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Abstract 
The current manufacturing technology allows the integration of a 

complex multiprocessor system on one piece of silicon (MPSoC 

for Multiprocessor System-on- Chip). One way to manage the 

growing complexity of these systems is to increase the level of 

abstraction and to address the system-level design. 

 

In this paper, we focus on the implementation in SystemC 

language with TLM (Transaction Level Model) to model an 

MPSOC platform. Our main contribution is to define a 

comprehensive, fast and accurate method for designing and 

evaluating performance for MPSoC systems. 
 
The studied MPSoC is composed of MicroBlaze microprocessors, 

memory, a timer, a VGA and an interrupt handler with two 

examples of software. This paper has two novel contributions: the 

first is to develop this MPSOC at CABA and TLM for ISS 

(Instruction Set Simulator), Native simulations and timed 

Programmer’s View (PV+T); the second is to show that with 

PV+T simulations we can achieve timing fidelity with higher 

speeds than CABA simulations and have almost the same 

precision. 

 

Keywords: embedded multiprocessor systems, TLM, SystemC, 

ISS, Native simulation. 

1. Introduction 

The literature shows that much of the design time is spent 

in the performance evaluation. In addition, the iterations in 

the design flow become prohibitive for complex systems. 

Therefore, achievement of high performance MPSoCs is a 

challenge. The solution is strongly linked to the 

availability of fast and accurate methods for the design and 

performance evaluation [1] .A modeling approach to reduce 

the time of design and validation time for MPSoCs is to 

use the Transaction Level Modeling models (TLM ) [2] at 

the system level. The SystemC simulation language 

provides a design and rapid high-level simulation, as 

opposed to detailed hardware models [11]. 

In this article, we present a platform MPSOC multi-

MicroBlaze, modeled with SystemC 2.2.0 [3]. Some 

components come from SocLib [4] (open-source library of 

interoperable models and multi-level SystemC hardware 

components for modeling and simulation of multiprocessor 

platforms), and others are components of Xilinx Platform 

Studio‟s library such the MicroBlaze processor, BRAM 

(Block RAM) with some custom templates. 
 

We adopt a strategy for estimating the performance 

CABA at several levels, PV (ISS and Native), PV + T. 

Reference comparison is the CABA level, since it is bit-

accurate and cycle around. A main idea widely exposed in 

the literature is that for better complementarity should be 

able to choose each time ( even while running ) between 

either (a) a fast simulation and imprecise , or ( b) a 

simulation with a increased accuracy but at the cost of 

longer simulation [5]. 
 

Our objectives in this publication are: 
 

• Develop a rapid exploration of performance of design 
MPSoC tool;  
 

• Show that the PV+T model offers a better alternative 
than (a) and (b) but at the cost of an additional modeling 
effort. This latest effort is nevertheless quite acceptable in 
contrast to the loss of accuracy in (a) or loss of simulation 
speed in (b). If, despite these losses (a) and are now widely 
used in system evaluation, this is only because it lacked a 
better alternative. 

The rest of this paper is organized as follows: an overview 

of related work on existing simulation speedup techniques 

at TLM for MPSoC is provided in section 2. Section 3 

describes the context of use of the platform; Section 4 

describes the architecture of the multi-MicroBlaze system. 

Section 5 presents the simulation platform and the 

implementation of CABA, ISS, native and PV + T models. 

Section 6 describes the results of the applications running 

on the platform. 
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2. Related work 

A lot of researches on design exploration and performance 

evaluation for embedded systems have been conducted. As 

a result of these researches, several exploration 

environments are proposed, such as MILAN [6], 

Metropolis [7], STARSoC [8] and SimSoC [17]. The work 

presented in this article can be seen as complementary to 

these environments. 

 

Compared to traditional heterogeneous co-simulation tools, 

they have not developed an open-source architecture that 

allows running multiple types of simulation to find the best 

implementation of the MPSoC in SystemC-TLM in term of 

performance (speed and accuracy of simulation). 

 

Since the first proposition of TLM in 2000 [9] [10], an 

increasing number of research projects have considered the 

problem of its definition, which has led to a multitude of 

different frameworks [11] [12] [13] [14]. All of these 

researches have two factors in common: 1) TLM‟s are 

presented as stacks of several levels and 2) the 

communication and computation aspects of the frameworks 

are kept separate. 

 

Viaud [15] and al. have proposed an ambitious timed TLM 

based on conservative parallel discrete event theory. They 

obtained a high speedup simulation factor but they did not 

measure this speedup on real applications. Their model is 

also different from ours. Firstly, our approach can be 

applied for hierarchical or distributed MPSoC design, and 

secondly, it is open-source 

 

Kim [16] and Boukhechem [8] propose a new technique for 

HW/SW co-simulation for heterogeneous MPSoC 

platforms in timing model PVT, we have all advantages of 

PVT TA that we refined in order to add it as a priority 

management. Also we integrated computation and 

communication simulation. 

3. Context of use of the platform 

A major challenge in designing the architecture of a system 

is to define the configuration of this architecture. In fact, 

the designer did not advance a precise idea about the final 

configuration of this architecture. It is for this reason that it 

provides a virtual platform for him to explore a set of 

configurations so that it can make the right choice. For this 

choice is that it just takes the following two fundamental 

properties: 

 performance evaluated by the virtual platform on 

the one hand is accurate,   

 and secondly, it must be able to choose from a 

large number of configurations and this is only 

possible if the virtual platform is fast enough to 

explore them all in the time available to the 

designer.  

 

These two properties are intimately related because each 

impacts the other and therefore should be treated both. 

 

In addition a third fundamental property is also necessary 

for the designer to make the right choices about the 

functional correction models configurations. The models of 

hardware and software components used in these 

configurations must be consistent in their behavior with the 

behavior of the physical components of the chip. The 

correction of the models of software components can be 

guaranteed only if we ensure that software code running on 

the virtual platform will run on the chip without 

modification. Concerning the correction of hardware 

components it is ensured by a verification approach which 

is out of the scope of this paper. 

4. Architecture 

The multiprocessor system has a base and a complete 

architecture. The basic architecture of the platform consists 

of 2 MicroBlazes each one connected with a 64 KB 

BRAM via the LMB bus processors. And they are 

connected to the OPB bus, and a block of 32MB SRAM 

memory [19]. A high-level view of the architecture of 

multi-core MicroBlaze is illustrated in Figure 1. 

 

 

 

Fig. 1 Basic architecture of multi-MicroBlaze. 

In the simulation environment SytemC, the complete 

design is multi-MicroBlaze implementation of SystemC 

models, and external test software running on the host PC 

to stimulate and control the execution of the application on 

the multiprocessor architecture. 

 

Shared Memory 
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The complete system architecture to simulate consists of 2 

MicroBlazes, an interrupt handler, VGA controller, timer, 

GPIO and SRAM, the model system in SystemC is as 

follows: 

 
    Master socket (initiator) 

 Slave socket (target) 

 Interrupt input 

Figure 2. Platform architecture 

5. SystemC simulation platform  

The simulation platform includes multi-MicroBlaze 

SystemC models for the MicroBlaze processor simulator, 

BRAM and SRAM. The SystemC components of multi-

MicroBlaze system were designed to work together to 

provide an efficient simulation environment, easy to use 

and understand. These components are very accurate in 

time, in accordance with their specifications. Some key 

features of these models are described below. 
 
Processor Model: 

 

With the TLM approach, the behavior of a processor may 

have three major descriptions ISS, and PVT Native plus 

CABA-SystemC which is implemented in the same way 

that the RTL, most components are SoCLib [7]. In the 

second description ISS, the processor is modeled with a 

specific instruction level simulator (ISS: Instruction Set 

Simulator). Instructions are executed sequentially in this 

case without reference to the micro-architecture of the 

component. 

 

We have specified the execution time of each instruction in 

order to estimate the execution time of the whole 

application. To implement this description across ISS, we 

resorted to SoCLib [7], and we have modified the 

description for PV + T. In the third description, all 

processors perform application tasks. These tasks are then 

executed by the machine simulation. 

 

In each sub - level functionality of each processor is 

disclosed with a module using the SystemC SC_THREAD 

process. Accordingly, one processor is considered as an 

active component. Since all components (Timer, VGA, 

memory ...) are apart from the passive processor, we 

connected it with the other components as follows: 

Operations components are executed with the control 

thread of the processor, when a new transaction is 

completed, the processor sends a request socket.read () or 

socket.write () and gets stuck. The thread remains active in 

the model of bus or memory until it receives the response 

to the query. Here we are talking about reading or writing 

way since we use the same path for the request and 

response. Such an implementation enables the complete 

simulation acceleration gains because there is no context 

switch required for the scheduler SystemC. However, with 

this implementation, we cannot model the components that 

run simultaneously. 

 

Memory model: 

 

The memory module that we designed is a passive 

component "slave" type is currency in two parts, one for 

instructions and one for data and transaction includes two 

methods: read and write. This structure allows us to 

accelerate the simulation. These two methods are called 

and executed directly in the thread initiator connected to 

the memory component. 

 

In our environment, the target port is connected directly to 

the bus. The module is shared between two processors. 

Access time and cycle time parameters are added to the 

component description to estimate performance. 
 

Bus architecture and model: 

 

Most SoC designs are based on hardware blocks connected 

together with bus signals, which are classified as groups of 

data, address, and control links. Several companies provide 

the following SoC bus architectures so that designers can 

easily integrate the IP blocks into a single silicon chip: 

AMBA, Core Connect, CoreFrame, OPB (On-Chip 

Peripheral Bus), Silicon Backplane Network, and 

Wishbone. Our architecture platform is designed around 

the OPB bus. The OPB bus architecture was developed by 

IBM [21]. It is very simple since it defines only one bus. 

However, it supports various features depending on the 

desired bus operations: multiple masters, single cycle 

read/write, block transfer cycles that systematically 

perform a set of single read cycles and/or a set of single 

write cycles. The OPB connect xilinx Microblaze 

processor. 

 

Moreover, OPB supports various IP block interconnection 

methods: Up to a 64-bit address bus, 32-bit or 64-bit data 
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bus implementations; Fully synchronous; Provides support 

for 8-bit, 16-bit, 32-bit, and 64-bit slaves; Provides support 

for 32-bit and 64-bit masters, Single cycle transfer of data 

between OPB bus master and OPB slaves; A 16-cycle 

fixed bus timeout provided by the OPB arbiter. 

 

In this work OPB Bus Master Priority is fixed, priority is 

set in hardware within the simple arbiter. The system 

designer assigns relative priorities to OPB master devices 

via the way they are attached to the arbiter. This is the 

simplest arbitration procedure. It is the least costly to 

model and implement. 

 

Table as shown describe the address space for each 

component. 

Table 1: The address space for each 

Component Start address size 

BRAM memory 0x00000000 0x00002000 

SRAM memory 0x20100000 0x00100000 

GPIO 0x40000000 0x00010000 
Interruption 
controler 

0x41200000 0x00010000 

Timer 0x41C00000 0x00010000 

VGA controler 0x73A00000 0x00010000 
 

VGA model: 
 
Display controller has a resolution of 640 columns by 480 

rows (640 × 480) with a refresh rate of 60 Hertz. 

5.1 Types of Simulation 

5.1.1 Proposal and justification 

To study the performance of MPSOC systems, we need to 

identify the details of the micro-architecture level to CABA. 

Especially those related to the communication part and 

those related to the treatment part. 

 

From a deployment of software architecture MPSOC, we 

evaluate the performance of our system which allows us to 

extract the most appropriate solution. At each level of 

abstraction is a more accurate assessment of performance 

in less time-consuming simulation. CABA platform model 

is implemented in SystemC which is the reference memory 

access and communications are raw signals. 

 

The models below are included in the MPSoC simulator 

for an exploration of architectures. The methodology for 

estimating performance must meet the criterion of 

flexibility to be adaptable to different architectures. 

5.1.2 ISS Simulation 

Simulators running from the instruction are executable. 

They decode the bit stream of instructions received by the 

processor. They are often designed to operate alone and 

can load the program and manage internal memory [17]. In 

our case, all external access to processors become 

transactions in the simulation, these include access all 

memory access, access to nearby devices if they are 

simulated as independent components, such as Timer, 

VGA and interrupt handlers. 

 

The co- simulation of co- application executing on the ISS 

software in parallel with the rest of SystemC simulation on 

the hardware platform and a model of the processor CPU in 

SystemC simulation encapsulates the CPU simulator ISS. 

All memory access requests for data and instructions are 

function calls the ISS first. These function calls are 

transformed into transactions in the TLM model. It is then 

possible to assess the traffic on the TLM model. 

5.1.3 Native simulation 

Much of the simulation model calculates the execution 

processor so that only its outward communications are 

important. For this purpose, the embedded simulation for 

native code is compiled for the processor of the computer 

simulating (HOST), write operations and reading outward 

are redirected to the simulation [18]. There is no 

instruction decoding or ISS to run. The simulation is faster. 

In our project we implemented the native simulation with 

the total redirection of I / O, which requires the 

compilation of embedded processors for stimulants 

software. All memory addresses used in the program are 

those of the architecture. 

5.1.3 PV + T Simulation 

Proposed to implement PV + T methodology should also 

consider issues related to the time synchronization of 

processors, the dynamic contention in the bus and the 

specification of the communication protocol [8]. Refining 

requires a thorough study of each function to derive a 

precise execution time. However, it is not necessary to 

refine all the functions of MPSoC to simulate. 

The idea is to describe the temporal and the new 

granularity of communications in separate Timing model 

information that can be seen as a particular aspect of a kind 

[10]. The estimated performance level PV + T returns to 

evaluate performance of two parts calculation and 

communication time. 

In our case, to assess the time of each task we used the 

simulator MicroBlaze processor ISS level but adding time. 
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For this we mainly identified the number and type of 

instructions executed as relevant activities in the processor 

component. 

Turnaround instructions from MicroBlaze processor are 

estimated from the technical documentation provided by. 

Below is an example of our thread implementation to 

implement the functionality of the calculation part 

(processor) described in sub-level PV + T: 

 

void MicroBlazeIss::step(void) { 
/* Décode l‟instruction encours*/  
IDecode(m_ir, &ins_opcode, &ins_rd, &ins_ra, &ins_rb, 
&ins_imm); 
switch (ins_opcode) {  
//execution d‟instruction 
case OP_ADD:  
next_pc = r_npc + 4; 
Wait(ADD_delay,sc_core::SC_NS) 

break; 
………  
//chargement de 
données case OP_LW: 
…..  

LOAD(READ_WORD, 
addr); next_pc = r_npc + 4;  
Wait(Transaction_delay,sc_core::SC_NS) 
break; 

…………. 
case OP_SB: 
……….  

STORE(WRITE_BYTE, addr,data); 
next_pc = r_npc + 4; 
Wait(Transaction_delay,sc_core::SC_NS); 

break; 
} 

} 
 

Fig. 3. Calculation part of processor 

 

It is noted that the instruction execution time MicroBlaze 

processor are estimated from the technical documentation 

given by [19]. 

In this paper we identify the steps needed to run the 

software instruction level. The processor begins with a 

reading phase of the next instruction from the instruction 

memory initializing a request m_iss.getInstructionRequest 

( ins_asked , ins_addr ) . The ins_addr parameter specifies 

the address of the instruction, ins_asked represents the 

state of the application (or not made) variable. The second 

step is to decode the instruction in microblaze.cpp to 

identify the type of the operation via the IDecode 

function(m_ir , & ins_opcode , & ins_rd , & ins_ra , & 

ins_rb , & ins_imm) . The next step is reading the operands 

from memory by tlm:: tlm_response_status stat = 

socket.read (ins_addr , localbuf) . The final phase involves 

the execution of the current instruction and updates the 

processor registers and the program counter. 

5.2 Software integration 

 
We have two applications were tested in the platform: a 

game of life and adder integers:  

 

 The game of life: The universe of the Game of Life is 

an infinite two-dimensional orthogonal grid of square 

cells, each of which is in one of two possible states, 

alive or dead. Every cell interacts with its eight 

neighbors, which are the cells that are horizontally, 

vertically, or diagonally adjacent [14].  

 

 Adder: The choice of this function simply tests the 

functionality of the processor. 

6. Results and discussion  

 
Several experiments were conducted using the same 

applications and configurations MPSoC system to evaluate 

CABA levels, ISS, Native and PV + T. In the model of 

time (PV + T), we integrate specifications OPB and the 

time between events as the specifications for the 

MicroBlaze protocol. 

 

To calculate the speedup of the simulation we implemented 

a function to calculate the start time and the end of the 

simulation: t2 = “end time”, t1 = “start time”. 

Speed-up formula: 

 

 

Precision formula: 

∆x -∆bit 

With x = PVT,ISS or Native. 

Table 2: simulation results for CABA, ISS, Native and PV+T 

Input Simulation Type Speed-up precision 
 

    
 

adder PV+T 4 2% 
 

 ISS 3 3 
 

 Native simulation 15 15% 
 

 CABA 1 0% 
 

    
 

Game PV+T 11 3% 
 

of life 
    

ISS 9 6% 
 

 Native simulation 102 25% 
 

 CABA 1 0% 
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The experimental results show that the adoption of 

SystemC as development language and TLM as modeling 

approach at high levels of abstractions design, can 

significantly reduce the time of design validation, and 

allow the development of models very quickly. In addition, 

the simulation results at higher levels of abstraction show: 
 
 For the ISS and ISS + T, there are no communication 

costs between ISS C model and its wrapper SystemC, 
and precisely the ISS + T approach has minimum error 
accuracy for all tested configurations while having a 
good acceleration factor. 


 Native model is very fast in terms of simulation speed 

but has a precision error indicating that this model 
would be very useful for HW / SW functional co-
simulation of large SoC based on RISC processors. 

 
The precision error with PV+T is minimal for all 

configurations tested and has a good acceleration factor. 

We believe that the use of a new model (PV + time + 

priority) that integrates event-based priorities management 

between the two processors transactions, may be obtained 

by adding these priorities to the PV+T level of simulation 

and is likely to minimize the errors in the estimations of 

PV+T. Compared to the sub-level ISS, the level PV + T 

slows the simulation by 30%. 
 
A precise analysis of the trace produced by the SystemC 

simulator shows that 80% of the simulation time is made 

for the execution of the function of the bus while the 

simulation time of the calculation part is almost zero which 

reflects our choice to treat the case of PV + T + P. 

 

Also, we noticed that the nature of the software running on 

the platform impacts performance differences between the 

four levels. Thus using our platform, we could choose an 

acceptable level and significantly reduce the development 

effort compared to CABA level. 

7 Conclusions  

In this paper, we describe the systems at the transaction 

level for ISS, Native and PV + T, in this latter case is our 

implementation approach in the sense to estimate the 

performance in terms of acceleration (simulation time) and 

the precision of the simulation of systems MPSoC. 

Different material components have been designed to 

implement the three levels. To obtain an accurate 

prediction of the execution time in our environment, we 

have enriched the level PV + T by timing patterns to an 

estimation error on the accuracy of the system description. 

 

As future work, we plan to develop PV+T+P model in our 

platform. 
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