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Abstract 
We investigate the performance of an algorithm to detect self-

collisions in a tubular object approximated by spheres. The 

approach utilizes the Bounding Volume Hierarchy (BVH) to 

arrange the spheres and it was implemented using sequential and 

parallel algorithms. The tubular object has a snake-like motion, 

and the algorithm calculates the closer pairs of spheres 

considering the hierarchy and the parallelism. Experiments were 

carried out to analyze the performance of the implementations with 

different object’s motions. 

 

Keywords: Computer Graphics, Collision Detection, Bounding 

Volume Hierarchy. 

1. Introduction 

The widespread use of animation has resulted in a strong 

demand for accurate and believable collision detection. The 

contact points between two objects can usually be 

approximated at a small number of locations on a subset of 

the object’s primitives. Accurate self-collision detection is 

challenging to perform in real time because many adjacent 

or nearby primitives of a deforming mesh are always in 

close proximity. 

 

Detecting self-collision for cables and similar objects is an 

important part of numerous models in many areas of 

computer simulation such as hair modeling [1], robotics 

[2], rope simulations [3], virtual intestines [4], and protein 

folding [5], just to name a few areas of application. The 

model utilized in this work is a tubular object which has 

been approximated with spheres using the method proposed 

in [6]. Thus, we work with a set of joining spheres which 

we call the chain of spheres. We implemented CPU and 

GPU versions of the self-collision detection algorithm. The 

CPU version compares all the pairs of spheres in a brute 

force manner. In the GPU versions, spheres are arranged in 

a hierarchy to speed up the collision detection process. 

 

Recent advances in parallel processors such as multicore 

CPUs and many-core GPUs have made parallel computing 

ubiquitous, and such trends are expected to continue in the 

future. We implemented a parallel version with GPUs to 

explore the performance of the tree construction and tree 

traversal. 

 

The remainer of the paper is organized as follows: In 

Section 2 previous work is presented, Section 3 gives an 

overview of the several versions of the algorithm, in 

Section 4 the hierarchy construction is described. The 

hierarchy traversal is explained in Section 5, empirical 

results are presented in Section 6 and the conclusion is 

described in Section 7. 

2. Previous Work 

Efficient collision detection algorithms are commonly 

accelerated by spatial data structures such as BVH or 

spatial partitioning. Such object representation is 

commonly built in pre-processing stage and performed very 

well for rigid and deformable objects. Bounding volumes 

are utilized in many applications because of their ability to 

represent the shape of objects and the reduced cost of 

testing against another BV (Bounding Volume). Spheres 

have been used in a wide range of applications since they 

are easy to represent, have a fast overlap test, and are 

rotationally invariant [7,8]. AABB (Axis Aligned Bounding 

Box) also has a fast overlap check, which is accomplished 

via a simple comparison of its coordinate values [9, 10]. 

The Oriented Bounding Box (OBB) can bound the object 

tighter than AABB because it is oriented to best align with 

the underlying geometry [11], however it does require a 

more expensive overlap test. Other volumes are discrete 

oriented polytopes, sphere-swept volumes, and convex 

hulls. 

 

Research on tubular surfaces are widely found in the 

literature. Li et al. [12] proposed an approach to extract 

multi-branch tubular structures using minimal user input. 
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A novel 4D iterative key point searching method is 

proposed and utilized to detect multi-branch tubular 

structures with only one initial point. Tubular shapes are 

found in vessels and airways taken from Computerized 

Tomography and Magnetic Resonance Imaging volumes 

[13]. Luboz et al. introduce a simple model of vessel 

deformation based on few pre-deformed vessel shapes to 

take into account the action of the balloon and the stent on 

the vasculature [14]. 

 

In [15], a sweep-and-prune algorithm for detecting self-

collisions of a deforming cable comprising linear segments 

is investigated. Rather than using spheres, in this reference 

cables are represented by a set of segments. For cable 

models whereby the current cable configuration is found by 

computing the energy minimizing configuration, 

adjustments to all cable segments in each simulation step is 

applied. 

 

 

The implementation of algorithms in GPUs using CUDA 

has been investigated, in particular the enhancements of the 

memory usage. The Barnes-Hut n-body algorithm was 

implemented in [16] running in six kernels. The kernels are 

optimized to minimize memory accesses and thread 

divergence and are fully parallelized within and across 

blocks. Rosen presented an approach [17] to investigating 

the memory behavior of CUDA kernels focusing on 

identifying representative warps and performing detailed 

analysis of those warps. Zhang and Kim [18] proposed a 

method of computing adaptive distance fields on a GPU. 

Based on the notion of a p-partition, the algorithm 

distributes the workload of BVH traversal among multiple 

processing cores, while minimizing the memory overhead. 

 

 

Fig. 1  Stages of the method proposed to detect self-collisions in tubular 

objects. 

 

 

3. The implemented versions of the self-

collision detection 

The algorithm employed detects self-collisions by testing 

the overlap between the spheres that bound the object. A 

chain is formed by a set of spheres that cover the mesh of 

the object. As depicted in Figure 1, the entrance of the 

method is the chain of spheres and the two stages are the 

construction of a hierarchy and the hierarchy traversal. The 

goal is to cull away non-closer spheres. 

 

 

Fig. 2.Tubular objects are approximated with spheres [1]. 

We introduce an algorithm to build a hierarchy of spheres 

(BVH) and then traverse the tree T to detect self-collisions. 

One of the aims of this work is to compare the different 

versions of the algorithm implemented.  

 

Fig. 3. A tubular object represented with seven spheres. 

In the first algorithm (CPU1), sphere e1 is compared against 

the other spheres to determinate overlaps. The algorithm 

requires O(n
2
) time, a costly operation. The algorithm 

GPU1 employs the GPU to improve the process CPU1, 

each sphere is compared with the others through one thread 

per sphere. The time per sphere is O(n). However, as we 

have n spheres and n threads, the time remains as O(n) since 

threads run in parallel. 

 

The following algorithms require a hierarchy to detect 

collisions. This way, there are two stages: the hierarchy 

construction and the hierarchy traversal. 

 

Algorithm aCPU2 considers the list of the spheres as the 

leaves of the tree and takes n pairs to form their parents 

which represent an upper level. The number of spheres has 

been reduced in n/2. To form the next upper level, we take 

spheres in pairs again. As the number of levels of the 

hierarchy depends on the number of leaves, we repeat the 

process log n times. Therefore, the time required is O(n log 

n) .  

 

To construct the hierarchy using GPUs, we take advantage 

on the threads allowed. For n leaf spheres, we take n 
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threads to perform the same process as algorithm aCPU2. 

This is the algorithm bGPU2. When the number of leaf 

spheres is greater than number of threads allowed per 

multiprocessor, then, we utilize algorithm aGPU2, which 

divides the leaf spheres in subtrees. 

 

In the hierarchy traversal stage, three algorithms were 

developed. The sequential algorithm (CPU2) compares e1 

vs T, the hierarchy. This takes O(log n) time for each 

sphere. As we have n spheres, then the process takes O(n 

logn) time, that is, the levels of T. The parallel algorithm 

(GPU2) employs the GPU to improve the CPU2 algorithm, 

each sphere is compared using the hierarchy, through one 

thread per sphere. The time per sphere is O(log n). As we 

have n spheres and n threads running in parallel, the time 

remains as O(log n). Algorithm GPUv2 considers 2 threads 

per node, one for the left child and the other for the right 

child. This reduces the time in the half. 

 

4. Hierarchy Construction 

Let e1,e2,…,en, be a set of n spheres joined in a sequential 

order as depicted in Figure 3. The second (CPU2) and 

fourth (GPU2) algorithms need a hierarchy for detecting 

collisions. This stage is implemented  in CPU by algorithm 

aCPU2 or in GPU by algorithms aGPU2  and bGPU2. 

4.1 The sequential version: Recursive Algorithm 

(aCPU2) 

 

Spheres are taken in pairs, parents are generated in a 

bottom-up manner. This way, we have n leaf spheres in 

level h,  spheres in level h-1, and so on until we achieve 

the root of the hierarchy in the first level. This means that 

the tree has h=log2 n+1 levels.  From Figure 4, we can 

see that e8 is parent of e1, e2; and e11 is parent of e8, e9. The 

children of sphere i are represented as ei(ej, ek), where ej is 

the left child and ek is the right child. Binary trees were 

chosen since the tubular objects are approximated by 

joining aligned spheres, where a sphere has only two 

neighbor spheres. Other kind of trees could be employed. 

 

Tree nodes are stored in data structures as shown in Figure 

5. Both arrays, Tree and Spheres,  have 2n-1 elements. The 

first n locations of the array are occupied by the leaves of 

the hierarchy, the next n-1 locations are occupied by the 

inner nodes and are linked with the array locations of their 

children as illustrated in Figure 6. 

 

 
 

Fig. 4.Hierarchy construction using a bottom-up approach in a binary 

 

 

Fig. 5.The data structure to store the leaf spheres. 

 

 

Fig. 6.  Links of the resultant tree with 7 spheres. 

 

Spheres are taken in pairs in level h-1 to generate their 

parents: e8(e1, e2), e9(e3, e4), …. The number of inner nodes 

is n-1. This way, the routine is recursively called with input 

E, the set of spheres. E is increased as the generation of 

new nodes, and the routine is called again in a recursive 

manner taken the children from en, testing the size of the 

spheres to envelop the corresponding spheres and setting 

the radius and center of the new sphere ej. The maximum 

number of spheres created is n-1. Complexity time is O(n 

log n). 

A parent of two spheres is computed as illustrated in Figure 

7. The distance between two spheres d(A,B), using the 3-

vector Euclidean norm d is shown in equation (1). 

              (1) 
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If  d + e-min.radius e-max.radius then the new radius is 

r3 = e-max.radius,  otherwise r3 = (d + r1  + r2)/2. Where 

e-min is the sphere with the smaller radius, and e-max is 

the sphere with the greater radius. 

The coordinates for the new center are also obtained: 

if (d + e-min.radius < e-max.radius) then  

c3 = e-max.center 

else   c3  = r1 + r2 + . 

Where  = c1c2 / || c1c2 ||, is the unitized vector from c1 

to c2. So, the new sphere C encloses  its children A and B. 

 

Fig. 7.Sphere C is constructed from spheres A and B. 

 

Fig. 8.The parallel hierarchy construction. 

 

4.2 The basic parallel version bGPU2 

 

Assume n leaf spheres in level h, we require a thread for a 

couple of spheres, that is  threads. In the next level h-1,  

threads are required since there are  spheres (Figure 8). 

The process continues until the root tree is achieved. 

Complexity time is O(log n), the height of the tree. Some 

graphics cards support at most 768 threads, that is 1,536 

spheres, thus in the case we have more spheres, we use 

aGPU2, a new parallel algorithm explained in the next 

section. 

 

4.3 The advanced parallel version (aGPU2) 

There are two stages. In the first stage a kernel is launched 

that divides the n spheres in groups in such a way that they 

can be processed independently. As a result, subtrees are 

created: SA={sa1, sa2, …sar} with r768. The roots of 

these groups form a new group of spheres R={r1,r2,…,rr}, 

which can be processed using again the parallel algorithm 

aGPU2. This first kernel takes O(log s), where s is the 

number of leaves of the tree. The second kernel accesses R, 

then it uses the basic parallel algorithm bGPU2 to generate 

the upper part of the tree, generating the set of spheres 

S={s1,s2,…,sr-1}, so that it requires O(log r) time, being r 

the number of subtrees; in other words it is the cardinality 

of SA, |SA|. 

 

Fig. 9.Advanced parallel hierarchy construction. 

Therefore,  the hierarchy is formed by the union of the sets 

of spheres SA  R  S as shown in Figure 9. A different 

distribution of nodes is necessary in the array, as illustrated 

in Figure 10. The algorithm aGPU2 needs a set of 

consecutive locations of nodes to be processed. R, the roots 

of subtrees, is written at the end of the SAs locations, the 

subtrees. Therefore, when the second kernel is launched, the 

spheres in R will be in the right locations to build the upper 

part of the tree.  

Subtree sai can have at most 192 threads, where each one 

operates a pair of spheres. This results in 384 leaf spheres 

per sai. The number of subtrees sai depends on the number 

of threads allowed, 768, which can operate 1,536 spheres, 

the roots of sai. Therefore, the maximum number of leaf 

spheres allowed is 1536 x 384 = 589,824. 
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Fig. 10.New distribution of spheres in the array for the advanced parallel 

hierarchy construction 

A summary of the time required by the three algorithms to 

construct the hierarchy is shown in Table 1. 

Table 1. Time required to construct the hierarchy. 

Algorithm Time 

aCPU2 O(n log n) 

bGPU2 O(log n) 

aGPU2 O(log s+r) 

5. Hierarchy Traversal 

Bounding volumes are created in the hierarchy construction 

stage while self-collisions are determined in the hierarchy 

traversal stage. 

 

Given two spheres A(cA, rA) and B(cB, rB), an overlap 

occurs between them if 

 

 

d(A,B)
2 (rA+rB)

2
                                                         (2) 

 

 

This inequality verifies the squared distance between two 

spheres, using the 3-vector Euclidean norm and the squared 

of sum of radius of spheres.  

 

To detect collisions, the animation is required.  Spheres are 

updated automatically when object deforms due to the 

spheres depends on the polygons locations. New call to 

hierarchy construction algorithm is required when spheres 

modify its attributes.  

5.1 The sequential version: Recursive Algorithm 

(CPU2) 

Neighbor spheres are not considered as a collision. The tree 

traverse is performed in the node’s children: left and right. 

A sphere is tested against the two nodes of level 1, and cull 

away the sphere that is not colliding. For instance, e1 is 

compared with e11 and e12. The sphere colliding provides 

its two children to check for collisions. If e1 collides with 

e11, then e1 must be compared with e8 and e9. This 

process continues until a collision with a leaf node occurs 

or no more children exist. It could be possible that more 

than one couple of spheres collide. As it can be seen, this is 

a top-down approach. 

 

Fig. 11.Tree traversal to self-collision detection. 

The process consists of testing ei vs T. This process is 

required for each sphere, so that it takes O(n log n) time. At 

the end, an array of collisions is returned, where each 

location counts the number of collisions with other spheres 

in the chain that represent the tubular object. 

 

5.2 The parallel version (GPU2) 

 

This implementation utilises the GPU to improve the 

sequential version, the same manner each sphere is 

compared using the hierarchy, but one thread per sphere, as 

depicted in Figure 11. Recursive calls are not supported in 

GPUs, so we use a stack to keep the array keys processed to 

get explicit recursion. Tree traversal is performed for each 

sphere ei vs T running in parallel simultaneously.  Then it 

takes O(log n) time. 
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In order to improve the parallel version, we launch two 

threads per sphere, instead of one (GPUv2). Tree traversal 

is performed as the same manner, but thread 1 processes the 

left subtree and thread 2 the right subtree for each sphere ei 

vs T running in parallel simultaneously. This way, the time 

required is ½ O(log n). 

A summary of the time required by the three algorithms to 

traverse the hierarchy is shown in Table 2. 

Table 2. Time required to traverse the hierarchy. 

Algorithm Time 

CPU2 O(n log n) 

GPU2 O(log n) 

GPU2v2 ½ O(log n) 

6. Empirical results 

The algorithms were run in a PC desktop Intel Xeon CPU 

E5620 with 12.0 GB RAM DDR, operating system 

Windows 7 of 64 bits, NVIDIA GeForce 590 GTX 

Graphics Card. We used Microsoft Visual C++ and CUDA 

SDK 5.0. The experiments compare algorithms by testing 

their implementations.  

Animation was required to make the experiments. The 

animation consists in determine a number of points and 

then generate the path where the snake-like object (spheres) 

go through. The path is formed by the coordinates of 

keyframes generated by interpolation. The interpolation 

method utilizes splines via a cubic tracer. In Figure 12, path 

1 is defined as a sinusoidal signal shape, while in Figure 

13, path 2 is defined as circles. 

 

Two different paths were used to test the algorithms. CPU1 

algorithm, brute force, needs 1,500 ms or more to process 

10,000 spheres so we decided not to execute more cases 

for this version. The other algorithms took at most 1 ms 

with 10,000 spheres or less. Thus, Table 3 and Table 4 

contain runtimes for 10, 20, 30, 40, 50, 100 and 150 

thousands of spheres, for path1 and path2, respectively. 

Both paths generate a maximum of 45 pairs of collisions 

with 56 and 114 keyframes of animation. 

 

Results for hierarchy construction are shown in Figure 14 

and Figure 15, while results for hierarchy traversal are 

shown in Figure 16 and Figure 17. The algorithm aGPU2 

is faster than algorithm aCPU2, using 20,000 spheres or 

more (Figures 14, 15).   

 

For hierarchy traversal, despite the use of the GPU, the 

GPU1 algorithm is the slowest. The CPU2 version, that 

uses the hierarchy, has a discrete performance, with good 

runtimes till 50,000 spheres, but it is exceeded by 

algorithms GPU2 and GPUv2, when the number of spheres 

increases (Figures 16, 17). The latter algorithms, have a 

good performance in most of the cases. 

 

   

Fig. 12. Path 1: starting points, interpolation and collision detection. 

 

 

 

Fig. 13. Path 2: starting points, interpolation and collision detection. 

4. Conclusion 

Two versions of hierarchy construction algorithm and five 

versions of the algorithm to detect collisions were 

implemented. We investigated the performance of the 

implemented versions. The object used was a tube 
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approximated with spheres and the animation employed has  

a snake-like motion.  

 

Results shown that the parallel versions are suitable for 

more than 20,000 spheres, where the power of parallelism 

is exploited. GPU architecture has very high available 

parallelism that our algorithms take advantage to get a 

better performance. However, it would be possible to 

improve the throughput of the algorithms through the use 

of shared memory, constant memory, or minimizing the 

divergence. Finally, we would like to explore other 

applications of our algorithms, such as collision detection 

in fluids or particles, and other kind of trees: octree, 

quadtree. 
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Fig. 14. Results for hierarchy construction with path 1. 

 

 

 

 

 
Fig. 16. Results for hierarchy traversal with path 1. 

 

 

 

Table 3. Runtimes in ms for the hierarchy construction and hierarchy 

traversal with path1. 

HIERARCHY CONSTRUCTION 

n 10,000 20,000 30,000 40,000 50,000 
100,00

0 
150,00

0 

aGPU2 0,28 1,71 4,75 3,32 2,21 5,75 10,83 

aCPU2 0,28 0,00 7,76 13,37 11,69 17,33 25,87 

HIERARCHY TRAVERSAL 

GPU1 9,78 31,00 85,46 109,16 164,58 624,87 
1331,5

5 

GPU2 0,28 13,71 3,05 11,17 4,71 7,80 6,14 

GPU2v2 3,66 0,28 6,98 5,80 3,05 5,32 6,07 

CPU2 15,50 31,26 39,51 51,00 73,83 166,08 265,19 

 

 

 

 
Fig. 15. Results for hierarchy construction with path 2. 

 

 

 

 

 
Fig. 17. Results for hierarchy traversal with path 2. 

 

 

 

Table 4. Runtimes in ms for the hierarchy construction and hierarchy 

traversal with path2. 

HIERARCHY CONSTRUCTION 

n 10,000 20,000 30,000 40,000 50,000 
100,00

0 
150,00

0 

aGPU2 0,00 4,35 5,70 9,12 2,21 5,13 10,72 

aCPU2 0,00 0,13 5,65 14,51 9,53 17,27 25,46 

HIERARCHY TRAVERSAL 

GPU1 1,37 30,85 80,03 107,40 164,27 622,50 
1333,0

5 

GPU2 0,13 11,50 3,79 4,95 1,79 7,07 5,57 

GPU2v2 11,20 0,00 3,45 12,43 1,46 4,22 7,90 

CPU2 15,58 31,30 43,36 52,68 73,98 163,52 266,29 
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