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Abstract 
Nowadays, information systems are becoming a vital and 
strategic component of any organization. However, in most cases, 
these systems are designed and implemented without taking into 
consideration security aspects. To ensure a certain level of 
security, the behavior of a system must be controlled by a 
"security policy". The objective of this work is: Given a system S 
and a security policy P how can we generate a system Sp which 
is a secure version of S? Based on the fact that a security policy 
is a set of rules, we propose an approach to build an automaton 
modeling a security policy. Then we propose an approach for 
modeling a system with the same formalism. Finally, we suggest 
a composition model of a system with a security policy. The 
suggested approach is illustrated using a firewall security policy 
and a distributed system consisting of network elements (servers, 
workstations …). 
Keywords: Security Policy, System, Automata, Composition, 
Firewall, Security Rule. 

1. Introduction 

Information systems are the nerve center of any modern 
organization. However, in most cases, these systems are 
designed and implemented without taking into 
consideration security aspects. This makes them vulnerable 
to attacks and intrusions that may affect their normal 
functioning. So, we can easily recognize the importance of 
providing these systems the appropriate level of protection 
by establishing security policies. [1] 
To ensure a certain level of security, the behavior of a 
system must be controlled by a "security policy." The 
security policy of a system specifies the set of laws, rules 
and practices that regulate how sensitive information and 
other resources are managed, protected and distributed 
within a specific system. It shall identify the security 
objectives of the system and the threats to the system. [2] 
The ultimate objective of our work, given a system S and a 
security policy P, is to generate a system Sp which is a 
secure version of S (Fig.1). That’s why we need to develop 
a formal and systematic approach to compose a system S 
with a security policy P. Therefore, this composition must 

ensure compliance of the system obtained from this 
composition with the initial system and the security policy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To do this, we propose to use the same formal model to 
express both the system S and the security policy P. This 
formalization will allow abstracting of the security policy, 
managing its complexity, detecting and resolving conflicts 
and ensuring that all security objectives are covered by the 
measures previously identified. [3] 
To solve this problem, we propose an approach based on 
the following main steps:  

• Modeling a security policy by an automaton 
• Modeling a distributed system by a global 

automaton 
• Compose S and P to get Sp a secure system as a 

result of applying the security policy to the initial 
system. 

The rest of this paper is organized as follows: Section 2 
presents a state of the art on security policies modeling. 
Section 3 begins by recalling some basics on firewalls and 
automata and presents afterwards the security policy 
transformation process to an automaton. Section 4 is 
dedicated to the modeling of a system by an automaton. In 
section 5 we propose a composition model of a system 
with its security policy using the same “automata” 
formalism. Finally, we conclude and propose some future 
work. 

 

Fig.1 Composition of a system and a security policy 
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2. State of the art 

Several research studies that address the network security 
policies focus on firewalls. In [4], the authors propose the 
"Diverse Firewall Design" method that has as its objective 
the discovery of all functional discrepancies between 
different implementations of a firewall security policy. The 
fundamental data structure which is used to model this 
policy is called "Firewall Decision Diagram" (FDD) [5]. 
FDD maps each packet to a decision by testing the packet 
throughout the diagram from the root to a terminal node. 
This indicates the decision to take by the firewall for the 
current packet. Each non-terminal node in a FDD specifies 
a test on a field in the packet, and each branch descending 
from that node corresponds to the possible values of this 
field. 
In [6][7], the authors present a set of techniques and 
algorithms that allow automatic discovery of anomalies in 
the firewall security policy. The firewall security policy is 
represented by a graph that is a tree with a single root 
called "Policy tree" in [6] and "Decision tree" in [7], where 
each node represents a field of the filtering rule; each 
branch is a possible value of the field. Each path in the tree 
begins with the root and ends with a leaf; it represents a 
filtering rule in the security policy and vice versa. Rules 
having the same field value related to a specific node share 
the same branch that represents this value. The leaves are 
actions that can be executed (Accept, Deny). 
In [8], the authors introduce Fireman, a "toolkit" of static 
analysis for modeling and analysis of firewalls. By treating 
firewall configurations as specialized programs, Fireman 
applies a set of static analysis techniques to examine the 
configuration errors such as policy violations and 
inconsistencies both within an individual or distributed 
firewall. Fireman is implemented by modeling firewall 
rules using “Binary Decision Diagrams” (BDD) [9] to 
represent predicates and perform all the set of the available 
operations. 
In these studies no distinction was made between the 
system (to secure) and the security policy to be applied. 
Also, these proposed approaches do not address the formal 
specification of the system from the functional point of 
view. 
In [10], the authors propose a framework that makes it 
possible to automatically generating test sequences to 
validate the conformance of a security policy. In this 
framework the behavior of the system, without taking into 
account aspects related to security, is separately specified 
as an extended finite state machine (Extended Finite States 
Machine - EFSM) [11] while the security policy is 
specified based on another formalism which is the OrBAC 
model [12]. 

3. Modeling a security policy 

3.1 Firewalls and automata 

Firewall is one of the critical and important security 
components of information systems; it is a system that 
protects resources of a private network against intrusions 
or threats that may come from other networks (eg Internet). 
A firewall is designed to logically separate networks with 
different levels and different security requirements. The 
separation is usually done on the basis of rules governing 
permitted communications between networks. 
The behavior of a firewall is controlled by its security 
policy which is represented by an ordered list of security 
rules that defines the actions to execute each time a packet 
passes through the firewall. A packet is defined as a tuple 
of a finite number of network fields such as source IP 
address, destination IP address, port number, protocol, etc. 
A firewall security rule (also called filtering rule) is 
expressed in the form: if certain conditions are met, an 
action must be executed to allow access or to refuse it. A 
rule can be represented as "Condition => Action": 

• The "Condition" field is a boolean expression 
applied to the various fields of the packet. It consists 
of a set of filtering fields. These are the possible 
values of the corresponding fields in the packets of 
the current network traffic that matches this rule. 

• The "Action" field can be "Accept" which allows the 
packet through the firewall or "Deny" which blocks 
the packet.  

The crossing of a packet is allowed or blocked by a 
specific rule if the header information’s of the packet 
match to all rule fields. Otherwise, the next rule is 
examined and the process is repeated until a security rule 
that matches is found. If no rule matches the packet that 
passes through the firewall, a default policy is applied. 
 
A finite state automaton (more briefly, automaton) can be 
formally defined by A=(Σ, Q, q0, Qf,δ), where Σ is a finite 
set of events (also called alphabet), Q is a finite set of 
states, q0 is the initial state and Qf is the set of final states, 
δ:Q×Σ→Q is a transition function, where δ(q,σ)=r  
means that the execution of the event σ from state q leads 
to state r [13]. We use the following two notations:  

• For a sequence of events λ=σ1,…,σp, δ(q,λ)=r 
means that if q is the current state, then the 
consecutive execution of σ1,…,σp leads to state r;  

• For a set of events S={σ1, … ,σp}, δ(q,S)=r means 
that if q is the current state, then every event of S 
leads to state r. 

An automaton A can be represented by a graph whose 
nodes and arcs represent the states and the transitions of A, 
respectively. An arc from node q to node r labeled by the 
event σ represents the transition δ(q,σ)=r .  
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Several arcs labeled σ1,…,σn linking the same pair of 
states (q,r) can be represented by a single arc labeled by 
the set {σ1,…,σn }. A finite event sequence (more briefly, 
sequence) is accepted by A if it starts in the initial state q0 
and terminates in any state of A. The language of A, 
denoted LA, is the set of sequences accepted by A. 

3.2 Basic principle of the modeling approach 

As mentioned above, when a firewall receives a packet, it 
compares the value of each field in the packet header with 
the one corresponding to the same field in the security 
policy. Thus, the firewall compares the information in the 
packet header fields and those filtering the current rule. If 
there is a match then the action of this rule is applied to 
this packet. Otherwise, the firewall examines the packet by 
the following rule and the process is repeated until a 
security rule that matches the packet will be found. 
Let Σ the alphabet consisting of the digits [0…9] and the 
symbol "." . L(IP) the IP addresses language whose words 
are of the form "a.b.c.d" with a,b,c,d ∈ [0,255]. L(Port) 
the port language whose words are numbers between 0 and 
62535. L(Protocol) the protocols language whose words 
representing a protocol (TCP, UDP…). 
Let L(Packet) the language defined as the concatenation of 
L(IP) L(IP) L(Port) L(Protocol). A packet whose header is 
composed of a source IP address, destination IP address, 
port number and protocol is a word of L(Packet). 
Let L(Packet-Ri) the language defined as the concatenation 
L(IPsrc-Ri) L(IPdst-Ri) L(Port-Ri) L(Protocol-Ri), with: 

• L(IPsrc-Ri) the subset of words in L(IP) consisting 
of IP addresses that match the filtering field 
condition of the source IP address field in rule Ri. 

• L(IPdst-Ri) the subset of words in L(IP) consisting 
of IP addresses that match the filtering field 
condition of the destination IP address field in Ri. 

• L(Port-Ri) the subset of words in L(Port) consisting 
of port numbers that match the filtering field 
condition of the port number field in Ri. 

• L(Protocol-Ri) the subset of words in L(Protocol) 
consisting of protocols that match the filtering field 
condition of the protocol field in Ri. 

A packet whose header is respectively composed of a 
source IP address, destination IP address, port number and 
protocol that correspond to filtering fields of a rule Ri is a 
word belonging to language L(Packet-Ri). The condition of 
a filtering field may be either a single value or a range of 
values or "Any" which indicates any value. 
The basic idea behind modeling a security policy by an 
automaton is as follows: in a given state corresponding to a 
network filtering field (IPsrc, IPdst, Port or Protocol), the 
automaton read a value of a network field. The label of this 
transition is in fact the condition which permits the 
transition from one state to another. 

A security rule Ri of a firewall can be modeled by the 
automaton shown in Fig.2. This automaton recognizes 
words (packets) of L(Packet-Ri) and after “consuming” 
them, it ends up in a final state that indicates the action to 
execute for this packet. The other words (packets) of 
L(Packet) not belonging to the language L(Packet-Ri) 
should be examined by the following rule Ri+1. 
We call "positive transition" a transition labeled by the 
filtering condition related to a filtering field of a rule. We 
call "negative transition" a transition labeled by the 
complement of filtering condition related to a filtering field 
of a rule. The label of a negative transition will be denoted 
by "! Condition" We call "positive path" of rule Ri the 
only path from initial state of the rule Ri to its final state 
that indicates the action to execute if a packet matches rule 
Ri. This path is a sequence of positive transitions. We call 
"negative path" of rule Ri a path from initial state of rule 
Ri to initial state of rule Ri+1. This path has a single 
negative transition whose label is a non verified condition 
by one of the filtering fields of rule Ri. A negative path 
may also include special states and transitions which we 
call "consumption states and transitions". The condition of 
a consumption transition is always verified and is labeled 
"Any". The usefulness of consumption states and 
transitions will be described later. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose that the firewall is about to inspect a given packet 
belonging to L(Packet) whose header is composed of 
values [IPsrc-Packet,IPdst-Packet,Port-Packet,Protocol-
Packet]. Suppose also that the firewall is at the stage of 
analyzing this packet by rule Ri. If we suppose, for 
example, that IPsrc-Packet does not belong to L(IPsrc-Ri) 
then: whatever IPdst-Packet, Port-Packet and Protocol-
Packet values, the current packet does not match rule Ri. 
Thus, according to the firewall filtering process, the packet 

 

Fig. 2 Automaton modeling Rule Ri 
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Table 1: Policy with one rule 
IPsrc IPdst Port Protocol Action 
Any Any Any Any Action-R1 

 

 

Fig. 3 Automaton modeling Table 1 policy 

 

Fig. 4 Reduced automaton modeling Table 1 policy 

Table 2: Policy with two rules 
IPsrc IPdst Port Protocol Action 

IPsrc-R1 IPdst-R1 Port-R1 Protocol-R1 Action-R1 
Any Any Any Any Action-R2 

 

 

Fig. 5 Automaton modeling Table 2 policy 

must then be examined by the following rule Ri+1. Passing 
from rule Ri to rule Ri+1 can be modeled by a negative 
path consisting of the following transitions and states: 

• A negative transition from the IPsrc state of rule Ri 
to a new consumption state IPdst. This transition is 
labeled "! IPsrc-Ri". This label describe the non-
membership of IPsrc-Packet to L(IPsrc-Ri). 

• A consumption transition from the last created 
consumption state IPdst to a new consumption state 
Port. 

• A consumption transition from the last created state 
Port to a new consumption state Protocol. 

• A consumption transition from the last created state 
Protocol to first state of the following rule Ri+1. 

Consumption states and transitions are created when a 
packet does not match a rule Ri and must be examined by 
the following rule Ri+1. Their role is to ensure that a 
negative path that connects the rule Ri to the rule Ri+1 
passes through “exactly” the same states sequence as the 
positive path of the rule Ri and in the same order. Thus, 
after inspecting the state related to the last filtering field of 
the packet, the automaton is in one of the following states: 

• In the final state Action-Ri if the packet matches Ri.  
• In the initial state of rule Ri+1 if one of the fields of 

the packet don’t match a filtering condition of Ri. 

3.3 Construction process of an automaton from a 
security policy 

In this section we will describe the construction process of 
an automaton from a security policy. We assume that the 
policy has, necessarily, a "default rule" (the last one). 

3.3.1 Policy with one rule 

In this case, the policy is only constituted of the default 
rule (Table 1). Fig.3 presents the automaton corresponding 
to the policy of Table 1. 
 
 
 
 
 
 
 
 
 
 
This policy can be interpreted as follows: for a packet 
received by firewall, whatever IPsrc, IPdst, Port and 
Protocol values, the action to execute is "Action-R1". 
Thus, upon receiving a packet by firewall, it has no need to 
check any value of rule filtering fields and the automaton 
goes directly to final state "Action-R1". Therefore, the 

default rule can be modeled by the reduced automaton 
shown in Fig.4.  
 
 
 
 

3.3.2 Policy with two rules 

In the case of a policy with two rules (Table 2), according 
to the process described earlier to model a security policy 
and on modeling default rule, the corresponding automaton 
of this policy is shown in Fig.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recall that consumption states and transitions are created 
when a packet does not match a rule Ri and must be 
examined by the following rule Ri+1. But in this case the 
following rule R2 is the default one. So when a field in the 
packet does not match a filtering condition of the current 
rule R1 the automaton changes state via a negative 
transition to the final state Action-R2. Security policy of 
Table 2 can thus be modeled by the reduced automaton 
represented in Fig.6.  
 
 
 
 
 
 
 
 

 

 

Fig. 6 Reduced automaton modeling Table 2 policy 
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Table 3: Policy with tree rules 
IPsrc IPdst Port Protocol Action 

IPsrc-R1 IPdst-R1 Port-R1 Protocol-R1 Action-R1 
IPsrc-R2 IPdst-R2 Port-R2 Protocol-R2 Action-R2 

Any Any Any Any Action-R3 

 

Table 4: Firewall security policy of the company 

IPsrc IPdst Port Protocol Action 
Any  212.217.65.201 80 TCP Accept 

192.168.10.0/24 81.10.10.0/24 Any Any Deny 
194.204.201.0/28 212.217.65.202 21 Any Accept 
192.168.10.0/24 Any Any Any Accept 

Any Any Any Any Deny 
 

3.3.3 Policy with more than two rules 

In the case of a policy with m rules and m>2, the 
automaton is obtained using the following process: 

• Creating and concatenating of partial automata of 
each rule with the following one until rule Rm-1 
(using the process described in Section 3.2 and 
illustrated in Fig.2) 

• Creating positive path of rule Rm-1 
• Creating negative transitions of rule Rm-1 that lead 

to the default action of the last rule Rm (using the 
process described in Section 3.3.1 and illustrated in 
Fig.4). 

Table 3 is an example of a policy with rules 3 and Figure 7 
shows the equivalent automaton.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 Case study 

Consider a company network which is connected to the 
internet and we want to protect it with a firewall (Fig.8). 
The internal network is composed of two segments: The 
LAN users (192.168.10.0/24) and the DMZ hosting the 
Web server (212.217.65.201) and FTP server 

(212.217.65.202). The company has a branch office 
network (194.204.201.0/28) connected to company 
headquarters internal network through internet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This company security policy requirements are as follows: 

• Access to the Web server is allowed to all.  
• FTP access is allowed only from company’s internal 

LANs (headquarters and branch office LANs). 
• Users on the internal LAN of the company's 

headquarters are allowed to access to the entire 
internet network with the exception of the malicious 
network 81.10.10.0/24. 

Table 4 represents firewall security rules corresponding to 
the above security requirements of the company. 
 
 
 
 
 
 
 
 
By applying automaton construction process to Table 4 
security policy, we obtain the equivalent automaton of this 
policy (Fig. 9). Thus, this automaton is able to recognize 
what action to execute for a packet by performing: at least 
3 transitions if the packet matches the rule R1 and 
maximum 9 transitions if the packet matches the last 
default rule R5. Each transition corresponds in fact to a test 
done over a filtering condition of a security rule. For the 
same studied example, a packet filtered by the 
conventional process requires firewall to perform at least 4 
tests if the packet matches the rule R1 and up to 25 tests if 
the packet matches the last default rule R5. We deduce that 
by using our automaton model, the load generated by the 
filtering process of the firewall studied in this example can 
be reduced by 25% to 64%. 

 

Fig. 7 Automaton modeling Table 3 policy 

 

Fig. 8 Example of company network secured by a firewall 
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Fig. 11 A system component automaton in Server mode 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. A client-server system modeling 

In this paper, a system is considered as a set of network 
components which may communicate with each other. We 
also limit the scope of this paper to TCP/IP 
communications according to Client-Server model. 
The objective in this section is to be able to model a 
system of N components and its overall behavior in order 
to know the exact state of each component at a given time. 
To do this, we will begin by studying a basic system which 
consists of two components one as a client and the other as 
a server. Then we will extend our study in order to be able 
to generalize the modeling of a system of N components 
which can be at the same time in Client mode and/or in 
server mode, representing the real behavior of a system. 

4.1 Modeling communication of two components 

4.1.1 Construction process 

In order to model the process of establishing a client-server 
communication between two components of a system, we 
have to model: 

• The client process of a system component 
• The server process of a system component 
• The establishing communication process between 

the client and the server components 
We can model the Client and Server process of a system 
component by automata describing their different possible 
states and transitions that can trigger a change of state of 
such a component. 

According to state diagram of a TCP connection [14]:  
• As a client, a system component can be in one of the 

following states: 
o « CLOSED »: is a fictional state, it represents the 

state when there is no connection.  
o « SYN-SENT » (or « SYN-CLIENT » for client 

synchronization): represents waiting for a 
matching connection request after having sent a 
connection request (SYN). 

o « ESTABLISHED » (or « CLIENT »): represents 
an open connection as a client with a server. 

• As a server, a system component can be in one of the 
following states: 
o « CLOSED »  
o « LISTEN » : represents waiting for a connection 

request from a client 
o « SYN-RECEIVED » (or « SYN-SERVER » for 

server synchronization): represents waiting for a 
confirming connection request acknowledgment 
after having both received and sent a connection 
request. 

o « ESTABLISHED » (or « SERVER »): represents 
an open connection as a server with a client. 

We can define transitions that trigger state changes of a 
system component based on those of the state diagram of a 
TCP connection. 
Figures 10 and 11 show, respectively, automata modeling 
the behavior of a component of a system: the first one as a 
client and the second one as a server. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 10 A system component automaton in Client mode 

 

Fig. 9 Automaton modeling Table 4 policy 
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Table 5: Couples types representing a state in Fig. 17 automaton 
Name Server state Client state 

Couple1 LISTEN SYN-CLIENT 
Couple2 SYN-SERVER SYN-CLIENT 
Couple3 SYN-SERVER CLIENT 
Couple4 SERVER CLIENT 

 

To obtain the automaton modeling the communication 
between two components one as a client and the other as a 
server it is necessary to compose both automata modeling 
the behavior of each one of these components separately. 
To achieve this goal, first we will use Promela language 
for formal description of client and server processes 
modeled by the automata of Figures.10 and 11, then using 
the Spin tool we will get necessary sequencing events for 
establishing communication between client and server 
afterwards we will deduct from it the automaton modeling 
the overall behavior of a communication between a client 
and a server. 
Figures 12 and 13 show, respectively, the Promela formal 
description of client (server) process of a system 
component. Note that the status of the client (server) 
component is designated by the "StateC" ("StateS") 
variable. Recall that in Promela, the symbols "!"  And "?"  
mean, respectively, sending and receiving messages using 
the specified parameter set before the channel symbol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After initialization of both client and server processes by 
Promela by the execution of run(C) and run(S) commands, 
we can obtain the communication process between client 
and server using Spin. Figure 14 shows the output file 
describing the sequencing of the communication process 
between client and server. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
From this sequence we can now obtain the automaton 
modeling the overall behavior of a communication 
between a client and a server (Fig. 15). 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.1.2 Automaton interpretation  

A state of the automaton is represented by a couple which 
gives indication of the state of the server component and 
the client component during communication.  
In the first two states of this automaton, at least one of the 
two components of the system is inactive (CLOSED). In 
both states, no communication can be initiated between 
these two components. 
The remaining other states of the automaton represent each 
one a couple indicating a communication step between two 
"active" components of the system. So we can describe the 
following couples: (Table 5). Note that when an “active” 
component of the system is not part of a communication, it 
is necessarily in the "LISTEN" state. 
 
 
 
 

 

Fig. 13 Formal description of the Server process in Promela 

 

Fig. 14 Output file describing the client-server communication 
process using Spin 

 

Fig. 15 Automaton modeling a client-server communication  

 

Fig. 12 Formal description of the Client process in Promela 
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4.2 Automaton modeling a system of two 
components 

Since the system is a set of several components that can 
communicate with each other and that each communication 
is identified by two components of the system, then a given 
state in the automaton that will model the overall behavior 
of the system will represent all possible states of 
communication between its various components. 
Thus, a given state of the system must be able to indicate: 

• The list of all components of the system that are in a 
"LISTEN" state, which we call "Listeners" 

• The list of all type 1 system components couples in 
which the server is in a "LISTEN" state and the 
client is in a "SYN-CLIENT" state, which we call 
"List-1". 

• The list of all type 2 system components couples in 
which the server is in a "SYN-SERVER" state and the 
client is in a "SYN-CLIENT" state, which we call 
"List-2". 

• The list of all type 3 system components couples in 
which the server is in a "SYN-SERVER" state and the 
client is in a "CLIENT" state which we call "List-3". 

• The list of all type 4 system components couples in 
which the server is in a "SERVER" state and the 
client is in a "CLIENT" state which we call "List-4". 

We can deduce that a given state of the system is 
completely identified by the knowledge of the elements 
that comprise the five lists previously defined. 
Let us introduce Tsys the 5-tuple consisting of these lists, 
we have: Tsys = (Listeners, List-1, List-2, List-3, List-4). 
In a state of communication that represents the server S in 
a "LISTEN" state, the current server S is added to the 
"Listeners" list and the system state is identified by the 5-
tuple of lists Tsys and we have: 

• Tsys .Listeners= Tsys .Listeners.ADD(S)= S 
• Tsys .List-1=null 
• Tsys .List-2=null 
• Tsys .List-3=null 
• Tsys .List-4=null 

Note Update-Sys-0 the function which allows this first 
state change in the system (ie in the 5-tuple Tsys). 
According to the automaton, this function is executed and 
provides a state change to the system whenever a transition 
"Passive open" is triggered. 
In a state of communication that represents a type 1 couple 
(S,C), this one is added to « List-1 » and « Listeners » 
contains always the server S and the system state is 
identified by the new values of Tsys and we have: 

• Tsys .Listeners= S 
• Tsys .List-1= Tsys .List-1.ADD(S,C)=(S,C) 
• Tsys .List-2=null 
• Tsys .List-3=null 
• Tsys .List-4=null 

Note Update-Sys-1 the function which allows this second 
state change in the system. According to the automaton, 
this function is executed and provides a state change to the 
system whenever a transition "SYN" is triggered. 
For every i=2,..,4: in a state of communication that 
represents a type i couple (S,C), this one is added to List-i 
and the type ‘i-1’  couple (S,C) is deleted from List-‘i-1’,  
this is necessary to represent the state change made in a 
communication between two components of the system 
and we particularly have: 

• Tsys .List-‘i-1’= Tsys .List-‘i-1’.DELETE(S,C) 
• Tsys .List-i= Tsys .List-i.ADD(S,C)=(S,C) 

Note Update-Sys-2 (respectively Update-Sys-3, Update-
Sys-4) the function which is executed and provides a state 
change to system whenever a transition "?SYN!SYN-ACK" 
(respectively "?SYN-ACK!ACK", "?ACK") is triggered. 
In the particular case of a system consisting of two 
components, system automaton can be obtained from the 
one modeling communication between two components by 
carrying out a special “renaming” operation of its states by 
the use of the five functions we just define and which 
manipulate the global state of the system which is 
completely identified by the knowledge of the Tsys 
elements. Apart from the initial state that represents the 
system in a state of inactivity, any state in the new system 
automaton is now labeled with a function that is executed 
after a given transition and which change the overall state 
of the system by changing Tsys elements. (Fig. 16) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Automaton modeling a system of N components 

To obtain the automaton modeling a system comprised of 
N components, we just need to take as basis the one 
modeling a system of two components and supplement it 
by new transitions which can indicate that at any time and 
in any state of the system: any component may initiate 
several simultaneous communication with other 
components as client, or that a component can be a server 
for multiple clients at once. 

 

Fig. 16 Automaton modeling a system of two components 
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Fig. 17 Automaton modeling a system of N components 

In order to better justify this, consider the example of a 
state of communication between two components of the 
system. Suppose that we are in the Update-SYS-1 state and 
another server changes state from the "CLOSED" state to 
the "LISTEN" one by the "Passive open" transition, then 
we can notice that if we want this situation to be 
represented in the automaton we want to build, it is 
necessary that the new automaton contains a transition 
"Passive open" from the "Update-Sys-1" state to the 
"Update-Sys-0" state. This transition does not exist in the 
automaton of two components (Fig. 16). 
So, to be able to model all possible cases of 
communications between several components of the 
system, the global automaton modeling the system must be 
supplemented by transitions that reflect the change of state 
of the system to any other one. The construction of this 
automaton is done according to the following algorithm. 
 
Input: Old_Aut (Initial automaton of two components) 
Output: New_Aut (Resulting automaton of N components) 
BEGIN 
New_Aut=Old_aut 
Old_States=List of all states of Old_Aut 
Old_Transtions=List of all transitions of Old_Aut 
FOR every transition T of Old_Transitions DO 
 FOR every state S of Old_States DO 
  IF (S ≠ T.start) DO 
   New_T=new Transition 
   New_T.start=S 
   New_T.end=T.end 
   New_T.Label=T.Label 
   New_Aut.ADD_Transition(New_T) 
  END-IF 
 END-FOR 
END-FOR  
END 

By applying this algorithm to Fig. 16 automaton we obtain 
the one modeling a system of N components. (Fig.17) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Composing a system and a security policy 

At this stage we are able to model by the same formalism 
of automata: a security policy and the behavior of a 
system. We propose now to model the composition of a 
system with a security policy, more precisely we propose 
to model a given system controlled by a given security 
policy by the same formalism of automata. 
In the following, for the sake of simplicity and without loss 
of generality, we assume that only the TCP protocol is 
used. TCP is "connection-oriented protocol". This means 
that when a packet is sent, it has information indicating it is 
the first packet of a given communication or if it is a suite 
to a previously received packet.  
In [15] an example is given to explain this aspect of TCP 
connections. In Figure 18, the host whose IP address is 
192.168.1.1 initiated communication with the one whose 
IP address is 1.2.3.4. The corresponding packet then 
contains “SYN” flag. Packets following this first exchange 
will all contain “ACK” flag. In the following, we will not 
specify connection flags (SYN, ACK) and will consider 
that, in the case of firewall filtering rules, only 
authorizations related to connections initialization are 
specified. The corresponding "replies" packets are 
implicitly accepted, thereby filtering rules are supposed 
being applied to packets with the SYN flag and is expected 
to present a default rule for packets with the ACK flag. 
 
 
 
 
 
 
 
 
From this last assumption, we can deduce that in order to 
obtain the automaton modeling the composition Sp of a 
system S and a security policy P, we need simply to 
express the fact that the security policy is controlling 
“SYN” transitions of the automaton S. Thus, any 
connection request (SYN Send) initiated by a client 
component of the system addressed to a server component 
of this same system will not be directly addressed to the 
destination component (the server), it will first be relayed 
to the automaton of the security policy for analysis: if at 
the end of this analysis the connection request is authorized 
by the security policy P then the connection establishment 
process continues normally in the automaton of the system 
S. Otherwise, the connection establishment process is 
interrupted and can’t be continued in the system.  
The automaton Sp modeling the system S secured by the 
security policy P is obtained by applying the following 
algorithm to S and P. Figure 19 illustrates the result of 
applying the algorithm to a SYN transition. 

 

Fig. 18 Example of a TCP request for connection establishment 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 16

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

Input: System S, Security policy P 
Output: Secure system Sp  
BEGIN 
Sp=S 
FOR every transition T of S DO 
 IF (T.label=SYN) DO 
  New_T1=new Transition 
  New_T1.start=T.start 
  New_T1.end=P.Initial_State 
  New_T1.Label=SYN 
  Sp.ADD_Transition(New_T1) 
  New_T2=new Transition 
  New_T2.start=P.Final_Accept_State 
  New_T2.end=T.end 
  New_T2.Label=SYN 
  Sp.ADD_Transition(New_T2) 
  Sp.DELETE_Transition(T) 
 END-IF 
END-FOR 
END 

 
 
 
 
 
 
 
 
 
 

6. Conclusion and future work 

The overall objective of our work is to model a system S 
and its security policy P by the same formalism of 
automata and then compose both of them in order to 
generate a new System Sp which is a secure version of S in 
conformance to P. Such a separation between the system 
specification and the security policy requirements allows in 
one hand the improvement of systems scalability and in the 
other hand the reuse of security policies. 
In this work we showed how to express a security policy as 
an automaton. We then proposed a model of a system 
comprised of several network components using the same 
automata formalism having as a basis the TCP state 
diagram. Finally, we showed how it is possible to compose 
a system and a security policy in order to obtain as a result 
a secured version of this system controlled by this security 
policy still using the same automata formalism. 
By combining the results obtained in this work and a 
judicious use of the theory of automata richness and rigor, 
we consider as future work to study other aspects related to 
security of systems, such as: how to model communication 
between components belonging to different systems which 
are separately controlled by different and independent 
security policies. Once the modeling assumed to be 
realized, it would be interesting to study how to ensure that 
such communication is in conformance with the various 
security policies that control these different systems. 
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Fig. 19 Result of applying the algorithm to a SYN transition 
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