
Implementation of Real Time Local Search Particle Filter

Based Tracking Algorithms on BeagleBoard-xM

Jharna Majumdar1, Amar Mani Aryal2, Nabin Sharma Rijal2, Parashar Dhakal2, Nilesh Kumar Mishra2

1Dean R&D, Prof. & Head, Department of CSE (PG)

NitteMeenakshi Institute of Technology, Bangalore-560064, India

2Final Year, Undergraduate students, Department of ECE

NitteMeenakshi Institute of Technology, Bangalore-560064, India

Abstract
This work hybridizes Particle Filter and Local Search algorithm

for the realization of intelligent computer vision based target

tracking on BeagleBoard-xM, an ARM based embedded

platform, which tracks moving targets in a continuous scene

operating in real-time. The integration of Local Search

algorithms with Particle filter significantly increases the

accuracy of tracking. The use of embedded board helps to

reduce the space requirement and the cost of design. The

implementation of target tracking on embedded platform has

many end uses especially in the field of robotics, surveillance,

human-computer interaction applications, etc.

Keywords: ARM, BeagleBoard–xM, Color histogram,

Distance Measures, Embedded Computer Vision, GStreamer,

Linux, Local Search, Particle filter, Re-Sampling, SDL, Target

Tracking.

1. Introduction

Object tracking, an inevitable constituent of computer

vision, generates the trajectory of the specified object

over time by locating its position in each frame in the

video sequence. The use of object tracking is pertinent in

various vision applications such as motion based

recognition, automated surveillance, video indexing,

human computer interface, vehicle navigation, road

traffic control, and security and surveillance systems.

Particle filter has as recently as 1993 surfaced the

domain of computer vision and has become very useful

in computer vision related applications. The advantage

which the particle filter has over other types of filters

like Kalman filter, Extended Kalman filter, etc. is that it

allows a state space representation of any distribution. It

also handles nonlinear, non-Gaussian, dynamical and

observation models, and nonlinear, non-Gaussian process

and observation noises [7].The introduction of local

search [6] based scheme increases the accuracy of

tracking since predictions are refined in a local search

procedure that utilizes the most recent observation.

The present work uses BeagleBoard-xM. To achieve real

time performance, DSP core i.e. TI’s TMS320C64x+ in

the board is used to offload the computationally intensive

task of evaluating distance measure. The ARM

CORTEX-A8 CPU in the board is used to realize frame

acquisition and display modules. Tracking is initiated by

the user by giving a click on the part of the input image

containing the object to be tracked. A template is

extracted around the clicked co-ordinate and is stored as

reference image. A color histogram is computed using

the HSV model and the weight of the particle is

calculated comparing the particle histogram with the

reference histogram using one of the distance measures.

The position of the particle having highest weight is

chosen as the best match from the Particle filter

algorithm. The best match from the Particle filter is

applied to the local search procedure which later yields a

refined solution.

Our work contributes to this line of real time tracking by

providing a detailed review of the Particle filter

algorithm applied to target tracking and the improvement

in the accuracy of the tracking after introducing Local

Search scheme. The performance of the work is analyzed

with and without utilizing DSP supplied with the board.

A comparative analysis is also done implementing basic

Particle filter alone and Particle filter with Local Search

scheme. The Local Search Particle filter [6] comprises

of distance measures, local search procedure and re-

sampling methods, which are varied on an Intel platform

and compared using accuracy method. The best methods

and the algorithm giving the best performance are

implemented on embedded platform.

2. Platform Overview and Specifications

Computer vision often uses complex, computationally

intensive algorithms with constraints like high cost, size,

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 28

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

and energy considerations and hence selection of the

right processor to optimize algorithm implementation is

important. The object tracking systems of the past are

mostly built using general purpose desktop PC or laptop,

which is inadequate to meet the demands of real-time

computation and miniaturization. The performance can

be improved by selecting the proper mobile processor in

addition to an environment having different on-chip

resources.

Low-power ARM based embedded system-on-chips

(SoCs) combine various co-processors including a

vectorized Floating Point Unit (FPU), a Graphics

Processing Unit (GPU) and a Digital Signal Processor

(DSP) on a single chip. The embedded platform which

has been selected for the study is BeagleBoard-xM [1].

2.1 Embedded Platform

Fig. 1 Schematic of BeagleBoard-xM

The BeagleBoard-xM [1] is a low-cost, low power, fan-

less open source hardware single board computer with

DM3730 system-on-a-chip. BeagleBoard-xM is the

modified version of BeagleBoard which has faster CPU

core (clocked at 1GHz compared to 720MHz) and more

RAM (512 MiB compare to 256 MiB).

The board uses up to 2 W of power and because of the

low power consumption, no additional cooling and heat

sinks are required. By eliminating all the on-board

peripherals and providing standard expansion buses like

high-speed USB 2.0, Ethernet port and HDMI port,

developers and researchers can bring their own

peripherals and expand the board ability whatever they

want. A minimal version of Linux Angstrom is installed

in the board to experience the power of processor.

3. Local Search Particle Filter Based

Tracking

The general approach for the proposed tracking involves

the acquisition of data using imaging sensors (camera),

initialization of the target to be tracked by the user, the

use of Particle filter algorithm to search the target in each

subsequent frames and Local Search refinement [6] to

improve the accuracy of tracking. The data resulting

from the algorithm is used to find the position of the

target. The Local Search Particle Filter based tracking [6]

involves the use of distance measures (to measure

histogram similarity), scheme for Local Search and re-

sampling methods (to solve particle degeneracy).

Fig. 2 Flowchart for Local Search Particle Filter Scheme.

3.1 Particle Filter

The key idea of particle filtering is to represent the

posterior probability density function by a set of discrete

samples known as particles. Each particle represents a

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 29

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

hypothesis of the state and it is randomly drawn from the

prior density. In other words, each particle is a random

state representing one possible location of the object

being tracked. The set of particles contains more weight

at locations where the object being tracked is more likely

to be present. We can determine the trajectory of the

tracked object by taking the particle with the highest

weight or the weighted mean of the particle set at each

time step.

The weight of each particle is computed in the

consecutive frames using distance measure between the

particle and reference histogram. Re-sampling methods

are used to select and re-generate the particle to keep

tracking and particle count intact. This is done to reduce

the degeneracy problem in particle filters. The weight

characterizes the quality of a specific particle. A large

weight will be assigned to a good particle, and a small

weight will be assigned to a bad particle.

3.2 Local Search Scheme

In the Local Search [6] scheme, the highest weight

particle obtained in the Particle filter stage is refined

using a local search procedure as shown in Fig. 2. The

neighborhood around the highest weight particle is

defined as shown in Fig. 3(a) and the weight is computed

taking the neighborhood location and comparing the

corresponding particle histogram with the reference

histogram. The weight calculated is then compared with

highest weight obtained from the Particle filter stage. If

the weight of the neighboring particle is greater than that

of the weight computed from Particle filter stage, it is

taken as the improved solution. The procedure is

repeated for all the neighbors considered in a predefined

order as shown in Fig. 3(a) until the first improvement in

the weight is observed as shown in Fig. 3(b). The

improved particle is now taken as the reference particle

as shown in Fig. 4(b) and the above process is repeated.

The repetition is continued until there is no improvement

in the weight as shown in Fig. 4(d) and the target

position is updated corresponding to the new particle as

shown in Fig. 4(d).

Fig.3 shows the Local Search strategy [6]. Our work

makes use of 8 neighboring pixels around the highest

match co-ordinate from the Particle filter for the

refinement purpose.

Fig. 3 Local Search Strategy

Fig. 4 Detailed overview of Local Search scheme
[Larger circle indicate larger value of weight]

3.3 Re-sampling

Re-sampling [5] is used to solve the problem of particle

degeneracy by which particles are re-generated around

the target location to make the tracking process intact.

Residual re-sampling was selected owing to its

performance.

Residual re-sampling, also called remainder re-sampling,

is an efficient way of decreasing the variance due to re-

sampling. Residual re-sampling involves calculating the

sum of the weight of the particles, normalizing the

weights with the calculated sum, selecting the particle

with normalized weights greater than the predefined

threshold and truncating those having weights less than

the threshold and replicating the particles (equal to the

number of truncated particles) around the particle with

maximum weight.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 30

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3.4 Distance Measures

A number of distance measures are used to compute the

weight of the particle. The value of distance (‘d’) lies

between 0 and 1. For a perfect match, value of‘d’ should

be close to 1.

3.4.1 Bhattacharya Coefficient





m

1u
u2*Hu1H]2,H1ρ[H (1)

Where, u =histogram bin index, m=number of bins.

For two identical normalized histograms we obtain 1ρ  ,

indicating a perfect match. To quantify the distance

between two distributions, the distance‘d’ is defined as

H2]ρ[H1,1d  (2)

3.4.2 Correlation Coefficient Histogram Method






(i)
2

2'(i) . H
2

 1' H

 (i)2' (i) . H1' H
)2,H1d(H (3)

3.4.3 Chi-Square Distance







(i)2H(i)1H

2
(i))2H(i)1(H

)2,H1d(H (4)

3.4.4 Intersection Distance

 (i))2H,(i)1min(H)2H,1d(H (5)

Where, H1 = Reference Histogram

H2 = Particle Histogram

1H1H1'H 

2H2H2'H 

To choose the best combination of distance measure and

re-sampling methods accuracy measures are used. These

methods consider consecutive frames, and repeatedly

implement various algorithms to compute the accuracy

of target tracking. The various accuracy methods used in

the work are:-

1. Pixel Cross Correlation

2. Pixel Difference

4. The Proposed Algorithm

Step1: Initialize initial position (Xt) of target in the first

frame.

Step2: Generate a particle set of N particles

{X
m

t} m = 1 ….N around the object or entire frame.

Step3: Calculate the histogram for all the particles and

compute the weight by comparing with the reference

histogram.

Step4: Normalize the weights by dividing weight of each

particle by total weight.

N]:1[i;
N

1m
mw

iw
niw 
























 (6)

Where,

niw =Normalized weight of i
th

 particle

iw = Weight of i
th

 particle




N

1m
mw = Sum of weight of all particles in current frame

N = no of particles

Step5: Select the particle location with highest weight

as the match from Particle filter stage.

Step6: Apply local search procedure around the best

match from step 5 to get refined solution.

Step7: Re-sample the particles for next iteration.

5. Overview of the Tracking System

The embedded target tracking system based on ARM

consists of four different modules: Image Acquisition

module, Pre-processing module, Tracking module and

Display & User Interface module.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 31

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

5.1 Image Acquisition module

The images are acquired from a live camera feed or a

stored video file (used for testing) of 320 x 240 pixels at

30 fps. The camera gets connected to the BeagleBoard-

xM via one of its USB ports. GStreamer [2] multimedia

framework has been used in order to access the frames

from the image source. The GStreamer framework

provides a unified way of accessing the V4L2 camera

and the stored video by setting up a proper pipeline.

5.2 Pre-processing Module

In order to reduce the computation required for

processing each frame and to reduce the light intensity

variation problem, the input frames are converted into

HSV using an efficient integer method by the

preprocessing module.

5.3 Tracking Module

The tracking module performs the actual work of

continuously tracking the reference template in the input

frames. The tracking module exploits the DSP core (TI’s

TMS320C64x+) on the board which is used to calculate

computationally intensive task of calculating the distance

between the reference and particle histogram. C6Accel

[4] framework has been used to develop the DSP kernels

for all the distance measures, which can be called from

the ARM side. The RGB to HSV conversion is also

executed on DSP side.

5.4 Display and User Interface Module

Input frames acquired are continuously displayed on a

display system attached to the board. The tracking is

initiated by the user by clicking on any part of the input

image being displayed. A template is extracted around

the clicked co-ordinate and is used as reference for the

tracking module. The tracked target is also annotated on

the displayed image by a colored rectangle. Simple

Direct Media Layer (SDL) [3] is used to implement this

module. The SDL framework also provides the

capability for handling keyboard and mouse events.

Fig. 5 Flow diagram of the Target Tracking system.

6. System Setup and Implementation

A minimal version of Angstrom Linux 2011.03 is

installed on the BeagleBoard-xM. Angstrom Linux is

chosen as it has good support for DSP development

using the C6Accel framework. It also provides high

performance by utilizing the complete 1GHz clock

frequency of the board and a stable kernel. The

customized software image is generated using Narcissus

and is installed on the SD card from which the board

boots up. The necessary tool chains (gcc), software

libraries (sdl, gstreamer) along with their development

headers and kernel modules (dsplink, cmem, uvcvideo)

are selected to be integrated into the generated image to

save the burden of later manual compilation and

installation of the same.

The Digital Video SDK from TI is installed on a 32-bit

Intel PC with Ubuntu 12.10 for accessing the C6Accel

framework used for compiling the DSP side kernels and

the ARM side wrappers for the algorithms implemented.

The generated objects are finally linked with the target

tracking application on the board. The output of the

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 32

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

system can be displayed on a monitor via the DVI-D

output. A USB keyboard and mouse are connected to the

system for user input.

7. Results and Analysis

The Distances measures like Bhattacharya, Chi-square,

Co-relation and Intersection were found to be effective

by the accuracy analysis.

The execution times for the algorithms on BeagleBoard-

xM (without and with the DSP) are tabulated in Table 1.

The performance is improved 2.3 to 4.6 times by

utilizing the computing power of the onboard DSP core

and nearly all the algorithms have met the requirements

of real-time.

Table 1: Comparison of execution time per frame with and without

using DSP

Distance Measure Time(ms)

Without DSP

Time(ms)

With DSP

Bhattacharya 40 12

Chi-square 33 9

Correlation 29 9

Intersection 28 9

7.1 Accuracy methods

To determine the accuracy of the proposed approaches to

be practically useful, a thorough analysis on execution

time is done. The accuracy of tracking is the degree of

closeness of measurements of the match value to that of

the actual value. Validation of the algorithm can be

achieved by analyzing accuracy methods. The input here

will be two matched images (template and matched

images) and the output will be the accuracy of the match.

A sample video is used for accuracy analysis. Let the

reference image be ‘A’ and the matched image be ‘B’.

Following accuracy measurements are used.

7.1.1 Pixel Cross-Correlation

Steps:

i. For each position in A, find the sum of square

difference between pixel values.

 
2

B(i,j))(A(i,j)D
 (7)

ii. Find the percentage of difference in pixel value.

))j,i(B(*))j,i(A(

D
P




 (8)

iii. Find accuracy using the equation

P100Accuracy 
 (9)

7.1.2 Pixel Difference Matching

In this method, sum of difference between each pixel is

used to find the accuracy.

Steps:

i. For each position (i, j), find the difference in pixel

value between the reference image and the matched

image.

)j)(i,Bj)(i,A(abs 

 ii. Find the sum of pixel difference.

 

,ba

B)(AabsSum

 (10)

iii. Accuracy is found by subtracting the sum of

difference by the total number of possible values.

N255

100*Sum)N255(
Accuracy




 (11)

Where, N is the number of pixels.

The accuracy of the tracking using different accuracy

measures before and after introducing Local Search

scheme [6] in the Particle filter is depicted in Table 2 and

Table 3. It is clearly visible from the table that the

accuracy significantly increases with very negligible cost

of computation time after the introduction of Local

Search scheme [6].

Table 2: Accuracy results for Particle filter without Local Search

Scheme.

Distance

Measure

Pixel Cross

Correlation

Pixel

Difference

Execution

time(ms)

Bhattacharya 95.00865 95.99864 12

Correlation 94.08234 96.39664 9

Chi-square 94.09087 97.00675 9

Intersection 93.00986 95.89765 9

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 33

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 3: Accuracy Results for Particle Filter with Local Search Scheme

Distance

Measure

Pixel Cross

Correlation

Pixel

Difference

Execution

time(ms)

Bhattacharya 97.92356 99.86574 14

Correlation 97.87594 98.00078 10

Chi-square 96.99897 97.76589 10

Intersection 97.07897 99.00675 11

7.2 Results

Frame size: 320x240

Template size: 40x80

Number of particles: 250

Outdoor Scene:

Frame:1
(164,84)

Selected Template

Frame:20

[0.9216],(136,88)

Frame:75

[0.9623],(103,157

Frame:125

[0.9273],(119,134)

Frame:150

[0.9214],(108,47)

Frame:200
[0.9358],(93,105)

Frame:225
[0.8996],(63,98)

Frame:300
[0.8683],(95,110)

Indoor Scene1:

Frame:1

(195,113)

Selected Template

Frame:25

[0.9657],(193,108)

Frame:125

[0.8972],(139,186)

Frame:178

[0.9025],(159,171

Frame:210

[0.8965],(168,161)

Frame:230
[0.9157],(172,186)

Frame:275
[0.9113],(183,198)

Frame:280
[0.9001],(180,197)

Indoor Scene2:

Frame:1

(93,98)

Selected Template

Frame:5

[0.9347],(98,96)

Frame:25

[0.8813],(109,89)

Frame:75

[0.9008],(113,127)

Frame:100

[0.9213],(119,91)

Frame:125
[0.9124],(127,89)

Frame:175
[0.9314],(121,105)

Frame:225
[0.9224],(142,111)

Note: values in the large braces represent match value

and the small braces represent the match co-ordinates.

References
[1] BeagleBoard-xM Rev C System Reference Manual

http://www.beagleboard.org

[2] GStreamer Manual – http://www.gstreamer.net/

[3] Simple Direct media Layer (SDL) – http://www.libsdl.org/

[4] C6Accel Advanced Users Guide

http://processors.wiki.ti.com/index.php?title=C6Accel_Ad

vanced_Users_Guide

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 34

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[5] Jeroen D. Hol, Thomas B. Schfion, Fredrik Gustafsson,

“On Resampling Algorithms for Particle Filters”, IEEE

Workshop on Nonlinear Statistical Signal Processing,

2006.

[6] Juan Jose Pantrigo, Antonio S. Montemayor, Angel

Sanchez, “Local Search Particle Filter applied to

Human-Computer Interaction”

[7] Katja Nummiaro, Esther Koller-Meier, Luc Van Gool,

“An adaptive color-based particle filter”

Dr. Jharna Majumdar obtained BTech in ECE
and DIIT in Computer Technology from IIT, Kharagpur in 1969
and 1970, respectively. She Received PhD in Electrical
Engineering in 1980. During 1983-89 she worked as a Research
Scientist at the Institute for Real Time Computer Systems and
Robotics, Karlsruhe, Germany. Currently, she is working as
Dean R & D and Prof. & Head of Computer Science and
Engineering (PG) at NITTE Meenakshi Institute of Technology,
Bangalore. Prior to this Dr. Majumdar served Aeronautical
Development Establishment, Defence Research and
Development Organization (DRDO), Ministry of Defence, Govt.
of India from 1990 to 2007 as Research Scientist and Head of
Aerial Image Exploitation Division, Bangalore. Dr. Majumdar has
37 years of experience in R & D and Academics in the country
and abroad. She has published large number of papers in
National, International Conferences and Journals. Her research
areas include Image and Video Processing for defense and non
defense application, Robot Vision, Vision based autonomous
guided systems, development of Computer Vision Algorithms in
FPGA etc.

Parashar Dhakal is a final year undergraduate
student from Department of Electronics and Communication at
Nitte Meenakshi Institute of Technology (NMIT), Bangalore,
India.He joined “Center for Robotics Research”, NMIT in 2012
and since then he has been working closely with Dr. Jharna
Majumdar on externally funded projects from the Department of
Science and Technology, New Delhi, India.His research areas
include implementation of image and computer vision algorithms
on embedded boards, Embedded System, Computer Networks
and Robotics.

Amar Mani Aryal is a final year undergraduate
student from Department of Electronics and Communication at
Nitte Meenakshi Institute of Technology (NMIT), Bangalore,
India. He joined “Center for Robotics Research”, NMIT in 2012

and since then he has been working closely with Dr. Jharna
Majumdar on externally funded projects from the Department of
Science and Technology, New Delhi, India. His research areas
include Computer Vision, Embedded System, DSP, Computer
Networks and Robotics.

Nabin Sharma Rijal is a final year
undergraduate student from Department of Electronics and
Communication at Nitte Meenakshi Institute of Technology
(NMIT), Bangalore, India. He joined “Center for Robotics
Research”, NMIT in 2012 and since then he has been working
closely with Dr. Jharna Majumdar on externally funded projects
from the Department of Science and Technology, New Delhi,
India. His research areas include Computer Vision, Embedded
System, Computer Networks and Robotics.

Nilesh Kumar Mishra is a final year
undergraduate student from Department of Electronics and
Communication at Nitte Meenakshi Institute of Technology
(NMIT), Bangalore, India. He joined “Center for Robotics
Research”, NMIT in 2012 and since then he has been working
closely with Dr. Jharna Majumdar on externally funded projects
from the Department of Science and Technology, New Delhi,
India. His research areas include Computer Vision,
Microprocessor, Embedded System and Robotics.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 35

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

http://www.sciencedirect.com/science/article/pii/S0262885602001294

