

AAAA Formal Composition of a Distributed System Formal Composition of a Distributed System Formal Composition of a Distributed System Formal Composition of a Distributed System

with its with its with its with its Security PolicySecurity PolicySecurity PolicySecurity Policy

Wadie Krombi, Mohamed Mustapha Kabbaj and Mohammed Erradi

ENSIAS, Mohammed V-Souissi University
Rabat, Morocco

Abstract
Nowadays, information systems are becoming a vital and
strategic component of any organization. However, in most cases,
these systems are designed and implemented without taking into
consideration security aspects. To ensure a certain level of
security, the behavior of a system must be controlled by a
"security policy". The objective of this work is: Given a system S
and a security policy P how can we generate a system Sp which
is a secure version of S? Based on the fact that a security policy
is a set of rules, we propose an approach to build an automaton
modeling a security policy. Then we propose an approach for
modeling a system with the same formalism. Finally, we suggest
a composition model of a system with a security policy. The
suggested approach is illustrated using a firewall security policy
and a distributed system consisting of network elements (servers,
workstations …).
Keywords: Security Policy, System, Automata, Composition,
Firewall, Security Rule.

1. Introduction

Information systems are the nerve center of any modern
organization. However, in most cases, these systems are
designed and implemented without taking into
consideration security aspects. This makes them vulnerable
to attacks and intrusions that may affect their normal
functioning. So, we can easily recognize the importance of
providing these systems the appropriate level of protection
by establishing security policies. [1]
To ensure a certain level of security, the behavior of a
system must be controlled by a "security policy." The
security policy of a system specifies the set of laws, rules
and practices that regulate how sensitive information and
other resources are managed, protected and distributed
within a specific system. It shall identify the security
objectives of the system and the threats to the system. [2]
The ultimate objective of our work, given a system S and a
security policy P, is to generate a system Sp which is a
secure version of S (Fig.1). That’s why we need to develop
a formal and systematic approach to compose a system S
with a security policy P. Therefore, this composition must

ensure compliance of the system obtained from this
composition with the initial system and the security policy.

To do this, we propose to use the same formal model to
express both the system S and the security policy P. This
formalization will allow abstracting of the security policy,
managing its complexity, detecting and resolving conflicts
and ensuring that all security objectives are covered by the
measures previously identified. [3]
To solve this problem, we propose an approach based on
the following main steps:

• Modeling a security policy by an automaton
• Modeling a distributed system by a global

automaton
• Compose S and P to get Sp a secure system as a

result of applying the security policy to the initial
system.

The rest of this paper is organized as follows: Section 2
presents a state of the art on security policies modeling.
Section 3 begins by recalling some basics on firewalls and
automata and presents afterwards the security policy
transformation process to an automaton. Section 4 is
dedicated to the modeling of a system by an automaton. In
section 5 we propose a composition model of a system
with its security policy using the same “automata”
formalism. Finally, we conclude and propose some future
work.

Fig.1 Composition of a system and a security policy

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2. State of the art

Several research studies that address the network security
policies focus on firewalls. In [4], the authors propose the
"Diverse Firewall Design" method that has as its objective
the discovery of all functional discrepancies between
different implementations of a firewall security policy. The
fundamental data structure which is used to model this
policy is called "Firewall Decision Diagram" (FDD) [5].
FDD maps each packet to a decision by testing the packet
throughout the diagram from the root to a terminal node.
This indicates the decision to take by the firewall for the
current packet. Each non-terminal node in a FDD specifies
a test on a field in the packet, and each branch descending
from that node corresponds to the possible values of this
field.
In [6][7], the authors present a set of techniques and
algorithms that allow automatic discovery of anomalies in
the firewall security policy. The firewall security policy is
represented by a graph that is a tree with a single root
called "Policy tree" in [6] and "Decision tree" in [7], where
each node represents a field of the filtering rule; each
branch is a possible value of the field. Each path in the tree
begins with the root and ends with a leaf; it represents a
filtering rule in the security policy and vice versa. Rules
having the same field value related to a specific node share
the same branch that represents this value. The leaves are
actions that can be executed (Accept, Deny).
In [8], the authors introduce Fireman, a "toolkit" of static
analysis for modeling and analysis of firewalls. By treating
firewall configurations as specialized programs, Fireman
applies a set of static analysis techniques to examine the
configuration errors such as policy violations and
inconsistencies both within an individual or distributed
firewall. Fireman is implemented by modeling firewall
rules using “Binary Decision Diagrams” (BDD) [9] to
represent predicates and perform all the set of the available
operations.
In these studies no distinction was made between the
system (to secure) and the security policy to be applied.
Also, these proposed approaches do not address the formal
specification of the system from the functional point of
view.
In [10], the authors propose a framework that makes it
possible to automatically generating test sequences to
validate the conformance of a security policy. In this
framework the behavior of the system, without taking into
account aspects related to security, is separately specified
as an extended finite state machine (Extended Finite States
Machine - EFSM) [11] while the security policy is
specified based on another formalism which is the OrBAC
model [12].

3. Modeling a security policy

3.1 Firewalls and automata

Firewall is one of the critical and important security
components of information systems; it is a system that
protects resources of a private network against intrusions
or threats that may come from other networks (eg Internet).
A firewall is designed to logically separate networks with
different levels and different security requirements. The
separation is usually done on the basis of rules governing
permitted communications between networks.
The behavior of a firewall is controlled by its security
policy which is represented by an ordered list of security
rules that defines the actions to execute each time a packet
passes through the firewall. A packet is defined as a tuple
of a finite number of network fields such as source IP
address, destination IP address, port number, protocol, etc.
A firewall security rule (also called filtering rule) is
expressed in the form: if certain conditions are met, an
action must be executed to allow access or to refuse it. A
rule can be represented as "Condition => Action":

• The "Condition" field is a boolean expression
applied to the various fields of the packet. It consists
of a set of filtering fields. These are the possible
values of the corresponding fields in the packets of
the current network traffic that matches this rule.

• The "Action" field can be "Accept" which allows the
packet through the firewall or "Deny" which blocks
the packet.

The crossing of a packet is allowed or blocked by a
specific rule if the header information’s of the packet
match to all rule fields. Otherwise, the next rule is
examined and the process is repeated until a security rule
that matches is found. If no rule matches the packet that
passes through the firewall, a default policy is applied.

A finite state automaton (more briefly, automaton) can be
formally defined by A=(Σ, Q, q0, Qf,δ), where Σ is a finite
set of events (also called alphabet), Q is a finite set of
states, q0 is the initial state and Qf is the set of final states,
δ:Q×Σ→Q is a transition function, where δ(q,σ)=r
means that the execution of the event σ from state q leads
to state r [13]. We use the following two notations:

• For a sequence of events λ=σ1,…,σp, δ(q,λ)=r
means that if q is the current state, then the
consecutive execution of σ1,…,σp leads to state r;

• For a set of events S={σ1, … ,σp}, δ(q,S)=r means
that if q is the current state, then every event of S
leads to state r.

An automaton A can be represented by a graph whose
nodes and arcs represent the states and the transitions of A,
respectively. An arc from node q to node r labeled by the
event σ represents the transition δ(q,σ)=r .

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Several arcs labeled σ1,…,σn linking the same pair of
states (q,r) can be represented by a single arc labeled by
the set {σ1,…,σn }. A finite event sequence (more briefly,
sequence) is accepted by A if it starts in the initial state q0
and terminates in any state of A. The language of A,
denoted LA, is the set of sequences accepted by A.

3.2 Basic principle of the modeling approach

As mentioned above, when a firewall receives a packet, it
compares the value of each field in the packet header with
the one corresponding to the same field in the security
policy. Thus, the firewall compares the information in the
packet header fields and those filtering the current rule. If
there is a match then the action of this rule is applied to
this packet. Otherwise, the firewall examines the packet by
the following rule and the process is repeated until a
security rule that matches the packet will be found.
Let Σ the alphabet consisting of the digits [0…9] and the
symbol "." . L(IP) the IP addresses language whose words
are of the form "a.b.c.d" with a,b,c,d ∈ [0,255]. L(Port)
the port language whose words are numbers between 0 and
62535. L(Protocol) the protocols language whose words
representing a protocol (TCP, UDP…).
Let L(Packet) the language defined as the concatenation of
L(IP) L(IP) L(Port) L(Protocol). A packet whose header is
composed of a source IP address, destination IP address,
port number and protocol is a word of L(Packet).
Let L(Packet-Ri) the language defined as the concatenation
L(IPsrc-Ri) L(IPdst-Ri) L(Port-Ri) L(Protocol-Ri), with:

• L(IPsrc-Ri) the subset of words in L(IP) consisting
of IP addresses that match the filtering field
condition of the source IP address field in rule Ri.

• L(IPdst-Ri) the subset of words in L(IP) consisting
of IP addresses that match the filtering field
condition of the destination IP address field in Ri.

• L(Port-Ri) the subset of words in L(Port) consisting
of port numbers that match the filtering field
condition of the port number field in Ri.

• L(Protocol-Ri) the subset of words in L(Protocol)
consisting of protocols that match the filtering field
condition of the protocol field in Ri.

A packet whose header is respectively composed of a
source IP address, destination IP address, port number and
protocol that correspond to filtering fields of a rule Ri is a
word belonging to language L(Packet-Ri). The condition of
a filtering field may be either a single value or a range of
values or "Any" which indicates any value.
The basic idea behind modeling a security policy by an
automaton is as follows: in a given state corresponding to a
network filtering field (IPsrc, IPdst, Port or Protocol), the
automaton read a value of a network field. The label of this
transition is in fact the condition which permits the
transition from one state to another.

A security rule Ri of a firewall can be modeled by the
automaton shown in Fig.2. This automaton recognizes
words (packets) of L(Packet-Ri) and after “consuming”
them, it ends up in a final state that indicates the action to
execute for this packet. The other words (packets) of
L(Packet) not belonging to the language L(Packet-Ri)
should be examined by the following rule Ri+1.
We call "positive transition" a transition labeled by the
filtering condition related to a filtering field of a rule. We
call "negative transition" a transition labeled by the
complement of filtering condition related to a filtering field
of a rule. The label of a negative transition will be denoted
by "! Condition" We call "positive path" of rule Ri the
only path from initial state of the rule Ri to its final state
that indicates the action to execute if a packet matches rule
Ri. This path is a sequence of positive transitions. We call
"negative path" of rule Ri a path from initial state of rule
Ri to initial state of rule Ri+1. This path has a single
negative transition whose label is a non verified condition
by one of the filtering fields of rule Ri. A negative path
may also include special states and transitions which we
call "consumption states and transitions". The condition of
a consumption transition is always verified and is labeled
"Any". The usefulness of consumption states and
transitions will be described later.

Suppose that the firewall is about to inspect a given packet
belonging to L(Packet) whose header is composed of
values [IPsrc-Packet,IPdst-Packet,Port-Packet,Protocol-
Packet]. Suppose also that the firewall is at the stage of
analyzing this packet by rule Ri. If we suppose, for
example, that IPsrc-Packet does not belong to L(IPsrc-Ri)
then: whatever IPdst-Packet, Port-Packet and Protocol-
Packet values, the current packet does not match rule Ri.
Thus, according to the firewall filtering process, the packet

Fig. 2 Automaton modeling Rule Ri

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 10

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Policy with one rule
IPsrc IPdst Port Protocol Action
Any Any Any Any Action-R1

Fig. 3 Automaton modeling Table 1 policy

Fig. 4 Reduced automaton modeling Table 1 policy

Table 2: Policy with two rules
IPsrc IPdst Port Protocol Action

IPsrc-R1 IPdst-R1 Port-R1 Protocol-R1 Action-R1
Any Any Any Any Action-R2

Fig. 5 Automaton modeling Table 2 policy

must then be examined by the following rule Ri+1. Passing
from rule Ri to rule Ri+1 can be modeled by a negative
path consisting of the following transitions and states:

• A negative transition from the IPsrc state of rule Ri
to a new consumption state IPdst. This transition is
labeled "! IPsrc-Ri". This label describe the non-
membership of IPsrc-Packet to L(IPsrc-Ri).

• A consumption transition from the last created
consumption state IPdst to a new consumption state
Port.

• A consumption transition from the last created state
Port to a new consumption state Protocol.

• A consumption transition from the last created state
Protocol to first state of the following rule Ri+1.

Consumption states and transitions are created when a
packet does not match a rule Ri and must be examined by
the following rule Ri+1. Their role is to ensure that a
negative path that connects the rule Ri to the rule Ri+1
passes through “exactly” the same states sequence as the
positive path of the rule Ri and in the same order. Thus,
after inspecting the state related to the last filtering field of
the packet, the automaton is in one of the following states:

• In the final state Action-Ri if the packet matches Ri.
• In the initial state of rule Ri+1 if one of the fields of

the packet don’t match a filtering condition of Ri.

3.3 Construction process of an automaton from a
security policy

In this section we will describe the construction process of
an automaton from a security policy. We assume that the
policy has, necessarily, a "default rule" (the last one).

3.3.1 Policy with one rule

In this case, the policy is only constituted of the default
rule (Table 1). Fig.3 presents the automaton corresponding
to the policy of Table 1.

This policy can be interpreted as follows: for a packet
received by firewall, whatever IPsrc, IPdst, Port and
Protocol values, the action to execute is "Action-R1".
Thus, upon receiving a packet by firewall, it has no need to
check any value of rule filtering fields and the automaton
goes directly to final state "Action-R1". Therefore, the

default rule can be modeled by the reduced automaton
shown in Fig.4.

3.3.2 Policy with two rules

In the case of a policy with two rules (Table 2), according
to the process described earlier to model a security policy
and on modeling default rule, the corresponding automaton
of this policy is shown in Fig.5.

Recall that consumption states and transitions are created
when a packet does not match a rule Ri and must be
examined by the following rule Ri+1. But in this case the
following rule R2 is the default one. So when a field in the
packet does not match a filtering condition of the current
rule R1 the automaton changes state via a negative
transition to the final state Action-R2. Security policy of
Table 2 can thus be modeled by the reduced automaton
represented in Fig.6.

Fig. 6 Reduced automaton modeling Table 2 policy

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 11

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 3: Policy with tree rules
IPsrc IPdst Port Protocol Action

IPsrc-R1 IPdst-R1 Port-R1 Protocol-R1 Action-R1
IPsrc-R2 IPdst-R2 Port-R2 Protocol-R2 Action-R2

Any Any Any Any Action-R3

Table 4: Firewall security policy of the company

IPsrc IPdst Port Protocol Action
Any 212.217.65.201 80 TCP Accept

192.168.10.0/24 81.10.10.0/24 Any Any Deny
194.204.201.0/28 212.217.65.202 21 Any Accept
192.168.10.0/24 Any Any Any Accept

Any Any Any Any Deny

3.3.3 Policy with more than two rules

In the case of a policy with m rules and m>2, the
automaton is obtained using the following process:

• Creating and concatenating of partial automata of
each rule with the following one until rule Rm-1
(using the process described in Section 3.2 and
illustrated in Fig.2)

• Creating positive path of rule Rm-1
• Creating negative transitions of rule Rm-1 that lead

to the default action of the last rule Rm (using the
process described in Section 3.3.1 and illustrated in
Fig.4).

Table 3 is an example of a policy with rules 3 and Figure 7
shows the equivalent automaton.

3.4 Case study

Consider a company network which is connected to the
internet and we want to protect it with a firewall (Fig.8).
The internal network is composed of two segments: The
LAN users (192.168.10.0/24) and the DMZ hosting the
Web server (212.217.65.201) and FTP server

(212.217.65.202). The company has a branch office
network (194.204.201.0/28) connected to company
headquarters internal network through internet.

This company security policy requirements are as follows:

• Access to the Web server is allowed to all.
• FTP access is allowed only from company’s internal

LANs (headquarters and branch office LANs).
• Users on the internal LAN of the company's

headquarters are allowed to access to the entire
internet network with the exception of the malicious
network 81.10.10.0/24.

Table 4 represents firewall security rules corresponding to
the above security requirements of the company.

By applying automaton construction process to Table 4
security policy, we obtain the equivalent automaton of this
policy (Fig. 9). Thus, this automaton is able to recognize
what action to execute for a packet by performing: at least
3 transitions if the packet matches the rule R1 and
maximum 9 transitions if the packet matches the last
default rule R5. Each transition corresponds in fact to a test
done over a filtering condition of a security rule. For the
same studied example, a packet filtered by the
conventional process requires firewall to perform at least 4
tests if the packet matches the rule R1 and up to 25 tests if
the packet matches the last default rule R5. We deduce that
by using our automaton model, the load generated by the
filtering process of the firewall studied in this example can
be reduced by 25% to 64%.

Fig. 7 Automaton modeling Table 3 policy

Fig. 8 Example of company network secured by a firewall

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 12

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 11 A system component automaton in Server mode

4. A client-server system modeling

In this paper, a system is considered as a set of network
components which may communicate with each other. We
also limit the scope of this paper to TCP/IP
communications according to Client-Server model.
The objective in this section is to be able to model a
system of N components and its overall behavior in order
to know the exact state of each component at a given time.
To do this, we will begin by studying a basic system which
consists of two components one as a client and the other as
a server. Then we will extend our study in order to be able
to generalize the modeling of a system of N components
which can be at the same time in Client mode and/or in
server mode, representing the real behavior of a system.

4.1 Modeling communication of two components

4.1.1 Construction process

In order to model the process of establishing a client-server
communication between two components of a system, we
have to model:

• The client process of a system component
• The server process of a system component
• The establishing communication process between

the client and the server components
We can model the Client and Server process of a system
component by automata describing their different possible
states and transitions that can trigger a change of state of
such a component.

According to state diagram of a TCP connection [14]:
• As a client, a system component can be in one of the

following states:
o « CLOSED »: is a fictional state, it represents the

state when there is no connection.
o « SYN-SENT » (or « SYN-CLIENT » for client

synchronization): represents waiting for a
matching connection request after having sent a
connection request (SYN).

o « ESTABLISHED » (or « CLIENT »): represents
an open connection as a client with a server.

• As a server, a system component can be in one of the
following states:
o « CLOSED »
o « LISTEN » : represents waiting for a connection

request from a client
o « SYN-RECEIVED » (or « SYN-SERVER » for

server synchronization): represents waiting for a
confirming connection request acknowledgment
after having both received and sent a connection
request.

o « ESTABLISHED » (or « SERVER »): represents
an open connection as a server with a client.

We can define transitions that trigger state changes of a
system component based on those of the state diagram of a
TCP connection.
Figures 10 and 11 show, respectively, automata modeling
the behavior of a component of a system: the first one as a
client and the second one as a server.

Fig. 10 A system component automaton in Client mode

Fig. 9 Automaton modeling Table 4 policy

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 13

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 5: Couples types representing a state in Fig. 17 automaton
Name Server state Client state

Couple1 LISTEN SYN-CLIENT
Couple2 SYN-SERVER SYN-CLIENT
Couple3 SYN-SERVER CLIENT
Couple4 SERVER CLIENT

To obtain the automaton modeling the communication
between two components one as a client and the other as a
server it is necessary to compose both automata modeling
the behavior of each one of these components separately.
To achieve this goal, first we will use Promela language
for formal description of client and server processes
modeled by the automata of Figures.10 and 11, then using
the Spin tool we will get necessary sequencing events for
establishing communication between client and server
afterwards we will deduct from it the automaton modeling
the overall behavior of a communication between a client
and a server.
Figures 12 and 13 show, respectively, the Promela formal
description of client (server) process of a system
component. Note that the status of the client (server)
component is designated by the "StateC" ("StateS")
variable. Recall that in Promela, the symbols "!" And "?"
mean, respectively, sending and receiving messages using
the specified parameter set before the channel symbol.

After initialization of both client and server processes by
Promela by the execution of run(C) and run(S) commands,
we can obtain the communication process between client
and server using Spin. Figure 14 shows the output file
describing the sequencing of the communication process
between client and server.

From this sequence we can now obtain the automaton
modeling the overall behavior of a communication
between a client and a server (Fig. 15).

4.1.2 Automaton interpretation

A state of the automaton is represented by a couple which
gives indication of the state of the server component and
the client component during communication.
In the first two states of this automaton, at least one of the
two components of the system is inactive (CLOSED). In
both states, no communication can be initiated between
these two components.
The remaining other states of the automaton represent each
one a couple indicating a communication step between two
"active" components of the system. So we can describe the
following couples: (Table 5). Note that when an “active”
component of the system is not part of a communication, it
is necessarily in the "LISTEN" state.

Fig. 13 Formal description of the Server process in Promela

Fig. 14 Output file describing the client-server communication
process using Spin

Fig. 15 Automaton modeling a client-server communication

Fig. 12 Formal description of the Client process in Promela

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 14

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4.2 Automaton modeling a system of two
components

Since the system is a set of several components that can
communicate with each other and that each communication
is identified by two components of the system, then a given
state in the automaton that will model the overall behavior
of the system will represent all possible states of
communication between its various components.
Thus, a given state of the system must be able to indicate:

• The list of all components of the system that are in a
"LISTEN" state, which we call "Listeners"

• The list of all type 1 system components couples in
which the server is in a "LISTEN" state and the
client is in a "SYN-CLIENT" state, which we call
"List-1".

• The list of all type 2 system components couples in
which the server is in a "SYN-SERVER" state and the
client is in a "SYN-CLIENT" state, which we call
"List-2".

• The list of all type 3 system components couples in
which the server is in a "SYN-SERVER" state and the
client is in a "CLIENT" state which we call "List-3".

• The list of all type 4 system components couples in
which the server is in a "SERVER" state and the
client is in a "CLIENT" state which we call "List-4".

We can deduce that a given state of the system is
completely identified by the knowledge of the elements
that comprise the five lists previously defined.
Let us introduce Tsys the 5-tuple consisting of these lists,
we have: Tsys = (Listeners, List-1, List-2, List-3, List-4).
In a state of communication that represents the server S in
a "LISTEN" state, the current server S is added to the
"Listeners" list and the system state is identified by the 5-
tuple of lists Tsys and we have:

• Tsys .Listeners= Tsys .Listeners.ADD(S)= S
• Tsys .List-1=null
• Tsys .List-2=null
• Tsys .List-3=null
• Tsys .List-4=null

Note Update-Sys-0 the function which allows this first
state change in the system (ie in the 5-tuple Tsys).
According to the automaton, this function is executed and
provides a state change to the system whenever a transition
"Passive open" is triggered.
In a state of communication that represents a type 1 couple
(S,C), this one is added to « List-1 » and « Listeners »
contains always the server S and the system state is
identified by the new values of Tsys and we have:

• Tsys .Listeners= S
• Tsys .List-1= Tsys .List-1.ADD(S,C)=(S,C)
• Tsys .List-2=null
• Tsys .List-3=null
• Tsys .List-4=null

Note Update-Sys-1 the function which allows this second
state change in the system. According to the automaton,
this function is executed and provides a state change to the
system whenever a transition "SYN" is triggered.
For every i=2,..,4: in a state of communication that
represents a type i couple (S,C), this one is added to List-i
and the type ‘i-1’ couple (S,C) is deleted from List-‘i-1’,
this is necessary to represent the state change made in a
communication between two components of the system
and we particularly have:

• Tsys .List-‘i-1’= Tsys .List-‘i-1’.DELETE(S,C)
• Tsys .List-i= Tsys .List-i.ADD(S,C)=(S,C)

Note Update-Sys-2 (respectively Update-Sys-3, Update-
Sys-4) the function which is executed and provides a state
change to system whenever a transition "?SYN!SYN-ACK"
(respectively "?SYN-ACK!ACK", "?ACK") is triggered.
In the particular case of a system consisting of two
components, system automaton can be obtained from the
one modeling communication between two components by
carrying out a special “renaming” operation of its states by
the use of the five functions we just define and which
manipulate the global state of the system which is
completely identified by the knowledge of the Tsys
elements. Apart from the initial state that represents the
system in a state of inactivity, any state in the new system
automaton is now labeled with a function that is executed
after a given transition and which change the overall state
of the system by changing Tsys elements. (Fig. 16)

4.3 Automaton modeling a system of N components

To obtain the automaton modeling a system comprised of
N components, we just need to take as basis the one
modeling a system of two components and supplement it
by new transitions which can indicate that at any time and
in any state of the system: any component may initiate
several simultaneous communication with other
components as client, or that a component can be a server
for multiple clients at once.

Fig. 16 Automaton modeling a system of two components

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 15

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 17 Automaton modeling a system of N components

In order to better justify this, consider the example of a
state of communication between two components of the
system. Suppose that we are in the Update-SYS-1 state and
another server changes state from the "CLOSED" state to
the "LISTEN" one by the "Passive open" transition, then
we can notice that if we want this situation to be
represented in the automaton we want to build, it is
necessary that the new automaton contains a transition
"Passive open" from the "Update-Sys-1" state to the
"Update-Sys-0" state. This transition does not exist in the
automaton of two components (Fig. 16).
So, to be able to model all possible cases of
communications between several components of the
system, the global automaton modeling the system must be
supplemented by transitions that reflect the change of state
of the system to any other one. The construction of this
automaton is done according to the following algorithm.

Input: Old_Aut (Initial automaton of two components)
Output: New_Aut (Resulting automaton of N components)
BEGIN
New_Aut=Old_aut
Old_States=List of all states of Old_Aut
Old_Transtions=List of all transitions of Old_Aut
FOR every transition T of Old_Transitions DO
 FOR every state S of Old_States DO
 IF (S ≠ T.start) DO
 New_T=new Transition
 New_T.start=S
 New_T.end=T.end
 New_T.Label=T.Label
 New_Aut.ADD_Transition(New_T)
 END-IF
 END-FOR
END-FOR
END

By applying this algorithm to Fig. 16 automaton we obtain
the one modeling a system of N components. (Fig.17)

5. Composing a system and a security policy

At this stage we are able to model by the same formalism
of automata: a security policy and the behavior of a
system. We propose now to model the composition of a
system with a security policy, more precisely we propose
to model a given system controlled by a given security
policy by the same formalism of automata.
In the following, for the sake of simplicity and without loss
of generality, we assume that only the TCP protocol is
used. TCP is "connection-oriented protocol". This means
that when a packet is sent, it has information indicating it is
the first packet of a given communication or if it is a suite
to a previously received packet.
In [15] an example is given to explain this aspect of TCP
connections. In Figure 18, the host whose IP address is
192.168.1.1 initiated communication with the one whose
IP address is 1.2.3.4. The corresponding packet then
contains “SYN” flag. Packets following this first exchange
will all contain “ACK” flag. In the following, we will not
specify connection flags (SYN, ACK) and will consider
that, in the case of firewall filtering rules, only
authorizations related to connections initialization are
specified. The corresponding "replies" packets are
implicitly accepted, thereby filtering rules are supposed
being applied to packets with the SYN flag and is expected
to present a default rule for packets with the ACK flag.

From this last assumption, we can deduce that in order to
obtain the automaton modeling the composition Sp of a
system S and a security policy P, we need simply to
express the fact that the security policy is controlling
“SYN” transitions of the automaton S. Thus, any
connection request (SYN Send) initiated by a client
component of the system addressed to a server component
of this same system will not be directly addressed to the
destination component (the server), it will first be relayed
to the automaton of the security policy for analysis: if at
the end of this analysis the connection request is authorized
by the security policy P then the connection establishment
process continues normally in the automaton of the system
S. Otherwise, the connection establishment process is
interrupted and can’t be continued in the system.
The automaton Sp modeling the system S secured by the
security policy P is obtained by applying the following
algorithm to S and P. Figure 19 illustrates the result of
applying the algorithm to a SYN transition.

Fig. 18 Example of a TCP request for connection establishment

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 16

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Input: System S, Security policy P
Output: Secure system Sp
BEGIN
Sp=S
FOR every transition T of S DO
 IF (T.label=SYN) DO
 New_T1=new Transition
 New_T1.start=T.start
 New_T1.end=P.Initial_State
 New_T1.Label=SYN
 Sp.ADD_Transition(New_T1)
 New_T2=new Transition
 New_T2.start=P.Final_Accept_State
 New_T2.end=T.end
 New_T2.Label=SYN
 Sp.ADD_Transition(New_T2)
 Sp.DELETE_Transition(T)
 END-IF
END-FOR
END

6. Conclusion and future work

The overall objective of our work is to model a system S
and its security policy P by the same formalism of
automata and then compose both of them in order to
generate a new System Sp which is a secure version of S in
conformance to P. Such a separation between the system
specification and the security policy requirements allows in
one hand the improvement of systems scalability and in the
other hand the reuse of security policies.
In this work we showed how to express a security policy as
an automaton. We then proposed a model of a system
comprised of several network components using the same
automata formalism having as a basis the TCP state
diagram. Finally, we showed how it is possible to compose
a system and a security policy in order to obtain as a result
a secured version of this system controlled by this security
policy still using the same automata formalism.
By combining the results obtained in this work and a
judicious use of the theory of automata richness and rigor,
we consider as future work to study other aspects related to
security of systems, such as: how to model communication
between components belonging to different systems which
are separately controlled by different and independent
security policies. Once the modeling assumed to be
realized, it would be interesting to study how to ensure that
such communication is in conformance with the various
security policies that control these different systems.

References
[1] N. Dausque, “PSSI & CAPSEC : Politique de Sécurité des

Systèmes d’Information & Comment Adapter une Politique
de Sécurité pour les Entités du CNRS,” CNRS/UREC for
CAPSEC group, Mars 2005

[2] “Information Technology Security Evaluation Criteria
(ITSEC)”, Office for Official Publications of the European
Communities, Luxembourg, p.20, v1.2, June 1991

[3] A. Baina, “Contrôle d'Accès pour les Grandes
Infrastructures Critiques” PhD thesis, University of
Toulouse, September 2009

[4] A. Liu et M. Gouda, “Diverse Firewall Design,” IEEE
Transactions on parallel and distributed systems, vol. 19,
no. 8, August 2008

[5] A. Liu et M. Gouda, “Structured Firewall Design,”
Computer Networks: The International Journal of Computer
and Telecommunications Networking, Volume 51, Issue 4,
Pages 1106-1120, Mars 2007

[6] E. Al-Shaer et H. Hamed, “Modeling and Management of
Firewall Policies,” IEEE Transactions on Network and
Service Management, Volume 1-1, April 2004

[7] K. Karoui, F. B. Ftima, and H. B. Ghezala, “Formal
Specification, Verification and Correction of Security
Policies Based on the Decision Tree Approach,”
International Journal of Data & Network Security, vol. 3,
no. 3, pp. 92–111, August 2013.

[8] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, P. Mohapatra,
“FIREMAN: A Toolkit for FIREwall Modeling and
Analysis,” pp.199-213, IEEE Symposium on Security and
Privacy, May 2006

[9] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on Computers,
vol. 35, no. 8, 1986.

[10] W. Mallouli, J. Orset, A. Cavalli, N. Cuppens, F. Cuppens,
“A Formal Approach for Testing Security Rules,”
SACMAT'07 Proceedings of the 12th ACM symposium on
Access control models and technologies, Sophia Antipolis,
France, June 2007.

[11] D. Lee et M. Yannakakis, “Principles and methods of
testing finite state machines - A survey,” In Proceedings of
the IEEE, volume 84, pages 1090–1126, 1996.

[12] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat,
F. Cuppens, Y. Deswarte, A. Miège, C. Saurel, G.
Trouessin. “OrBAC : un modèle de contrôle d'accès basé sur
les organisations,” Cahiers francophones de la recherche en
sécurité de l'information, CRIC, University of Montpellier I,
n° II, pp.30-43, 2003.

[13] L. Maranget, “Cours de compilation,” Ecole polytechnique,
pages 49–66, 2004-2006.

[14] “Transmission Control Protocol, DARPA Internet Program
Protocol Specification”, RFC 793, September 1981.

[15] T. Bourdier, “Méthodes algébriques pour la formalisation et
l’analyse de politiques de sécurité », PhD thesis, Henri
Poincare University, October 2011.

Fig. 19 Result of applying the algorithm to a SYN transition

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 17

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

