

Self-Collision Detection in Tubular Objects Approximated by

Spheres

Enrique Ayala
 1

, Francisco A. Madera
2
 and Francisco Moo-Mena

3

1,2,3

 Facultad de Matemáticas, Universidad Autónoma de Yucatán

Mérida, Yucatán 97110, México

Abstract
We investigate the performance of an algorithm to detect self-

collisions in a tubular object approximated by spheres. The

approach utilizes the Bounding Volume Hierarchy (BVH) to

arrange the spheres and it was implemented using sequential and

parallel algorithms. The tubular object has a snake-like motion,

and the algorithm calculates the closer pairs of spheres

considering the hierarchy and the parallelism. Experiments were

carried out to analyze the performance of the implementations with

different object’s motions.

Keywords: Computer Graphics, Collision Detection, Bounding

Volume Hierarchy.

1. Introduction

The widespread use of animation has resulted in a strong

demand for accurate and believable collision detection. The

contact points between two objects can usually be

approximated at a small number of locations on a subset of

the object’s primitives. Accurate self-collision detection is

challenging to perform in real time because many adjacent

or nearby primitives of a deforming mesh are always in

close proximity.

Detecting self-collision for cables and similar objects is an

important part of numerous models in many areas of

computer simulation such as hair modeling [1], robotics

[2], rope simulations [3], virtual intestines [4], and protein

folding [5], just to name a few areas of application. The

model utilized in this work is a tubular object which has

been approximated with spheres using the method proposed

in [6]. Thus, we work with a set of joining spheres which

we call the chain of spheres. We implemented CPU and

GPU versions of the self-collision detection algorithm. The

CPU version compares all the pairs of spheres in a brute

force manner. In the GPU versions, spheres are arranged in

a hierarchy to speed up the collision detection process.

Recent advances in parallel processors such as multicore

CPUs and many-core GPUs have made parallel computing

ubiquitous, and such trends are expected to continue in the

future. We implemented a parallel version with GPUs to

explore the performance of the tree construction and tree

traversal.

The remainer of the paper is organized as follows: In

Section 2 previous work is presented, Section 3 gives an

overview of the several versions of the algorithm, in

Section 4 the hierarchy construction is described. The

hierarchy traversal is explained in Section 5, empirical

results are presented in Section 6 and the conclusion is

described in Section 7.

2. Previous Work

Efficient collision detection algorithms are commonly

accelerated by spatial data structures such as BVH or

spatial partitioning. Such object representation is

commonly built in pre-processing stage and performed very

well for rigid and deformable objects. Bounding volumes

are utilized in many applications because of their ability to

represent the shape of objects and the reduced cost of

testing against another BV (Bounding Volume). Spheres

have been used in a wide range of applications since they

are easy to represent, have a fast overlap test, and are

rotationally invariant [7,8]. AABB (Axis Aligned Bounding

Box) also has a fast overlap check, which is accomplished

via a simple comparison of its coordinate values [9, 10].

The Oriented Bounding Box (OBB) can bound the object

tighter than AABB because it is oriented to best align with

the underlying geometry [11], however it does require a

more expensive overlap test. Other volumes are discrete

oriented polytopes, sphere-swept volumes, and convex

hulls.

Research on tubular surfaces are widely found in the

literature. Li et al. [12] proposed an approach to extract

multi-branch tubular structures using minimal user input.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 14

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

A novel 4D iterative key point searching method is

proposed and utilized to detect multi-branch tubular

structures with only one initial point. Tubular shapes are

found in vessels and airways taken from Computerized

Tomography and Magnetic Resonance Imaging volumes

[13]. Luboz et al. introduce a simple model of vessel

deformation based on few pre-deformed vessel shapes to

take into account the action of the balloon and the stent on

the vasculature [14].

In [15], a sweep-and-prune algorithm for detecting self-

collisions of a deforming cable comprising linear segments

is investigated. Rather than using spheres, in this reference

cables are represented by a set of segments. For cable

models whereby the current cable configuration is found by

computing the energy minimizing configuration,

adjustments to all cable segments in each simulation step is

applied.

The implementation of algorithms in GPUs using CUDA

has been investigated, in particular the enhancements of the

memory usage. The Barnes-Hut n-body algorithm was

implemented in [16] running in six kernels. The kernels are

optimized to minimize memory accesses and thread

divergence and are fully parallelized within and across

blocks. Rosen presented an approach [17] to investigating

the memory behavior of CUDA kernels focusing on

identifying representative warps and performing detailed

analysis of those warps. Zhang and Kim [18] proposed a

method of computing adaptive distance fields on a GPU.

Based on the notion of a p-partition, the algorithm

distributes the workload of BVH traversal among multiple

processing cores, while minimizing the memory overhead.

Fig. 1 Stages of the method proposed to detect self-collisions in tubular

objects.

3. The implemented versions of the self-

collision detection

The algorithm employed detects self-collisions by testing

the overlap between the spheres that bound the object. A

chain is formed by a set of spheres that cover the mesh of

the object. As depicted in Figure 1, the entrance of the

method is the chain of spheres and the two stages are the

construction of a hierarchy and the hierarchy traversal. The

goal is to cull away non-closer spheres.

Fig. 2.Tubular objects are approximated with spheres [1].

We introduce an algorithm to build a hierarchy of spheres

(BVH) and then traverse the tree T to detect self-collisions.

One of the aims of this work is to compare the different

versions of the algorithm implemented.

Fig. 3. A tubular object represented with seven spheres.

In the first algorithm (CPU1), sphere e1 is compared against

the other spheres to determinate overlaps. The algorithm

requires O(n
2
) time, a costly operation. The algorithm

GPU1 employs the GPU to improve the process CPU1,

each sphere is compared with the others through one thread

per sphere. The time per sphere is O(n). However, as we

have n spheres and n threads, the time remains as O(n) since

threads run in parallel.

The following algorithms require a hierarchy to detect

collisions. This way, there are two stages: the hierarchy

construction and the hierarchy traversal.

Algorithm aCPU2 considers the list of the spheres as the

leaves of the tree and takes n pairs to form their parents

which represent an upper level. The number of spheres has

been reduced in n/2. To form the next upper level, we take

spheres in pairs again. As the number of levels of the

hierarchy depends on the number of leaves, we repeat the

process log n times. Therefore, the time required is O(n log

n) .

To construct the hierarchy using GPUs, we take advantage

on the threads allowed. For n leaf spheres, we take n

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 15

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

threads to perform the same process as algorithm aCPU2.

This is the algorithm bGPU2. When the number of leaf

spheres is greater than number of threads allowed per

multiprocessor, then, we utilize algorithm aGPU2, which

divides the leaf spheres in subtrees.

In the hierarchy traversal stage, three algorithms were

developed. The sequential algorithm (CPU2) compares e1

vs T, the hierarchy. This takes O(log n) time for each

sphere. As we have n spheres, then the process takes O(n

logn) time, that is, the levels of T. The parallel algorithm

(GPU2) employs the GPU to improve the CPU2 algorithm,

each sphere is compared using the hierarchy, through one

thread per sphere. The time per sphere is O(log n). As we

have n spheres and n threads running in parallel, the time

remains as O(log n). Algorithm GPUv2 considers 2 threads

per node, one for the left child and the other for the right

child. This reduces the time in the half.

4. Hierarchy Construction

Let e1,e2,…,en, be a set of n spheres joined in a sequential

order as depicted in Figure 3. The second (CPU2) and

fourth (GPU2) algorithms need a hierarchy for detecting

collisions. This stage is implemented in CPU by algorithm

aCPU2 or in GPU by algorithms aGPU2 and bGPU2.

4.1 The sequential version: Recursive Algorithm

(aCPU2)

Spheres are taken in pairs, parents are generated in a

bottom-up manner. This way, we have n leaf spheres in

level h, spheres in level h-1, and so on until we achieve

the root of the hierarchy in the first level. This means that

the tree has h=log2 n+1 levels. From Figure 4, we can

see that e8 is parent of e1, e2; and e11 is parent of e8, e9. The

children of sphere i are represented as ei(ej, ek), where ej is

the left child and ek is the right child. Binary trees were

chosen since the tubular objects are approximated by

joining aligned spheres, where a sphere has only two

neighbor spheres. Other kind of trees could be employed.

Tree nodes are stored in data structures as shown in Figure

5. Both arrays, Tree and Spheres, have 2n-1 elements. The

first n locations of the array are occupied by the leaves of

the hierarchy, the next n-1 locations are occupied by the

inner nodes and are linked with the array locations of their

children as illustrated in Figure 6.

Fig. 4.Hierarchy construction using a bottom-up approach in a binary

Fig. 5.The data structure to store the leaf spheres.

Fig. 6. Links of the resultant tree with 7 spheres.

Spheres are taken in pairs in level h-1 to generate their

parents: e8(e1, e2), e9(e3, e4), …. The number of inner nodes

is n-1. This way, the routine is recursively called with input

E, the set of spheres. E is increased as the generation of

new nodes, and the routine is called again in a recursive

manner taken the children from en, testing the size of the

spheres to envelop the corresponding spheres and setting

the radius and center of the new sphere ej. The maximum

number of spheres created is n-1. Complexity time is O(n

log n).

A parent of two spheres is computed as illustrated in Figure

7. The distance between two spheres d(A,B), using the 3-

vector Euclidean norm d is shown in equation (1).

 (1)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 16

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

If d + e-min.radius e-max.radius then the new radius is

r3 = e-max.radius, otherwise r3 = (d + r1 + r2)/2. Where

e-min is the sphere with the smaller radius, and e-max is

the sphere with the greater radius.

The coordinates for the new center are also obtained:

if (d + e-min.radius < e-max.radius) then

c3 = e-max.center

else c3 = r1 + r2 + .

Where  = c1c2 / || c1c2 ||, is the unitized vector from c1

to c2. So, the new sphere C encloses its children A and B.

Fig. 7.Sphere C is constructed from spheres A and B.

Fig. 8.The parallel hierarchy construction.

4.2 The basic parallel version bGPU2

Assume n leaf spheres in level h, we require a thread for a

couple of spheres, that is threads. In the next level h-1,

threads are required since there are spheres (Figure 8).

The process continues until the root tree is achieved.

Complexity time is O(log n), the height of the tree. Some

graphics cards support at most 768 threads, that is 1,536

spheres, thus in the case we have more spheres, we use

aGPU2, a new parallel algorithm explained in the next

section.

4.3 The advanced parallel version (aGPU2)

There are two stages. In the first stage a kernel is launched

that divides the n spheres in groups in such a way that they

can be processed independently. As a result, subtrees are

created: SA={sa1, sa2, …sar} with r768. The roots of

these groups form a new group of spheres R={r1,r2,…,rr},

which can be processed using again the parallel algorithm

aGPU2. This first kernel takes O(log s), where s is the

number of leaves of the tree. The second kernel accesses R,

then it uses the basic parallel algorithm bGPU2 to generate

the upper part of the tree, generating the set of spheres

S={s1,s2,…,sr-1}, so that it requires O(log r) time, being r

the number of subtrees; in other words it is the cardinality

of SA, |SA|.

Fig. 9.Advanced parallel hierarchy construction.

Therefore, the hierarchy is formed by the union of the sets

of spheres SA  R  S as shown in Figure 9. A different

distribution of nodes is necessary in the array, as illustrated

in Figure 10. The algorithm aGPU2 needs a set of

consecutive locations of nodes to be processed. R, the roots

of subtrees, is written at the end of the SAs locations, the

subtrees. Therefore, when the second kernel is launched, the

spheres in R will be in the right locations to build the upper

part of the tree.

Subtree sai can have at most 192 threads, where each one

operates a pair of spheres. This results in 384 leaf spheres

per sai. The number of subtrees sai depends on the number

of threads allowed, 768, which can operate 1,536 spheres,

the roots of sai. Therefore, the maximum number of leaf

spheres allowed is 1536 x 384 = 589,824.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 17

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 10.New distribution of spheres in the array for the advanced parallel

hierarchy construction

A summary of the time required by the three algorithms to

construct the hierarchy is shown in Table 1.

Table 1. Time required to construct the hierarchy.

Algorithm Time

aCPU2 O(n log n)

bGPU2 O(log n)

aGPU2 O(log s+r)

5. Hierarchy Traversal

Bounding volumes are created in the hierarchy construction

stage while self-collisions are determined in the hierarchy

traversal stage.

Given two spheres A(cA, rA) and B(cB, rB), an overlap

occurs between them if

d(A,B)
2 (rA+rB)

2
 (2)

This inequality verifies the squared distance between two

spheres, using the 3-vector Euclidean norm and the squared

of sum of radius of spheres.

To detect collisions, the animation is required. Spheres are

updated automatically when object deforms due to the

spheres depends on the polygons locations. New call to

hierarchy construction algorithm is required when spheres

modify its attributes.

5.1 The sequential version: Recursive Algorithm

(CPU2)

Neighbor spheres are not considered as a collision. The tree

traverse is performed in the node’s children: left and right.

A sphere is tested against the two nodes of level 1, and cull

away the sphere that is not colliding. For instance, e1 is

compared with e11 and e12. The sphere colliding provides

its two children to check for collisions. If e1 collides with

e11, then e1 must be compared with e8 and e9. This

process continues until a collision with a leaf node occurs

or no more children exist. It could be possible that more

than one couple of spheres collide. As it can be seen, this is

a top-down approach.

Fig. 11.Tree traversal to self-collision detection.

The process consists of testing ei vs T. This process is

required for each sphere, so that it takes O(n log n) time. At

the end, an array of collisions is returned, where each

location counts the number of collisions with other spheres

in the chain that represent the tubular object.

5.2 The parallel version (GPU2)

This implementation utilises the GPU to improve the

sequential version, the same manner each sphere is

compared using the hierarchy, but one thread per sphere, as

depicted in Figure 11. Recursive calls are not supported in

GPUs, so we use a stack to keep the array keys processed to

get explicit recursion. Tree traversal is performed for each

sphere ei vs T running in parallel simultaneously. Then it

takes O(log n) time.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 18

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

In order to improve the parallel version, we launch two

threads per sphere, instead of one (GPUv2). Tree traversal

is performed as the same manner, but thread 1 processes the

left subtree and thread 2 the right subtree for each sphere ei

vs T running in parallel simultaneously. This way, the time

required is ½ O(log n).

A summary of the time required by the three algorithms to

traverse the hierarchy is shown in Table 2.

Table 2. Time required to traverse the hierarchy.

Algorithm Time

CPU2 O(n log n)

GPU2 O(log n)

GPU2v2 ½ O(log n)

6. Empirical results

The algorithms were run in a PC desktop Intel Xeon CPU

E5620 with 12.0 GB RAM DDR, operating system

Windows 7 of 64 bits, NVIDIA GeForce 590 GTX

Graphics Card. We used Microsoft Visual C++ and CUDA

SDK 5.0. The experiments compare algorithms by testing

their implementations.

Animation was required to make the experiments. The

animation consists in determine a number of points and

then generate the path where the snake-like object (spheres)

go through. The path is formed by the coordinates of

keyframes generated by interpolation. The interpolation

method utilizes splines via a cubic tracer. In Figure 12, path

1 is defined as a sinusoidal signal shape, while in Figure

13, path 2 is defined as circles.

Two different paths were used to test the algorithms. CPU1

algorithm, brute force, needs 1,500 ms or more to process

10,000 spheres so we decided not to execute more cases

for this version. The other algorithms took at most 1 ms

with 10,000 spheres or less. Thus, Table 3 and Table 4

contain runtimes for 10, 20, 30, 40, 50, 100 and 150

thousands of spheres, for path1 and path2, respectively.

Both paths generate a maximum of 45 pairs of collisions

with 56 and 114 keyframes of animation.

Results for hierarchy construction are shown in Figure 14

and Figure 15, while results for hierarchy traversal are

shown in Figure 16 and Figure 17. The algorithm aGPU2

is faster than algorithm aCPU2, using 20,000 spheres or

more (Figures 14, 15).

For hierarchy traversal, despite the use of the GPU, the

GPU1 algorithm is the slowest. The CPU2 version, that

uses the hierarchy, has a discrete performance, with good

runtimes till 50,000 spheres, but it is exceeded by

algorithms GPU2 and GPUv2, when the number of spheres

increases (Figures 16, 17). The latter algorithms, have a

good performance in most of the cases.

Fig. 12. Path 1: starting points, interpolation and collision detection.

Fig. 13. Path 2: starting points, interpolation and collision detection.

4. Conclusion

Two versions of hierarchy construction algorithm and five

versions of the algorithm to detect collisions were

implemented. We investigated the performance of the

implemented versions. The object used was a tube

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 19

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

approximated with spheres and the animation employed has

a snake-like motion.

Results shown that the parallel versions are suitable for

more than 20,000 spheres, where the power of parallelism

is exploited. GPU architecture has very high available

parallelism that our algorithms take advantage to get a

better performance. However, it would be possible to

improve the throughput of the algorithms through the use

of shared memory, constant memory, or minimizing the

divergence. Finally, we would like to explore other

applications of our algorithms, such as collision detection

in fluids or particles, and other kind of trees: octree,

quadtree.

Acknowledgments

We would like to thank to the Universidad Autónoma de

Yucatán and the CONACYT México for their financial

support.

References
 [1] Sobottka, G., Varnik, E.,Weber, A.: Collision detection in

densely packed fiber assemblies with application to hair

modeling. In: The 2005 International Conference on Imaging

Science, Systems, and Technology: Computer Graphics, pp.

244–250 (2005)

[2] Craig, J.J.: Introduction to Robotics: Mechanics and Control,

2nd edn. Addison-Wesley, Reading (1989).

[3] Kubiak, B., Pietroni, N., Ganovelli, F., Fratarcangeli, M.: A

robust method for real-time thread simulation. In:

Proceedings of the 2007 ACM Symposium on Virtual Reality

Software and Technology, pp. 85–88 (2007).

[4] Schmidl, H., Walker, N., Lin, M.C.: CAB: fast update of OBB

trees for collision detection between articulated bodies. J.

Graph. GPU Game Tools 9, 1–9 (2004).

[5] Lotan, I., Schwarzer, F., Halperin, D., Latombe, J.-C.:

Efficient maintenance and self-collision testing for kinematic

chains. In: Proceedings of the Eighteenth Annual Symposium

on Computational Geometry, pp. 43–52 (2002).

[6] F. Madera, C. Herrera, S. Laycock. Ray-Triangle Collision

Detection to Approximate Objects with Spheres. The

IASTED International Conference on Computer Graphics

and Imaging, 2013.

[7] Bradshaw and C. O’Sullivan. Adaptive medial axis human

approximation for sphere-tree construction.ACM

Transactions on Graphics, 23(1):1–26, 2004.

[8] D. James and D. Pai. Bd-tree: Output-sensitive collision

detection for reduced deformable models.ACM Transactions

on Graphics, 23(3), 2004.

[9] G. van den Bergen. Efficient Collision Detection of complex

Deformable Models using AABB Trees. Journal of Graphics

tools, vol. 2, No. 4, pp. 1-14, 1997.

[10] Thomas Larsson, Thomas Akenine-Moller. Collision

Detection for Continuously Deforming Bodies, Eurographics,

Manchester, UK, pp. 325-333, 2001.

[11] S. Gottschalk, M.C. Lin, D. Manocha. A Hierarchical

Structure for Rapid Interference Detection, Proceedings on

SIGGRAPH, New York, pp. 171-180, 1996.

[12] Li H., Yezzia J., Cohen L. 3D Multi-branch tubular surface

and centerline extraction with 4D iterative key points,In

MICCAI (1) (2009), Yang G.-Z., Hawkes D. J.,Rueckert D.,

Noble J. A., 0002 C. J. T., (Eds.), vol. 5762of Lecture Notes

in Computer Science, Springer, pp. 1042–1050.

[13] R. Wiemker, T. Klinder, M. Bergtholdt, K. Meetz, I. Carlsen,

T. Bulow. A Radial Structure Tensor and its use for Shape-

Enconding Medical Visualization of Tubular and Nodular

Structures. IEEE Transactions on Visualization and Computer

Graphics.Vol. 19, No. 3, pp 353 – 366, 2013.

[14] V. Luboz, J. Kim-Tun, S. Sen, R. Kneebone, R. Dickinson,

R. Kitney, F. Bello.Real-time stent and ballon simulation for

stenosis treatment.The Visual Computer Journal, vol. 30, No.

3, pp 341 – 349, 2014.

[15] Evan Shellshear. 1D sweep-and-pune self-collision detection

for deforming cables.The Visual Computer Journal, vol. 30,

No. 5, pp 553 – 564, 2014.

[16] M. Burtscher, K. Pingali. An efficient CUDA implementation

of the tree-based barnes-hut n-body algorithm. In GPU

Computing Gems Emerald edition, pp 75 – 92, Morgan

Kaufmann, 2011.

[17] Paul Rosen. A Visual Approach to Investigating Shared and

Global Memory Behavior of CUDA Kernels. EuroGraphics

Conference on Visualization.pp 161 – 170, 2013.

[18] X. Zhang, Y. J. Kim.Scalable Collision Detection using p-

Partition Fronts on Many-Core Processors. IEEE Trans. On

Visualization and Computer Graphics, vol. 20 No. 3, pp 447 –

456, 2014.

Enrique Ayala is a lecturer in Computer Sciences at Universidad

Autónoma de Yucatán, in Mérida, México. He received a Master

Degree in Distributed Systems and Networks from the Instituto

Tecnológico y de Estudios Superiores de Monterrey, México, in

2002. He received a BS in Computer Systems Engineering from the

Instituto Tecnológico de Morelia, México, in 1993. His research

interests include Computer Networks, Parallel and Distributed

Computing and GPU Programming.

Francisco A. Madera received his B. Sc. Degree from the

Universidad Autónoma de Yucatán, México; his PhD from the

University of East Anglia, UK. Dr. Madera teaches subjects related

to computer graphics and videogames development; and his

research is focused on collision detection and GPU programming.

Francisco Moo-Mena is a Professor in Computer Sciences at

Universidad Autónoma de Yucatán, in Mérida, Mexico. From the

Institute National Polytéchnique de Toulouse, in France, he

received a Master Degree in Computer Science and a PhD, in

2003 and 2007, respectively. He also received another Master

Degree in Distributed Systems from the Instituto Tecnológico y de

Estudios Superiores de Monterrey, México, in 1997. His research

interests include Parallel and Distributed Computing, CUDA, Self-

healing systems, and Web services Architectures.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 20

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 14. Results for hierarchy construction with path 1.

Fig. 16. Results for hierarchy traversal with path 1.

Table 3. Runtimes in ms for the hierarchy construction and hierarchy

traversal with path1.

HIERARCHY CONSTRUCTION

n 10,000 20,000 30,000 40,000 50,000
100,00

0
150,00

0

aGPU2 0,28 1,71 4,75 3,32 2,21 5,75 10,83

aCPU2 0,28 0,00 7,76 13,37 11,69 17,33 25,87

HIERARCHY TRAVERSAL

GPU1 9,78 31,00 85,46 109,16 164,58 624,87
1331,5

5

GPU2 0,28 13,71 3,05 11,17 4,71 7,80 6,14

GPU2v2 3,66 0,28 6,98 5,80 3,05 5,32 6,07

CPU2 15,50 31,26 39,51 51,00 73,83 166,08 265,19

Fig. 15. Results for hierarchy construction with path 2.

Fig. 17. Results for hierarchy traversal with path 2.

Table 4. Runtimes in ms for the hierarchy construction and hierarchy

traversal with path2.

HIERARCHY CONSTRUCTION

n 10,000 20,000 30,000 40,000 50,000
100,00

0
150,00

0

aGPU2 0,00 4,35 5,70 9,12 2,21 5,13 10,72

aCPU2 0,00 0,13 5,65 14,51 9,53 17,27 25,46

HIERARCHY TRAVERSAL

GPU1 1,37 30,85 80,03 107,40 164,27 622,50
1333,0

5

GPU2 0,13 11,50 3,79 4,95 1,79 7,07 5,57

GPU2v2 11,20 0,00 3,45 12,43 1,46 4,22 7,90

CPU2 15,58 31,30 43,36 52,68 73,98 163,52 266,29

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 21

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

