

Priority Based Job Scheduling For Heterogeneous
Cloud Environment

S.Rekha1and R.Santhosh Kumar2

1Information Technology, Sri Venkateswara College of Engineering,

Sriperumbudur, Tamil Nadu, India

2Information Technology, Sri Venkateswara College of Engineering,
Sriperumbudur, Tamil Nadu, India

Abstract

Cloud computing is a form of distributed and parallel computing,
whereby a 'super and virtual computer' is composed of a cluster
of networked, loosely coupled computers acting in concert to
perform very large task. It has emerged as a strong domain in the
field of networking primarily due to the ability of running an
application or program simultaneously on multiple nodes that are
connected through a network. Hence, it involves sharing of
resource or computational information amongst the nodes. A
proper job-scheduling algorithm is required for the efficient
functioning of the cloud environment. The proposed priority
based scheduling algorithm for cloud computing is based on
factors that govern the functioning of a job.

Keywords: Cloud Computing, Job Scheduling, Priority,
Computational Complexity and Level of Parallelism.

1. Introduction

In cloud computing, multiple nodes process large amount
of data and perform complex computations. Hence jobs
arriving to be executed must be scheduled effectively since
job delays or data loss is not acceptable in a highly
clustered network. The main aim of the job-scheduling
algorithm is to increase the throughput of the system and
improve the performance. The existing Batch mode
heuristic scheduling algorithms (BMHA) are: First Come
First Served scheduling algorithm (FCFS), Shortest Job
Fastest Resource (SJFR),Longest Job Fastest Resource
(LJFR),Min–Min algorithm and Max–Min algorithm.
These algorithms consider all jobs with equal importance.
This cannot be the scenario when some jobs have to be
executed prior to others. The proposed Priority Based
Scheduling algorithm resolves this issue. This algorithm
proves to be efficient as it considers the computational
complexity, level of parallelism, no of resources available
and so on. The paper is organized as follows: section 2

deals with the cloud framework, section 3 describes the
proposed algorithm, section 4 provides a picture of
performance analysis and section 5 concludes the paper.

2. Cloud Framework

The cloud framework or architecture comprises of the
cloud components that communicative with each other and
deliver the output. These components are classified into
two categories: front end platforms such as mobile devices
or any client and back end platform : servers, storage and a
network. This is shown in fig 1.

Fig 1. Cloud Computing Architecture

Jobs arrive at the scheduler to be executed along with
request for cloud resources. The function of the scheduler
is to select how several incoming jobs have to be
processed and allocate resources wisely. The overall
performance and throughput of the system depends on
how the scheduler works. The scenario is depicted in fig 2.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 114

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig 2 : Cloud job scheduler.

3. Proposed algorithm - Priority Scheduling
in Cloud Computing

In the proposed priority scheduling algorithm in cloud
computing, a parameter named “priority” has been
introduced. The jobs are classified into high, medium and
low based on the priority. The priority is assigned based
on the computational complexity of the job and level of
parallelism of the resources. The level of parallelism of a
resource and computational power of a job is decided by
considering the job parallelism, resource parallelism and
job’s computational complexity respectively. In this
algorithm, a higher priority is assigned to job of higher
computational complexity and the resource exhibiting
higher level of parallelism .The fastest resource available
is assigned to the job of high priority. This priority
algorithm optimizes the computational speed of the cloud
and reduces the usage of nodes and also shows a consistent
performance during execution of the assigned jobs.

3.1. Computational Complexity

Task partitioning algorithm takes care of efficiently
dividing a given job into subtasks of appropriate grain size
and an abstract model of such a partitioned application is

represented by a Directed Acyclic Graph (DAG). Each
task can be executed on a processor and the directed arc
shows transfer of relevant data from one processor to

another. Each node in DAG represents sequence of
operations. .Each task of a DAG corresponds to a
sequence of operations and a directed arc represents the
precedence constraints between the tasks. All the
operations are represented in terms of additions. The
amount of computations involved in a particular node is
represented by node weight.

Fig 3 : Directed Acyclic Graph (DAG)

This graph needs to be traversed to find out the longest
path. The total sum of the amount of computations
involved in each node through which the traversal has
been performed leads to computational complexity of the
application.

3.2. Level Of Parallelism

Generally, the amount of parallelism exhibited by a job is
computed and analysed by analysing it’s layered DAG
representation. The width of the DAG is equal to the
number of sub tasks which are executed through
parallelism. The maximum number of independent
instructions getting executed in a unit time (in one clock
cycle) is equal to the width of the DAG that gives the
amount of parallelism exhibited by the job. The amount of
parallelism exhibited by a resource is computed by
considering the number of operations per cycle per
processor, number of processors per node and number of
nodes in a system. The amount of parallelism exhibited by
each free resource available in the cloud is computed. The
amounts of parallelism exhibited by all the available free
resources in the cloud are fixed by analysing the max, min
and mid ranges. The value for the level of parallelism is

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 115

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

assigned by comparing the amount of parallelism
exhibited by each job with the max, min and mid ranges.

3.3. Priority Assignment

When it comes to Priority based job scheduling in
cloud higher priority is assigned generally to a job which
needs high computational power and which exhibits high
parallelism. A job, which exhibits low parallelism and
needs low computational power for execution is given a
low priority. A job, which exhibits a medium level of
parallelism and needs medium computational power, is
given a medium priority. The fastest free resource
available in the cloud is allocated to the job which has
high priority. The procedure is given below :

Amount of Parallelism = OC* PN*NS
Where OC= No. of operations per cycle per processor
 PN= No.of processors per node
 NS=No. of nodes in a cloud.

Let m represent number of free resources available in the
cloud and n represent the number of jobs present in the
queue. The worst case time complexity of the algorithm is
O(n logn) ,when m <= n and O(m logm) when m > n.

3.4. Proposed Algorithm

AssignLevelofParallelism(ResourceList Rs_List)
While(Rs_List!=NULL)
For each resource
/*OC = No. of operations per cycle per processor
PN = No. of processors per node
NS = No. of nodes in a coud*/
/* LL_List contains the amount of parallelism
Exhibited by each resource */
LL_List[i] = OC*PN*NS
End While
Find the Max, Min and Mid values in PR_List
/* LJ_List contains the amount of parallelism exhibited
by each job */
For each job in LJ_List
If LJ_List[i] >= Maximum
LP_List[i] = High //LP_List contains the level of
parallelism value
Else If LJ_List[i] >= Middle
LP_List[i] = Medium
Else LP_List[i] = Low
EndIf

End AssignLevelofParallelism
Assign Priority Procedure
AssignPriority (CloudList CL_List)
While(CL_List !=NULL)
For each job
/* CompC_List contains the Computational Complexity of
jobs */
If (CompC_List[i] =High AND LP_List[i] = High)
Priority[i] = 1
Else If (CompC_List[i] = High AND LP_List[i] =
Medium)
Priority[i] = 2
Else If (CompC_List[i] = High AND LP_List[i] =Low)
Priority[i] = 3
Else If (CompC_List[i] = Medium AND LP_List[i] =
High)
Priority[i] = 4
Else If (CompC_List[i] = Medium AND LP_List[i] =
Medium)
Priority[i] = 5
Else If (CompC_List[i] = Medium AND LP_List[i] =
Low)
Priority[i] = 6
Else If (CompC_List[i] = Low AND LP_List[i] = High)
Priority[i] = 7
Else If (CompC_List[i] = Low AND LP_List[i] =
Medium)
Priority[i] = 8
ElseIf (CompC_List[i] = Low AND LP_List[i] = Low)
Priority[i] = 9
EndIf
End AssignPriority

4. PERFORMANCE STUDY

Here we compare the perfomance of our priority Based
scheduling algorithm for resources in cloud with the
existing job scheduling algorithms in cloud First Come
First Serve, Shortest Job Fastest Resource, Longest Job
Fastest Resource and Min Min algorithm and Max Min
algorithm.

4.1. First Come First Serve (FCFS)

This algorithm schedules the job to the available resources
on the cloud on the “First Come First Serve” basis .From
the Fig 4, we get that FCFS algorithm is basic and does
not consider the factors like computational complexity and
level of parallelism during scheduling .It shows very low

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 116

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

computation results compared to other scheduling
algorithms.

Fig 4:Implementation of FCFS

4.2. Shortest Job Fastest Resource (SJFR)

Shortest Job Fastest Resource is a scheduling algorithm,
assigns the job with very low turnaround time to the fastest
resources in the cloud . From the Fig 3 we can decipher
that SJFR is more stable in handling jobs and hence
outperforms FCFS scheduling algorithm.

Fig 5:Implementation of SJFR

4.3. Longest Job Fastest Resource (LJFR)

Longest Job Fastest Resource is a scheduling algorithm
that assigns the complex job to a big efficiency resource .
It tries to reduce the overall execution time of the jobs.
From the Fig 3 of the LJFR algorithm we can infer that
LJFR outperforms FCFS and the SJFR as the jobs of high
computational complexity are assigned to faster resources
in the cloud which leads to shorter execution time.

Fig 6:Implementation of LJFR

4.4. Min-Min Algorithm

The Min-Min algorithm schedules the less complex jobs to
high performance resources for execution. It is similar to
the Shortest Job Fastest Resource (SJFR) algorithm. From
the Fig 3 we can observe that outperforms FCFS but
shows low performance comparing the other algorithms
due to the delay caused in execution of complex jobs.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 117

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig 7: Implementation of Min-Min

4.5 Max-Min Algorithm

The complex job is scheduled first to high performance
resources in the cloud and leads to the long delay in the
execution of less complex jobs. This is similar to the
Longest Job Fastest Resource (LJFR) algorithm. Fig 3
shows the performance of the Max-Min algorithm where it
outperforms FCFS, SJFR, MIN-MIN algorithms.

Fig 8:Implementation of Max-Min

4.6. Priority Based Algorithm

The Priority based Algorithm generally is based on a new
concept “priority”. In this generally a job which needs

high computational power and which exhibits high
parallelism is given a high priority. A job, which exhibits
low parallelism and needs low computational power, is
given a low priority. A job, which exhibits a medium level
of parallelism and needs medium computational power, is
given a medium priority. The fastest free resource
available in the cloud is allocated to the job which has
high priority. The job with medium computational
complexity and medium level of parallelism are given a
first priority. This method of prioritizing enhances the rate
of completion of jobs with a greater accuracy and with a
proper usage of resources. From Fig 3 of the Priority based
algorithm, we can state that Priority based outperforms
FCFS, SJFR , LJFR,MIN-MIN and MAX-MIN due to its
enhanced usage of resources.

 Fig 9: Implementation of Priority

4.7. Comparative Study Between Priority Based
Cloud Scheduling Algorithm And Other Algorithms

Priority based algorithm provides Maximum economic
utilization of resources that are provided for Low
Computational Complexity, exhibiting High Parallelism
and High Complexity, exhibiting Low Parallelism
compared to other task scheduling algorithms like FCFS,
LJFR, LJFR, MIN-MIN and MAX-MIN . This gives the
best execution results among all the algorithms. It helps in
scheduling tasks that exhibit medium computational
complexity, medium parallelism. Priority based algorithm
also optimizes the allocation of resources for completion
of complex tasks with comparatively higher performance
than LJFR, SJFR, MAX-MIN and MIN-MIN. Based on
Fig 4 we get a clear idea about the performance of various
global scheduling algorithms. Among all the above listed
algorithms Priority based algorithm as seen from the
graph is the best algorithm that provides efficient load
balancing ,and better computation with efficient usage of
resources in scheduling job in a cloud with heterogeneous
resources. This is shown in fig10 .

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 118

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 10: Performance Chart

5.CONCLUSION

The cloud is a heterogeneous environment and designing a
scheduling algorithm with an aim to perform scheduling a
job to a resource in a optimized way has been a complex
task.The fundamental algorithms (FCFS,
SJFR,LJFR,MIN-MIN,and MAX-MIN) schedule the jobs
based on computational complexity of the jobs and the
speed of the resources. In the Priority based algorithm
parameter named “priority” is used in the analysis and the
jobs are classified into high, medium and low
categories .In the Priority Based algorithm the jobs that
possess a high computational complexity and the nodes
that exhibits high level of parallelism is given a high
priority. This method of prioritizing the jobs leads to
completion of the job with high efficiency, lesser
execution time with the usage of lesser number of
resources and also shows consistency during the execution
of the assigned tasks. The effectiveness of our algorithm is
evaluated through simulation results and its superiority
over other known algorithms is demonstrated.

6.REFERENCES

 [1]. Dr.G.Sumathi,R.Santhosh Kumar,and S.Sathyanarayanan,
“MidSFN Local Scheduling Algorithm for Heterogeneous Grid
Environment”, IJCSI International Journal of Computer Science
Issues, Vol. 9, Issue 3, No 3, May 2012

[2]. Shamsollah Ghanbari, Mohamed Othman, “A Priority based

Job Scheduling Algorithm in Cloud Computing”, Procedia
Engineering 50 (2012) 778 – 785.

[3]. Stelios Sotiriadis, Nik Bessis, Nick Antonopoulos, “Towards
inter-cloud schedulers:A survey of meta-scheduling
approaches” ,2011 International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing

[4]. Mladen A. Vouk, “Cloud Computing – Issues, Research and
Implementations”,Journal of Computing and Information
Technology - CIT 16,2008,4,235246doi:10.2498/cit.1001391

[5]. Anand, L., Ghose, D., and Mani, V., ELISA: an estimated
load information scheduling algorithm for distributed

computing systems. Computers & Mathematics with
Applications, 37(8):57-85, 1999.

[6]. Yun-Han Lee et al, Improving Job Scheduling Algorithms in
a Grid Environment, Future Generation Computer Systems,
27(2011) 991–998

[7]. Wei Wang, Cloud-DLS: Dynamic Trusted Scheduling for
Cloud Computing, Expert Systems with Applications 39
(2012) 2321–2329.

[8]. Tai-Lung Chen et al, Scheduling of Job
 Combination and Dispatching Strategy for Grid and Cloud

System, GPC,(2010) 612–621.
[9]. Domagoj Jakobovi´c et al, Evolving priority scheduling

heuristics with genetic programming, Applied Soft
Computing 12 (2012)2781–2789.

[10]. Monir Abdullah, Mohamed Othman et al, Optimal
Workload Allocation Model for Scheduling Divisible Data
Grid Applications,Future Generation Computer Systems 26
(2010) 971-978.

[11]. Amin Shokripour , Mohamed Othman et al, New Method
for Scheduling Heterogeneous Multi-Installment Systems,
Future Generation Computer Systems 28 (2012) 1205–1216.

S.Rekha is currently pursuing final year of B.Tech Information
Technology from Sri Venkateswara College of Engineering. She
is a Certified Windows Phone Developer and also a member of
IEEE. Her area of research includes grid computing and cloud
computing.

R.Santhosh Kumar has completed B.Tech Information
Technology from Sri Venkateswara College of Engineering. He
is a Microsoft Student Partner. He has published five research
papers in international journals. His research area includes
networking, big data, grid computing and cloud computing.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 119

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

