the interface of the simulator.
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Fig 3: Interface of the simulator 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1 

Simulation result between Classical RR and DRRCP 
 
No of Process 

 
Deviation 

 
Mean 

Classical RR DRRCP 
AWT ATAT CS AWT ATAT CS 

10 67 98 854.7000 995.0000 14 799.000 939.300
0 

13 

20 321 107 2792.700 3041.700 30 2597.70
0 

2846.70
0 

29 

30 131 307 7404.330 7777.270 44 6863.70
0 

7236.63
0 

40 

40 356 407 16752.18 17351.60 59 16189.0
8 

16788.5
0 

57 

50 543 589 30987.04 31841.02 76 29153.4
0 

30007.3
8 

72 

60 354 453 26860.93 27492.00 92 24069.2
0 

24700.2
7 

84 

70 754 687 50562.21 51606.37 105 46628.9
7 

47673.1
3 

98 

80 567 832 62758.11 63850.98 123 53881.9
0 

54974.7
6 

105 

90 765 876 78786.34 80052.39 135 74473.7
8 

75739.8
2 

128 

100 895 986 101629.4 103074.7
5 

152 95753.8
6 

97199.2
1 

145 
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Table 1 above shows that when the simulator is run for 10 
processes, using a deviation of 67 and mean of 98, the 
classical RR will have AWT to be 854.7 time unit, ATAT 
to be 995 time unit, and number of context switching to be 
14, while the DRRCP will have AWT to be 799, ATAT to 
be 939.3 and contexts switching to be 13. The procedure is 
repeated when number of process increases from 10 to 100 
with variable mean and standard deviation. The results 
gotten are recorded in table 1. The below charts of 
Average Waiting Time (AWT), Average Turnaround Time 
(ATAT) and number of context switching (CS) were 
generated from table 1. 
 
 
 
 
 
 
 
 
 

         
 
 
 
 

     Chart 1: average waiting time (AWT) graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
              Chart 2: average turnaround time (ATAT) graph 

 
 
 
 
 
 
 
 
 
 
 
              

        Chart 3: context switch graph   

From chart 1, 2, and 3 shown above, it is clear that 
DRRCP is a direct improvement of the classical RR. 
DRRCP minimizes average waiting time, average 
turnaround time and number of context switching than its 
classical RR counterpart. 

8. Why DRRCP is better than Classical RR 

DRRCP algorithm tries as much as possible to preserve the 
characteristics of the classical RR. It changes nothing but 
support the classical RR. The quantum time calculation 
and the operation are the same. The only addition to this 
algorithm is the ability to controlled unnecessary 
preemption so as to achieve optimal performance. On one 
hand, it may work exactly as classical RR, preempting 
processes whose CPU burst are above average. But on the 
other hand, processes that are due for preemption are 
executed to completion without being preempted. As long 
as 95 percent of a process job is executed, that process will 
not be preempted even if its QT has been exhausted. It may 
be considered as process blocking because process that is 
due for preemption may or may not be preempted for 
certain reason. The simple reason is that: a particular 
process that has executed 95 percent of its job, it may not 
be wise to be preempted. For example, consider a process 
with CPU burst of 89ms having a quantum time of 88ms. 
This process will be preempted after running for 88ms 
leaving left over time of 1ms. This does not make much 
sense. This is because if it must be allowed for that long 
time of 88ms, it should be allowed for just 1ms to run to 
completion so as to minimize average waiting time, 
average turnaround time and as well as reduce the cost of 
performing context switching.   
Another issue is a situation whereby a process will context 
switched itself. For example, let say P1=88ms and 
P2=89ms while QT=88ms. P1 will run to completion, P2 
will run for just 88ms with left over time of 1ms. This 
same P2 will have to context switched itself. That is, P2 
being the last and the only process will have to go for 
second round as a result of timer interrupt that will be 
generated. Even though its waiting time will not increase 
but the switching has now become an overhead.  
The reason for chosen DRRCP to be better than the 
classical RR is: given any dataset, DRRCP will perform 
the same or better than the classical RR. Mathematically, it 
can be stated as performance for DRRCP >= Performance 
of classical RR algorithm. The justification for this 
equation is that depending on the given dataset, DRRCP 
may work purely as classical RR. If the data set may not 
favor classical RR, it will adjust itself and perform better 
than classical RR. On a final note, the concept of DRRCP 
algorithm can also fit into any of the proposed dynamic RR 
CPU scheduling algorithms. 
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7. Conclusion 

This has demonstrated clearly why DRRCP is better than the classical RR. The QT is made dynamic for maximum 
improvement. By simply performing a checking, unnecessary context switching encountered in the classical RR are avoided. 
Through this simple technique, average waiting time, average turnaround time and context switching are greatly improved. 
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