

Modeling and simulation of multiprocessor systems MPSoC

by SystemC/TLM2

Abdelhakim ALALI 1, Ismail ASSAYAD2 and Mohamed SADIK 3

 HASSAN II University, Ecole Nationale Supérieure d’Electricité et de Mécanique,

RTSE team, Route D’El Jadida, Casablanca, Morocco

Abstract
The current manufacturing technology allows the integration of a

complex multiprocessor system on one piece of silicon (MPSoC

for Multiprocessor System-on- Chip). One way to manage the

growing complexity of these systems is to increase the level of

abstraction and to address the system-level design.

In this paper, we focus on the implementation in SystemC

language with TLM (Transaction Level Model) to model an

MPSOC platform. Our main contribution is to define a

comprehensive, fast and accurate method for designing and

evaluating performance for MPSoC systems.

The studied MPSoC is composed of MicroBlaze microprocessors,

memory, a timer, a VGA and an interrupt handler with two

examples of software. This paper has two novel contributions: the

first is to develop this MPSOC at CABA and TLM for ISS

(Instruction Set Simulator), Native simulations and timed

Programmer’s View (PV+T); the second is to show that with

PV+T simulations we can achieve timing fidelity with higher

speeds than CABA simulations and have almost the same

precision.

Keywords: embedded multiprocessor systems, TLM, SystemC,

ISS, Native simulation.

1. Introduction

The literature shows that much of the design time is spent

in the performance evaluation. In addition, the iterations in

the design flow become prohibitive for complex systems.

Therefore, achievement of high performance MPSoCs is a

challenge. The solution is strongly linked to the

availability of fast and accurate methods for the design and

performance evaluation [1] .A modeling approach to reduce

the time of design and validation time for MPSoCs is to

use the Transaction Level Modeling models (TLM) [2] at

the system level. The SystemC simulation language

provides a design and rapid high-level simulation, as

opposed to detailed hardware models [11].

In this article, we present a platform MPSOC multi-

MicroBlaze, modeled with SystemC 2.2.0 [3]. Some

components come from SocLib [4] (open-source library of

interoperable models and multi-level SystemC hardware

components for modeling and simulation of multiprocessor

platforms), and others are components of Xilinx Platform

Studio‟s library such the MicroBlaze processor, BRAM

(Block RAM) with some custom templates.

We adopt a strategy for estimating the performance

CABA at several levels, PV (ISS and Native), PV + T.

Reference comparison is the CABA level, since it is bit-

accurate and cycle around. A main idea widely exposed in

the literature is that for better complementarity should be

able to choose each time (even while running) between

either (a) a fast simulation and imprecise , or (b) a

simulation with a increased accuracy but at the cost of

longer simulation [5].

Our objectives in this publication are:

• Develop a rapid exploration of performance of design
MPSoC tool;

• Show that the PV+T model offers a better alternative
than (a) and (b) but at the cost of an additional modeling
effort. This latest effort is nevertheless quite acceptable in
contrast to the loss of accuracy in (a) or loss of simulation
speed in (b). If, despite these losses (a) and are now widely
used in system evaluation, this is only because it lacked a
better alternative.

The rest of this paper is organized as follows: an overview

of related work on existing simulation speedup techniques

at TLM for MPSoC is provided in section 2. Section 3

describes the context of use of the platform; Section 4

describes the architecture of the multi-MicroBlaze system.

Section 5 presents the simulation platform and the

implementation of CABA, ISS, native and PV + T models.

Section 6 describes the results of the applications running

on the platform.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 103

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2. Related work

A lot of researches on design exploration and performance

evaluation for embedded systems have been conducted. As

a result of these researches, several exploration

environments are proposed, such as MILAN [6],

Metropolis [7], STARSoC [8] and SimSoC [17]. The work

presented in this article can be seen as complementary to

these environments.

Compared to traditional heterogeneous co-simulation tools,

they have not developed an open-source architecture that

allows running multiple types of simulation to find the best

implementation of the MPSoC in SystemC-TLM in term of

performance (speed and accuracy of simulation).

Since the first proposition of TLM in 2000 [9] [10], an

increasing number of research projects have considered the

problem of its definition, which has led to a multitude of

different frameworks [11] [12] [13] [14]. All of these

researches have two factors in common: 1) TLM‟s are

presented as stacks of several levels and 2) the

communication and computation aspects of the frameworks

are kept separate.

Viaud [15] and al. have proposed an ambitious timed TLM

based on conservative parallel discrete event theory. They

obtained a high speedup simulation factor but they did not

measure this speedup on real applications. Their model is

also different from ours. Firstly, our approach can be

applied for hierarchical or distributed MPSoC design, and

secondly, it is open-source

Kim [16] and Boukhechem [8] propose a new technique for

HW/SW co-simulation for heterogeneous MPSoC

platforms in timing model PVT, we have all advantages of

PVT TA that we refined in order to add it as a priority

management. Also we integrated computation and

communication simulation.

3. Context of use of the platform

A major challenge in designing the architecture of a system

is to define the configuration of this architecture. In fact,

the designer did not advance a precise idea about the final

configuration of this architecture. It is for this reason that it

provides a virtual platform for him to explore a set of

configurations so that it can make the right choice. For this

choice is that it just takes the following two fundamental

properties:

 performance evaluated by the virtual platform on

the one hand is accurate,

 and secondly, it must be able to choose from a

large number of configurations and this is only

possible if the virtual platform is fast enough to

explore them all in the time available to the

designer.

These two properties are intimately related because each

impacts the other and therefore should be treated both.

In addition a third fundamental property is also necessary

for the designer to make the right choices about the

functional correction models configurations. The models of

hardware and software components used in these

configurations must be consistent in their behavior with the

behavior of the physical components of the chip. The

correction of the models of software components can be

guaranteed only if we ensure that software code running on

the virtual platform will run on the chip without

modification. Concerning the correction of hardware

components it is ensured by a verification approach which

is out of the scope of this paper.

4. Architecture

The multiprocessor system has a base and a complete

architecture. The basic architecture of the platform consists

of 2 MicroBlazes each one connected with a 64 KB

BRAM via the LMB bus processors. And they are

connected to the OPB bus, and a block of 32MB SRAM

memory [19]. A high-level view of the architecture of

multi-core MicroBlaze is illustrated in Figure 1.

Fig. 1 Basic architecture of multi-MicroBlaze.

In the simulation environment SytemC, the complete

design is multi-MicroBlaze implementation of SystemC

models, and external test software running on the host PC

to stimulate and control the execution of the application on

the multiprocessor architecture.

Shared Memory

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 104

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The complete system architecture to simulate consists of 2

MicroBlazes, an interrupt handler, VGA controller, timer,

GPIO and SRAM, the model system in SystemC is as

follows:

 Master socket (initiator)

 Slave socket (target)

 Interrupt input

Figure 2. Platform architecture

5. SystemC simulation platform

The simulation platform includes multi-MicroBlaze

SystemC models for the MicroBlaze processor simulator,

BRAM and SRAM. The SystemC components of multi-

MicroBlaze system were designed to work together to

provide an efficient simulation environment, easy to use

and understand. These components are very accurate in

time, in accordance with their specifications. Some key

features of these models are described below.

Processor Model:

With the TLM approach, the behavior of a processor may

have three major descriptions ISS, and PVT Native plus

CABA-SystemC which is implemented in the same way

that the RTL, most components are SoCLib [7]. In the

second description ISS, the processor is modeled with a

specific instruction level simulator (ISS: Instruction Set

Simulator). Instructions are executed sequentially in this

case without reference to the micro-architecture of the

component.

We have specified the execution time of each instruction in

order to estimate the execution time of the whole

application. To implement this description across ISS, we

resorted to SoCLib [7], and we have modified the

description for PV + T. In the third description, all

processors perform application tasks. These tasks are then

executed by the machine simulation.

In each sub - level functionality of each processor is

disclosed with a module using the SystemC SC_THREAD

process. Accordingly, one processor is considered as an

active component. Since all components (Timer, VGA,

memory ...) are apart from the passive processor, we

connected it with the other components as follows:

Operations components are executed with the control

thread of the processor, when a new transaction is

completed, the processor sends a request socket.read () or

socket.write () and gets stuck. The thread remains active in

the model of bus or memory until it receives the response

to the query. Here we are talking about reading or writing

way since we use the same path for the request and

response. Such an implementation enables the complete

simulation acceleration gains because there is no context

switch required for the scheduler SystemC. However, with

this implementation, we cannot model the components that

run simultaneously.

Memory model:

The memory module that we designed is a passive

component "slave" type is currency in two parts, one for

instructions and one for data and transaction includes two

methods: read and write. This structure allows us to

accelerate the simulation. These two methods are called

and executed directly in the thread initiator connected to

the memory component.

In our environment, the target port is connected directly to

the bus. The module is shared between two processors.

Access time and cycle time parameters are added to the

component description to estimate performance.

Bus architecture and model:

Most SoC designs are based on hardware blocks connected

together with bus signals, which are classified as groups of

data, address, and control links. Several companies provide

the following SoC bus architectures so that designers can

easily integrate the IP blocks into a single silicon chip:

AMBA, Core Connect, CoreFrame, OPB (On-Chip

Peripheral Bus), Silicon Backplane Network, and

Wishbone. Our architecture platform is designed around

the OPB bus. The OPB bus architecture was developed by

IBM [21]. It is very simple since it defines only one bus.

However, it supports various features depending on the

desired bus operations: multiple masters, single cycle

read/write, block transfer cycles that systematically

perform a set of single read cycles and/or a set of single

write cycles. The OPB connect xilinx Microblaze

processor.

Moreover, OPB supports various IP block interconnection

methods: Up to a 64-bit address bus, 32-bit or 64-bit data

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 105

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

bus implementations; Fully synchronous; Provides support

for 8-bit, 16-bit, 32-bit, and 64-bit slaves; Provides support

for 32-bit and 64-bit masters, Single cycle transfer of data

between OPB bus master and OPB slaves; A 16-cycle

fixed bus timeout provided by the OPB arbiter.

In this work OPB Bus Master Priority is fixed, priority is

set in hardware within the simple arbiter. The system

designer assigns relative priorities to OPB master devices

via the way they are attached to the arbiter. This is the

simplest arbitration procedure. It is the least costly to

model and implement.

Table as shown describe the address space for each

component.

Table 1: The address space for each

Component Start address size

BRAM memory 0x00000000 0x00002000

SRAM memory 0x20100000 0x00100000

GPIO 0x40000000 0x00010000
Interruption
controler

0x41200000 0x00010000

Timer 0x41C00000 0x00010000

VGA controler 0x73A00000 0x00010000

VGA model:

Display controller has a resolution of 640 columns by 480

rows (640 × 480) with a refresh rate of 60 Hertz.

5.1 Types of Simulation

5.1.1 Proposal and justification

To study the performance of MPSOC systems, we need to

identify the details of the micro-architecture level to CABA.

Especially those related to the communication part and

those related to the treatment part.

From a deployment of software architecture MPSOC, we

evaluate the performance of our system which allows us to

extract the most appropriate solution. At each level of

abstraction is a more accurate assessment of performance

in less time-consuming simulation. CABA platform model

is implemented in SystemC which is the reference memory

access and communications are raw signals.

The models below are included in the MPSoC simulator

for an exploration of architectures. The methodology for

estimating performance must meet the criterion of

flexibility to be adaptable to different architectures.

5.1.2 ISS Simulation

Simulators running from the instruction are executable.

They decode the bit stream of instructions received by the

processor. They are often designed to operate alone and

can load the program and manage internal memory [17]. In

our case, all external access to processors become

transactions in the simulation, these include access all

memory access, access to nearby devices if they are

simulated as independent components, such as Timer,

VGA and interrupt handlers.

The co- simulation of co- application executing on the ISS

software in parallel with the rest of SystemC simulation on

the hardware platform and a model of the processor CPU in

SystemC simulation encapsulates the CPU simulator ISS.

All memory access requests for data and instructions are

function calls the ISS first. These function calls are

transformed into transactions in the TLM model. It is then

possible to assess the traffic on the TLM model.

5.1.3 Native simulation

Much of the simulation model calculates the execution

processor so that only its outward communications are

important. For this purpose, the embedded simulation for

native code is compiled for the processor of the computer

simulating (HOST), write operations and reading outward

are redirected to the simulation [18]. There is no

instruction decoding or ISS to run. The simulation is faster.

In our project we implemented the native simulation with

the total redirection of I / O, which requires the

compilation of embedded processors for stimulants

software. All memory addresses used in the program are

those of the architecture.

5.1.3 PV + T Simulation

Proposed to implement PV + T methodology should also

consider issues related to the time synchronization of

processors, the dynamic contention in the bus and the

specification of the communication protocol [8]. Refining

requires a thorough study of each function to derive a

precise execution time. However, it is not necessary to

refine all the functions of MPSoC to simulate.

The idea is to describe the temporal and the new

granularity of communications in separate Timing model

information that can be seen as a particular aspect of a kind

[10]. The estimated performance level PV + T returns to

evaluate performance of two parts calculation and

communication time.

In our case, to assess the time of each task we used the

simulator MicroBlaze processor ISS level but adding time.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 106

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

For this we mainly identified the number and type of

instructions executed as relevant activities in the processor

component.

Turnaround instructions from MicroBlaze processor are

estimated from the technical documentation provided by.

Below is an example of our thread implementation to

implement the functionality of the calculation part

(processor) described in sub-level PV + T:

void MicroBlazeIss::step(void) {
/* Décode l‟instruction encours*/
IDecode(m_ir, &ins_opcode, &ins_rd, &ins_ra, &ins_rb,
&ins_imm);
switch (ins_opcode) {
//execution d‟instruction
case OP_ADD:
next_pc = r_npc + 4;
Wait(ADD_delay,sc_core::SC_NS)

break;
………
//chargement de
données case OP_LW:
…..

LOAD(READ_WORD,
addr); next_pc = r_npc + 4;
Wait(Transaction_delay,sc_core::SC_NS)
break;

………….
case OP_SB:
……….

STORE(WRITE_BYTE, addr,data);
next_pc = r_npc + 4;
Wait(Transaction_delay,sc_core::SC_NS);

break;
}

}

Fig. 3. Calculation part of processor

It is noted that the instruction execution time MicroBlaze

processor are estimated from the technical documentation

given by [19].

In this paper we identify the steps needed to run the

software instruction level. The processor begins with a

reading phase of the next instruction from the instruction

memory initializing a request m_iss.getInstructionRequest

(ins_asked , ins_addr) . The ins_addr parameter specifies

the address of the instruction, ins_asked represents the

state of the application (or not made) variable. The second

step is to decode the instruction in microblaze.cpp to

identify the type of the operation via the IDecode

function(m_ir , & ins_opcode , & ins_rd , & ins_ra , &

ins_rb , & ins_imm) . The next step is reading the operands

from memory by tlm:: tlm_response_status stat =

socket.read (ins_addr , localbuf) . The final phase involves

the execution of the current instruction and updates the

processor registers and the program counter.

5.2 Software integration

We have two applications were tested in the platform: a

game of life and adder integers:

 The game of life: The universe of the Game of Life is

an infinite two-dimensional orthogonal grid of square

cells, each of which is in one of two possible states,

alive or dead. Every cell interacts with its eight

neighbors, which are the cells that are horizontally,

vertically, or diagonally adjacent [14].

 Adder: The choice of this function simply tests the

functionality of the processor.

6. Results and discussion

Several experiments were conducted using the same

applications and configurations MPSoC system to evaluate

CABA levels, ISS, Native and PV + T. In the model of

time (PV + T), we integrate specifications OPB and the

time between events as the specifications for the

MicroBlaze protocol.

To calculate the speedup of the simulation we implemented

a function to calculate the start time and the end of the

simulation: t2 = “end time”, t1 = “start time”.

Speed-up formula:

Precision formula:

∆x -∆bit

With x = PVT,ISS or Native.

Table 2: simulation results for CABA, ISS, Native and PV+T

Input Simulation Type Speed-up precision

adder PV+T 4 2%

 ISS 3 3

 Native simulation 15 15%

 CABA 1 0%

Game PV+T 11 3%

of life

ISS 9 6%

 Native simulation 102 25%

 CABA 1 0%

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 107

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The experimental results show that the adoption of

SystemC as development language and TLM as modeling

approach at high levels of abstractions design, can

significantly reduce the time of design validation, and

allow the development of models very quickly. In addition,

the simulation results at higher levels of abstraction show:

 For the ISS and ISS + T, there are no communication

costs between ISS C model and its wrapper SystemC,
and precisely the ISS + T approach has minimum error
accuracy for all tested configurations while having a
good acceleration factor.

 Native model is very fast in terms of simulation speed

but has a precision error indicating that this model
would be very useful for HW / SW functional co-
simulation of large SoC based on RISC processors.

The precision error with PV+T is minimal for all

configurations tested and has a good acceleration factor.

We believe that the use of a new model (PV + time +

priority) that integrates event-based priorities management

between the two processors transactions, may be obtained

by adding these priorities to the PV+T level of simulation

and is likely to minimize the errors in the estimations of

PV+T. Compared to the sub-level ISS, the level PV + T

slows the simulation by 30%.

A precise analysis of the trace produced by the SystemC

simulator shows that 80% of the simulation time is made

for the execution of the function of the bus while the

simulation time of the calculation part is almost zero which

reflects our choice to treat the case of PV + T + P.

Also, we noticed that the nature of the software running on

the platform impacts performance differences between the

four levels. Thus using our platform, we could choose an

acceptable level and significantly reduce the development

effort compared to CABA level.

7 Conclusions

In this paper, we describe the systems at the transaction

level for ISS, Native and PV + T, in this latter case is our

implementation approach in the sense to estimate the

performance in terms of acceleration (simulation time) and

the precision of the simulation of systems MPSoC.

Different material components have been designed to

implement the three levels. To obtain an accurate

prediction of the execution time in our environment, we

have enriched the level PV + T by timing patterns to an

estimation error on the accuracy of the system description.

As future work, we plan to develop PV+T+P model in our

platform.

References
[1] L. Benini et al. MPARM: Exploring the Multi-

Processor SoC Design Space with SystemC. Springer

J. of VLSI Signal Processing, 2005.

[2] F. Ghenassia “TLM with SystemC Concepts and

Applications for Embedded Systems” Nov 2005, Springer
[3] SystemC homepage, http://www.systemc.org/.
[4] http://www.soclib.fr/trac/dev/wiki/Component

[5] R.B. Atitallah, S. Niar, A. Greiner, S. Meftali, J. L.

Dekeyser “Estimating energy consumption for an MPSoC
architectural exploration,” in ARCS ‟06,
Frankfurt, Germany, 2006.

[6] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid

design space exploration of heterogeneous embedded

systems using symbolic search and multi-granular

simulation. In Conference on Languages, compilers and

tools for embedded systems, Berlin, Germany, 2002.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C.

Passerone, and A. Sangiovanni-Vincentelli. Metropolis: An

integrated electronic system design environment. IEEE

Computer, 36(4), Apr. 2003.

[8] S Boukhechem, EB Bourennane. TLM platform based on

systemC for STARSoC design space exploration. In AHS

'08. NASA/ESA Conference. Noordwijk

[9] D. Gajski and al. SpecC:Specification Language and

Methodology. Kluwer, 2000.

[10] T. Groetker and al. System Design with SystemC. Kluwer,

2003.

[11] A. Donlin. Transaction level: flows and use models. In

CODES+ISSS ’04, Stockholm, Sweden.

[12] L. Cai and al. Transaction level modeling: an overview. In

CODES+ISSS ’03, New York, USA.

[13] L. Benini and al. SystemC cosimulation and emulation of

multiprocessor SoC designs. IEEE Computer, vol. 36, no. 4,

April 2003.

[14] F. Fummi and al. Native ISS-SystemC integration for the

cosimulation of multi-processor SoC. In Date’04, Paris,

France.

[15] E. Viaud, F. Pecheux, and A. Greiner. An efficient TLM/T

modeling and simulation environment based on parallel

discrete event principles. In DATE’06, Munich, Germany.

[16] D. Kim, Y. Yi, and S. Ha. Trace-driven HW/SW

cosimulation using virtual synchronization technique. In

Design Automation Conference’ 05, Anaheim, California.

[17] C Helmstetter, V Joloboff. SimSoC: A SystemC TLM

integrated ISS for full system simulation, in APCCAS 2008,

Macao, China

[18] P Gerin, MM Hamayun, F Pétrot. Native MPSoC co-

simulation environment for software performance

estimation, in CODES+ISSS '09, New York, USA

[19] “MicroBlaze Processor v5.4”, Reference Guide, UG081

(v5.4), February 21, 2006

[20] http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

[21] On-Chip Peripheral Bus Architecture Specifications V2.1

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 108

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

http://link.springer.com/search?facet-author=%22Rabie+Ben+Atitallah%22
http://link.springer.com/search?facet-author=%22Smail+Niar%22
http://link.springer.com/search?facet-author=%22Alain+Greiner%22
http://link.springer.com/search?facet-author=%22Samy+Meftali%22
http://link.springer.com/search?facet-author=%22Jean+Luc+Dekeyser%22
http://link.springer.com/search?facet-author=%22Jean+Luc+Dekeyser%22
http://scholar.google.com/citations?user=gNQg1R4AAAAJ&hl=fr&oi=sra

