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Abstract 
This paper proposes an efficient learning method for the layered 

neural networks based on the selection of training data and input 

characteristics of an output layer unit. The multi-stage learning 

method proposes by the authors for the function approximation 

problems of classifying learning data in a phased manner, 

focusing on their learnabilities prior to learning in the multi 

layered neural network, and demonstrates validity of the multi-

stage learning method. Specifically, this paper verifies by 

computer experiments that both of learning accuracy and 

learning time are improved of the BP method as a learning rule 

of the multi-stage learning method. The authors also discuss the 

occurrence mechanisms of oscillatory phenomena in learning. 

Furthermore, the authors discuss the reasons that errors of some 

data  remain large value even after learning, observing behaviors 

during learning. 

Keywords: data selection, function approximation problem, 

multi-stage leaning, neural network, voluntary oscillation. 

1. Introduction

This paper proposes an efficient learning method for the 

layered neural networks based on the selection of training 

data and input characteristics of an output layer unit. 

Comparing to recent neural networks; pulse neural 

Network[1], quantum neuro computation[2], etc, the 

multilayer network is widely used  due to its simple 

structure. When learning objects are complicated, the 

problems, such as unsuccessful learning or a significant 

time required in learning, remain unsolved.  

Focusing on the input data during the learning stage, we 

undertook an experiment to identify the data that makes 

large errors and interferes with the learning process. Our 

method devides the learning process into several stages. In 

general, input characteristics to an output layer unit show 

oscillation during learning process for complicated 

problems.  

We have suggested a multi-stage learning method with 

the following characteristics that are in contrast to the 

multi-layered neural network[3]． 

 It is clear that some learning data are difficult-to-

learn and some are easy-to-learn. 

 In the multi-stage learning method, difficult-to-

learn data is given preference and simple data is

added incrementally.

 Learning ratios of data are not constant but are set

based on errors. 

 Therefore, learning time is significantly reduced

and accuracy is increased.

 It is said that the oscillation phenomena of the

learning curve is effective for complex subjects,

so some studies force outward oscillations [4].

In the multi-stage learning method, oscillations

occur spontaneously during learning and they

play an important role in the reduction of

learning errors.

However, there are the following problems: 

1. The learning of complex functions has not been

concretely evaluated in cases where a simple

Back-Propagation Method (BP method) is used

[4] ～ [8]and the BP method is used in

conjunction with the multi-stage learning

method.

2. The mechanisms of the oscillation phenomena

[9]that have a major impact on learning 

accuracy have not been identified. 

3. It is not clearly understood why, upon

completion of learning, some learned data has a

larger percentage of errors, compared to other

learned data.

Hence, in this paper, the followings are discussed: 

① Learning time and accuracy for complicated

functions were weighted by using the multi-

stage learning method.  

② Mechanisms of oscillation phenomena are

analyzed by using an updated weight vector 

during learning. 

③ The reasons for learned data with a large

percentage of errors at the time of completion of 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 1

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



learning was discussed, relating it to oscillation 

phenomena. 

The composition of this paper is as follows: 2. will 

describe the introduction of indexes that evaluate the state 

of updated weight during learning, and 3. will present the 

effectiveness of incorporating weight updating rules into 

the multi-stage learning method, through computer 

experiments[11] ～ [13]where function approximation 

problems were used as examples. Then, 4. will discuss the 

mechanisms of the oscillation phenomena during learning, 

and causes for the data with large percentage of errors 

after completion of learning [13]～[14] and 5.gives the 

conclusions.  

2. Introduction of indexes to evaluate the state 

of the updated weight during learning, and 

rules of updating weight. 

When letting a desired signal vector against the 

pattern p(=1,…,P) be dp=  (i=1, ,…, n) and letting an 

output vector be op=  (i=1, ,…, n), an output error 

vector  is = - op . Also, let a weight coefficient 

matrix at the epoch t during learning be W(t)=  . 

The  is a weight coefficient from unit i to unit j.    
Here, learning ratios[3] in according to errors will be 

described. The learning ratio  against the input pattern 

p will be set as follows: 

=η         (p=1, ,…, P),            (1) 

=  .                                (2) 

In the formulas, η  (>0) means a standard learning 

coefficient, is the magnitude of an output error vector 

and  presents the average of square errors. In the multi-

stage learning method, a batch-learning method where the 

amount of updated weight at an epoch is calculated by 

using a learning ratio according to each input pattern is 

employed.  In the t epoch, let the set of patterns where 

absolute errors more increase than the last epoch or 

absolute errors are equal to the last epoch be  
                      (3) 

Similarly, let the set of patterns where absolute errors 

decrease be  , 

      (4) 

The number of all patterns is: 

                 (5) 

In the formulas (1) through(4),  the mark, |・|, expresses 

the magnitude of error vectors and the mark |・ |in the 

formula (5) indicates the number of elements of the set. In 

the computer experiments of this paper, updating weight 

coefficients are batched. Hence, updating weight at the t 

epoch is: 

  .           (6) 

Also, let the total amount of updated weight which 

belongs to  be  and the amount of updated 

weight which belongs to  be , the formulas 

are: 

                       (7) 

                      (8) 

Here, and  are called error increase 

vectors and error decrease vectors respectively (the 

number of elements for both vectors are n). The amount of 

updated weight coefficients of the formula (6）relates to  

                                   (9) 

 

3. Computer experiments by using function 

approximation problems as an example. 

In this section, computer experiments will be carried out 

by using function approximation problems as examples. 

The formulas (1) through ( 4) are expressed by using 

vectors as the general case where there are several units of 

the output layer; however, in function approximation 

problems, the number of output units is one, so a scalar is 

used, instead of vectors. 

The Schwefel's function, Rastrigin function and Ridge 

function, all of which are frequently used in function 

optimization problems, are used as examples in this paper. 

Table 1 shows these functions.  

The reason why the range of variables between function 

optimization problems and function approximation 

problems differs is that the range of learning is narrowed 

for learning in function approximation problems, as 

learning sometimes does not progress even if all of the 

methods are used. Also, in function optimization problems, 

the number of variables can be freely selected, but this 

paper uses two variables, x and y. 

 

3.1 Learning data 
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For Table 1 (a), (b) and (c), each step size of x and y 

directions was set to 5.0, 0.1, and 1.2, areas were divided 

into three grids: 11×11 (121 grid points), 17×17 (289 grid 

points) and 11×11 (121 grid points). Values against these 

grid points are the set of the learning data.  

Basically, it is difficult to learn data with larger absolute 

values, or data where the distance between the  learning 

data is far, although the distance between input patterns 

are close  

[3]. To selectively learn this data, it is arranged in order 

of difficulty. This arranged data is equally divided into 

three groups. In the 1st step, the 1st group is learned. In the 

2nd step, the 2nd group is added and all data is learned in 

the 3rd step. 

Selection methods of learning data will be described 

below by using the Rastrigin function as an example, 

where, due to the difficulty of the subject, many 

experiments were carried out. 

In function approximation problems, partial differential 

values can be used as a substitute for selection of data 

where the distance between learning data is far although 

the distance between input patterns are close.  

For selecting learning data of the Rastrigin function, 

partial differential values of x and y directions, and 

, were used.  

Table 1: Learning Functions 

 

 

In the 1st step, 24 pieces of learning data that satisfied 

|f(x,y)  0.90, 34 pieces of learning data that satisfied 

|f(x,y) 0.90 and 34 pieces of learning data that satisfied 

| (x,y)|  60.3 were included. Among the data, 2 pieces 

of data overlapped and 90 pieces of data were (31.1% of 

the all data) selected.  

In the 2nd step, 58.1% (168 pieces of data) of all the data 

was selected. In the data, 52 pieces of learning data that 

satisfied |f(x,y)|  0.80, 68 pieces of learning data that 

satisfied | (x,y)|  60.1 and 68 pieces of learning data that 

satisfied | (x,y)|  60.1 were included. Out of the data, 20 

pieces of data overlapped and the total pieces of data was 

168. In the 3rd step, all pieces of learning data were used.  

The same methods were used for selecting learning data 

for the Schwefel's function and the Ridge function. 

 

3.2 Comparison methods and conditions for 

experiments 
To validate effectiveness of the multi-stage learning 

method, the BP method and a case where the BP method 

was applied as an updating weight of the multi-stage 

learning method, were compared in the computer 

experiment. In experiments for the multi-stage learning 

method, the same weight updating rules were employed 

from the 1st step through the 3rd step.    

The neural network composition was a feed-forward-type 

three-layered network which is comprised of two elements 

in the input layer, nine elements in the middle layer and 

one element in the output layer, by using a sigmoid 

function. The number of elements in the middle layer was 

determined based on the preliminary experiments. In 

addition, a batch updating method at every epoch, as 

described in section 2, was used for updating weight 

coefficients.  

For a root mean square error RMSE, which evaluates the 

learning results, the average value of five initial values of 

weight coefficients set by using values against the learning 

data, was used. The initial value of a weight coefficient 

was randomly set in the range of [-0.01, 0.01]. The number 

of learning in the suggested method was 7000 epochs in 

total, comprising of 2333 epochs for the 1st stage, 2333 

epochs for the 2nd stage and 2334 epochs for the 3rd stage. 

In the BP method, all pieces of learning data were always 

used in all 7000 epochs. The specification of the computer 

used for the experiment was as follows: OS: Windows XP, 

CPU: Pentium 4, 3.0GHz, RAM: 2GB 

 

3.3 Computer experiment results and discussion 
 

Table 2 and 3 show the accuracy and learning time in 

cases where the BP method was incorporated into the 

multi-stage learning method and where the BP method was 

used alone against the Ridge function, Rastrigin function, 

and Schwefels function. The mark, ``+", of the multi-stage 

learning method in the Tables indicates the BP method 

incorporated into the multi-stage learning method, and the 

values are from the results of five experiments where the 

initial values of weight were randomly set. The accuracy 

of learning was evaluated by the RMSE. 

First, the accuracy of learning will be described. 

According to Table 2, for the Ridge function and Rastrigin 

function, errors are fewer in the cases where theBP method 

was incorporated into the multi-stage learning method. 

These results validate that incorporating the BP into the 

multi-stage learning method is effective.  

(a) Schwefels Function 

f(x,y)=-xsin -ysin  

(-30.0  x  30.0，-30.0  y  30.0   ) 

(-47.95 f(x,y)  47.95) 

(b) Rastrigin Function 

f(x,y)=x2-10cos(2  x)+y2-10cos(2  y) 

(-0.8  x  0.8，-0.8  y  0.8   ) 

(-20.0  f(x,y)  20.5) 

(c) Ridge Function 

f(x,y)=2x2+2xy+y2 

(-6.0  x  6.0, -6.0  y  6.0 ) 

(0.0  f(x,y)  180.0) 
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From Table 2, errors of the Schwefel's function decreases 

when the +BP method is used.  

Next, the learning time will be examined. From Table 3, 

the learning time when the BP method was incorporated 

into the multi-stage leaning method was 59% to 68% 

compared to that of when the BP method was not 

incorporated into the multi-stage learning method. These 

values correspond to the values in the cases of s=3 against 

the estimated formula  in the s step of the reference [3] . 

 

 

 

 

 

 
Table 2: RMSE for multi-stage learning and traditional methods in 

learning of three functions. 

 

 

Table 3: Learning time for multi-stage learning and traditional methods in  

learning of three functions. 

Function Method 

+BP                 BP   

Ridge 419                  620 

Rastrigin 1204                 1956 

Schwefels 574                  966 

 

Fig.1 and 2 show the typical examples of characteristics 

of the input into the elements in the output layer in the 3rd 

step during learning. These Figures present the input into 

the elements in the output layer, that is, the summation of 

the input from elements in the middle layer through weight, 

when one piece of learning data was selected and fixed at 

the start of learning, and the learning data was input at 

each epoch. The horizontal axis indicates the number of 

epochs and the vertical axis is the value input into the 

elements in the output layer. On the number of epochs of 

the horizontal axis, the final epoch of the 2nd step is set to 

0.  

The RMSE values at the time of completion of learning 

against the characteristics shown in Fig.1 and Fig. 2 were 

0.206 and 0.039 respectively.  Fig.1 expresses the 

characteristics of the BP method against the Rastrigin 

function. Although the method used is not the multi-stage 

learning method, the epoch that is equal to the final epoch 

in the 2nd stage is set to zero for the number of epochs on 

the horizontal axis.  The characteristics of Fig.1 are that 

irregular large vibrations continue until the last. The 

RMSE value after the learning was 0.206, which is 

relatively large, and this is an example of when learning 

fails. Fig. 2 shows the characteristics of +BP against the 

Rastrigin function. The oscillation phenomena where 

irregular vibration is added to the regular oscillation 

continue. 

Function Method 

+BP                     BP 

Ridge          mean 

Max 

Min 

0.107                    0.241 

0.235                    0.243 

0.038                    0.234 

Rastrigin           mean 

Max 

Min 

0.071                     0.259 

0.095                    0.483 

0.039                    0.193 

Schwefels          mean 

Max 

Min 

0.126                    0.295 

0.134                    0.343 

0.127                    0.244 
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Fig. 1 Input characteristics for the BP methods in the output unit 

( Rastrigin function, =0.8). 

 

Fig. 2 Input characteristics for the +BP methods in the output unit 

( Rastrigin function, =0.8). 

3.4  BP method and oscillation effectiveness 
When the learning ratio is decreased in the BP method, 

the learning curve vibrates similar to that shown in Fig. 1, 

but its amplitude becomes smaller. Furthermore, when the 

learning ratio is greatly decreased, the vibration stops; 

however, errors are large regardless of whether there is 

vibration or not, and the Ridge function and Rastrigin 

function cannot be successfully learned.  

Also, in the multi-stage learning method, the learning 

ratio η (see the formula 1) was reduced, the oscillation 

stopped, as in the BP method, but successful learning did 

not take place. For example, when the +BP method was 

applied with the learning ratio ofη=0.05 to the Rastrigin 

function learning, oscillation did not occur during learning, 

but the RMSE value was 0.135, which means a large error. 

In contrast with this result, in learning where the learning 

ratio ofη=0.80 was employed, the oscillation phenomena 

occurred and the RMSE value is 0.071 according to Table 

2. The computer experiments demonstrated that the RMSE 

values were 0.1 or smaller when the learning ratio was in 

the range of η = 0.2～ 0.9.  

From the above statement, as a learning subject becomes 

more complicated, the vibration phenomena play an 

increasingly important role in learning. Therefore, inertial 

items which can suppress vibration are not incorporated 

into the multi-stage learning method [3]. The vibration 

during learning occurs spontaneously, without external 

stimulus. The cause of the spontaneous occurrence of the 

vibration phenomena will be discussed in 4.  

 

4. Mechanisms of oscillation occurrence and 

learning behaviors of data with large 

errors even after completion of learning. 

4.1 Oscillation state and non-oscillation state 

As presented in Fig.1 and Fig.2 , there are various types 

of oscillation phenomena occurring in the characteristics 

of the input into elements in the output layer.  

Many experiments have demonstrated cases where the 

oscillation state changed to the non-oscillation state and 

vice versa.  

Fig.3 shows the outline of typical changes of the 

magnitude and directions of  and  when 

the oscillation state changes to the non-oscillation state 

and vice versa.  

The direction of the resultant vector  is drawn 

with reference to its facing right.  

For the vibration state, < 1 and > 1 are 

repeated. When the learning state is stable under a non-

oscillation state, the entire errors monotonically decrease, 

resulting in  < 1.  
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Fig. 3  The weight renewal vector for the multi-stage 

learning methods. 

 
 

Fig. 4  The behavior of the paturn p* between 1115～
1135 epochs at the third stage in the multi-stage 

learning(η=0.4$). 

 

 

Error reduction vectors effectively work all the time.  

Under the non-oscillation state, the number of error 

increase patterns and the number of error 

reduction patterns  change little, even though the 

epoch progresses and the relationship of   1  is 

maintained.  

In Fig. 3, a1 indicates the case of  > , 

a2, conversely, means the case of  > ,  

and a3 and a4 show that  is smaller against a1 

and a2. In a5, the oscillation state is  , and   

 and   correspond to each other. When 

the learning curve does not oscillate, the decrease vector is 

dominant, and the magnitude of the vector is smaller.  

This means that this state is maintained in the resultant 

vector . In the non-oscillation state, the 

relationship of   1  is maintained and all errors 

monotonously decrease. 

 

4.2 Occurrence of oscillation 

In Fig.3, b1～b7 show drawings of vectors changing 

from the non-oscillation state to the oscillation state. Even 

if  is updated to the direction of error reduction in all 

patterns under the non-oscillation state, it is hard to 

imagine that the state continues until the end of learning. 

Hence, we assume that a pattern (t) occurs at an 

epoch t. This pattern belongs to another pattern ) and  

 is dominant over the amount of updated weight 

. Therefore, weight is corrected to the direction 

where errors against the pattern p increase. So, the 

following states continue for 

several epochs. As clarified in the formula (1), the learning 

ratios are effective when errors are raised to the second 

power and the increase speed of  is accelerated. 

This will make the pattern p which was (t)  at the 

epoch t be  ( ) at an epoch t'(>t). However, as the 

error of the pattern p becomes smaller at the epoch (t'+1), 

the pattern p becomes  (t'+1) again. These 

processes are repeated, causing the vibration phenomena.  

 

4.3 Learning behaviors of learning with large errors, 

even after completion of learning 
There are some patterns with large errors even after 

completion of learning. These patterns are not changed in 

accordance with learning methods or each learning, but 

some specified patterns apply to such patterns. For 

instance, (x,y)=(1,1),(1,15),(1,17) apply to the patterns as 

to the Rastrigin function learning. In this section, we will 

discuss why the errors of the pattern p* do not become 

smaller even after learning by using p*  (1,1) as an 

example.  

For (t) in the formulas 3 and 4, when (t)| >    

(double-sign corresponds), let us call the former the 

majority and the latter the minority. Generally, when  
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(t)| > , most cases fall under  

>  (double-sign corresponds) as to the 

weigh correction. The RMSE values decrease when  

> .  

The pattern p*  is data where the absolute value of the 

learning data is large and which is used for learning from 

the 1st stage in the multi-stage learning method. For 

example, in an experiment where the +BP method was 

used for the Rastrigin function learning, the initial value of 

the absolute value of errors of the pattern p* was 

(0)=0.164, the learning curve vibrated in the range of 

0.013～0.014 when the 1st stage was completed, the curve 

vibrated in the range of 0.020～0.028 when the 2nd stage 

was completed and then the curve vibrated in the range of 

0.094～0.125 when the 3rd stage was completed.  

Accordingly, in the 1st stage, only data which was 

determined to be difficult was learned and errors became 

smaller, to some extent. When new learning data was 

added in the 2nd and 3rd stages, initial errors of the data 

were large and weight correction vectors were forcibly 

moved in the direction which reduces errors of newly 

added data.  

Hence, the pattern p* belonged to the minority and errors 

that had been reduced, increased again. On the other hand, 

the initial value of an absolute data of errors of data added 

in the 3rd stage was (4667)=0.029, as to the pattern  

 (14,10), the learning curve vibrated in the range of 

0.011～0.047 with learning of 5 epochs and errors of this 

pattern were smaller compared to those of the pattern p*. 

At this point, a relative relationship between pattern p* 

and pattern  was fixed as to the magnitude of errors. 

Until the completion of learning, the relationship 

continued.  

Fig.4 shows the RMSE values at 1115 to 1135 epochs 

and behaviors of the pattern p* and  in the 3rd stage. 

The chart above expresses the RMSE value and the one 

below represents the errors. In the Fig. 4 the bold line 

corresponds to the pattern p*, and the narrow line to the 

pattern  . The letter ``a" is the majority and ``i" is the 

minority. 

As you can see from Fig. 4, the pattern p* repeats in the 

following order: the minority, the minority, the majority 

and the majority. When the pattern p* belongs to the 

majority, errors decrease and errors increase when the 

pattern p* belongs to the minority. The same applies to .  

Thus, the state where the average of errors decreases only 

slightly continues until the completion of learning while 

the relative relationship as to errors is maintained.  

As a result, learning data, has a pattern similar to the 

pattern p*, whose errors increase even after reducing once 

in the 1st stage, and are large even after learning is 

completed . 

5. Conclusions 

This paper extends the multi-stage learning method 

proposed by the authors for the function approximation 

problems of classifying learning data in a phasedmanner, 

focusing on their learnabilities prior to learning in the 

multi layered neural network, and demonstrates validity of 

the extended multi-stage learning method.  Specifically, 

this paper verifies by computer experiments that both of 

learning accuracy and learning time were improved even 

when the BP method is used as a learning rule of the 

multi-stage learning method. 

In learning, oscillatory phenomena of a learning curve 

serve an important role in learning performance. The 

authors also discuss the occurrence mechanisms of 

oscillatory phenomena in learning.  Furthermore, the 

authors discuss the reasons that errors of some data remain 

large value even after learning, observing behaviors during 

learning. 

The multi-stage learning method focuses on the distance 

between output vectors, to the distance between input 

vectors and the magnitude of output vectors, (output 

values of the function approximation problems in this 

paper) for categorizing learning data. A further expansion 

of this study on the multi-stage learning method, will be to 

apply it to learning subjects such as discrimination 

problems where such distance relationships are not 

available. 
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