

A Rewriting Logic Approach for Automatic Composition of Web

Services

Walid Berrouk
1
 and Ouanes Aissaoui

2

1 LIRE Laboratory, Mentouri University, P.O. Box 325, City Ain El Bey 25017 Constantine, Algeria

2 LISCO Laboratory, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

Abstract
Nowadays, Web Services (WS) remain a main actor in the

implementation of distributed applications. They represent a new
promising paradigm for the development, deployment and

integration of Internet applications. These services are in most

cases unable to provide the required functionality; they must be

composed to provide appropriate services, richer and more
interesting for other applications as well as for human users. The

composition of Web services is considered as a strong point,

which allows answering complex queries by combining the

functionality of multiple services within a same composition. In
this work we showed how the formalism of graphs can be used to

improve the composition of web services and make it automatic.

We have proposed the rewriting logic and its language Maude as

a support for a graph-based approach to automatic composition
of web services. The proposed model has made possible the

exploration of different composition schemas as well as the

formal analysis of service compositions. The paper introduces a

case study showing how to apply our formalization.

Keywords: Web services, Automatic Composition, Rewriting

Logic, Graphs Formalism.

1. Introduction

The service-oriented architecture [1] is a new paradigm

that aims to build software systems using basic loosely

coupled services. These services are in most cases unable

to provide the required functionalities; they must be

composed to provide appropriate services, richer and more

interesting for other applications as well as for human

users.

Automatic composition of web services has drawn a great

deal of attention recently. By composition, we mean taking

advantage of currently existing web services to provide a

new service that does not exist on its own [2]. Therefore,

in order to have a more complex service we can use some

semantically related simpler web services and execute

them in such a way that the whole set provides the desired

service. Service composition is usually defined using two

complementary approaches: the choreography and

orchestration. In orchestration [3, 16, 17], the involved

web services are under control of a single endpoint central

process (another web service). This process coordinates

the execution of different operations on the Web services

participating in the process. The invoked Web services

neither know and nor need to know that they are involved

in a composition process and that they are playing a role in

a business process definition. Only the central process

(coordinator of the orchestration) is conscious of this aim,

thus, the orchestration is centralized through explicit

definitions of operations and the invocation order of Web

services. Choreography [3, 16, 17], in contrast, does not

depend on a central orchestrator. Each Web service that

participates in the choreography has to know exactly when

to become active and with whom to interoperate.

Choreography is based on collaboration and is mainly used

to exchange messages in public business processes. All

Web services which take part in the choreography must be

conscious of the business process, operations to execute,

and messages to exchange as well as the timing of

message exchanges.

Service composition has been addressed by several

researches. The study of existing literature shows that the

problem of automatic composition of web services is

inherently very difficult because the data are unstable and

the Web is dynamic.

Different formalisms have been proposed for the web

services composition by several research teams around the

world. Among these formalisms we can mention: graphs

[2], Petri nets [4, 15, 18], process algebras [5], finite state

machines [14] and UML [13]. To the difference of these

approaches, our contribution in this work is to show how

the formalism of graphs can be used to improve the

composition of web services and make it automatic. More

specifically we aim to formalize by using rewriting logic

and its Maude system the graph-based algorithm of web

services composition presented in [6].

The remainder of the paper is organized as follows: In

Section 2, the rewriting logic and Maude language are

briefly introduced. Section 3 details the proposed approach.

Section 4 provides an example of how our approach works.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 41

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Finally, section 5 contains a brief conclusion and describes

the future plans.

2. Basic concepts

2.1 Rewriting logic

The rewriting logic is a logic of concurrent changes which

can treat the state and the computing of the concurrent

systems. It was introduced by Meseguer [8] as a

consequence of work on the general logics. Consequently,

this logic was largely used to specify and analyse systems

and languages in various applicability. Thus the logic of

rewriting offers a formal framework necessary for the

specification and the study of the behaviour of the

concurrent systems. Indeed, it makes it possible to reason

on possible complex changes corresponding to the atomic

actions axiomatized by the rewriting rules. The key point

of this logic is that the logical deduction, which is

intrinsically concurrent, corresponds to computing in a

concurrent system [9, 10].

 In this logic the static aspect of the systems is represented

by a subjacent logic called membership equational logics.

The dynamic aspect is represented by rewriting theories

describing the possible transitions between the states of the

concurrent system [7]. The equational logic makes it

possible for us to carry out modular specifications.

The rewriting logic is proposed as a logical framework in

which other logics can be represented, and as a semantic

framework to specify several systems and languages in

varied fields. It offers techniques of formal analysis

making it possible to prove properties of the system to be

specified, and to reason on its changes.

2.2 Maude

Maude [12] is a specification and programming language

and also a high level system based on the rewriting logic.

It implements and concretises the various concepts of the

rewriting logic. Maude is simple, expressive and efficient.

Maude offers few syntactic constructions and a well

defined semantics.

It is, in addition, possible to describe naturally various

types of applications. Maude is a language which supports

easily the rapid prototyping and represents a programming

language with competitive performances. In the Maude

language, two levels of specification are defined. A first

level relates to the specification of the system while

second relates to the specification of the properties [11,

12]. The Maude programs are a rewriting theories and

concurrent computing in Maude represent deductions in

the rewriting logic.

This language was largely influenced by the language

OBJ3, more precisely the equationnal part of Maude

included OBJ3 as a sub-language.

3. Approach

 Our objective in this work is to propose the rewriting

logic [10] through the Maude language [12, 13] as a

support for a graph-based approach to automatic

composition of web services. The proposed

implementation for this approach makes it possible to

explore different schemas of composition as well formal

analysis of service compositions using the tools built

around the Maude such as its LTL model-checker. The

purpose of this section is to present the formalization of

the different phases of our algorithm for automatic

compositions inspired by [6].

For better understanding this work, we start this section by

introducing some basic concepts.

Web Service: a web service Si ∈ S (where S is the set of

all services) is defined by a triplet (ServiceName,

InputTypeList, OutputTypeList) where ServiceName

indicates the name of the service, InputTypeList is the set

of the elements in the input and OutputTypeList is the set

of the results provided by this service (see Figure 1).

Fig. 1. Structure of an Atomic Web service.

Composition of two services: two services Si and Sj can

be composed if and only if the intersection of the outputs

of Si with the inputs of Sj is not empty.

Affinity: For any couple of services A and B (A ≠ B), the

association degree of A with B is defined as follows:

aff A, B =
 𝐀.𝐎𝐮𝐭𝐩𝐮𝐭𝐓𝐲𝐩𝐞𝐋𝐢𝐬𝐭 ∩ 𝐁. 𝐈𝐧𝐩𝐮𝐭𝐓𝐲𝐩𝐞𝐋𝐢𝐬𝐭

 𝐁. 𝐈𝐧𝐩𝐮𝐭𝐓𝐲𝐩𝐞𝐋𝐢𝐬𝐭

(𝟎 ≤ 𝒂𝒇𝒇 𝑨,𝑩 ≤ 𝟏) .

ServiceName OutputTypeList InputTypeList

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 42

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

This function is applied if and only if one service A can

call a service B.

Our formalization of the graph-based approach to Web

services composition inspired by [6] follows two principal

steps. The first step consists to deriving the graph model

using the module « COMP-MODEL » (implementation of

the equational theory). This module offers the adequate

semantic mechanisms specifying the constraints of

connection between web services .The second step

consists to generating the various planes of possible

compositions making it possible to achieve a particular

request. This phase is based on a mapping between the

required elements and the provided elements by each node

of the graph. The second part constitutes the dynamic

aspect of the formalization. It will thus be implemented

using a rewriting theory (the system module

« COMPOSITION-PLAN »).

3.1 Construction of the graph-based compositions

model

The graph-based services composition model presented in

this section offers a description of the association between

the web services components. In this model, the services

filling the same functionalities cannot be included

simultaneously because the required functionality can be

accomplished before even as these services are not

considered. Then an atomic service Si (Si ∈ S) can be

includes in the model M if and only if Si achieves new

functionalities.

The graph-based services composition model formalized

in this work is made up of a set of nodes and edges

between these nodes. Each node of the graph is equipped

with two sets TA
i and TA

o , these sets represent respectively

the current elements of the input and the current provided

results.

We propose the algorithm above for generating the graph-

based model of a set of services starting from an initial

node.

In this algorithm, an 𝑇𝐴
𝑜 ∩ B.InputTypeList ≠ Ø means

that B can be called upon, and B.OutputTypeList ⊄ 𝑇𝐴
𝑜

means that the invocation of B achieves new

functionalities.

In order to formalize this algorithm, we propose the four

Maude modules:«GRAPH», «SERVICE-SPEC», «SET-

OPERATION» and «COMP-MODEL» respectively

presented in the figures 2 to 5. For more clearness, we felt

it important to give these theories by using the Maude

code.

The Maude functional module « GRAPH » formalizes the

graph data structure (see figure 2). In this module, after

the declaration of the sorts and the relations of sub-sorts

useful to describe the elements which a graph can contain,

a set of operations and algebraic equations are introduced

to specify the actions of addition of nodes and arcs to a

graph.

To specify formally the concept of web service we suggest

the functional module « SERVICE-SPEC » (figure 3). The

most significant operation in this module is: « op `(_:_-

>_`) : ServiceN TypeSet TypeSet -> Service [ctor prec

23] » it is used to define the structure of atomic web

services, the operation « op __ : SetServiceN SetServiceN -

Algorithm of composition model construction:

Inputs:

 The set of services S, S={S1,…, Sn}

The initial node Sinit = (𝑇Sinit
𝑖  Sinit.InputTypeList, 𝑇Sinit

𝑜 

Sinit.OutputTypeList)

Outputs: M (the composition model associated with S)

1: Begin

2: For each service B ϵ {S-Sinit} do

3: For each node A ϵ M do

4: 𝑇𝐵
𝑖  Ø; 𝑇𝐵

𝑜
 Ø;

5: if 𝑇𝐴
𝑜 ∩ B.InputTypeList ≠ Ø and B.OutputTypeList ⊄ 𝑇𝐴

𝑜 then

6: M M ∪ (A, B);

7: 𝑇𝐵
𝑜
𝑇𝐴

𝑜 ∪ B.OutputTypeList;

8: 𝑇𝐵
𝑖
𝑇𝐴

𝑖 ∪ B.InputTypeList;

9: end_if;

10: end_For;

11: end_For;

12: End.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 43

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

> SetServiceN [ctor id: none prec 25] . » is used to

generate a set of services definitions.

Fig. 2. The functional Module «GRAPH».

Fig. 3. The functional Module «SERVICE-SPEC».

Fig. 4. The functional Module «SET-OPERTION».

The functional module « SET-OPERTION » formalizes

the different ensemblists operators and the two operations

allowing to extract the elements in the input and the results

provided starting from a services definition (Figure 4). In

this module, we import firstly in mode "Including" the

«SERVICE-SPEC» module already presented. Then, we

give the signature of the ensemblists operators as well as

their definitions using algebraic equations.

Lastly, we propose the last functional module «COMP-

MODEL» formalizing the algorithm of composition model

construction presented previously (see figure 5). This

module, directly imports the two modules «GRAPH» and

«SET-OPERT», and by transitivity the module

«SERVICE-SPEC». In this module, the last conditional

equation allows adding nodes to the graph after checking

the two conditions 𝑇𝐴
𝑜 ∩ B.InputTypeList ≠ Ø and

B.OutputTypeList ⊄ 𝑇𝐴
𝑜 .

fmod SET-OPERT is
1) including SERVICE-SPEC .

2) op Intersect : TypeSet TypeSet ->

 TypeSet [ctor] .

3) op Union : TypeSet TypeSet -> TypeSet

 [ctor] .

4) op Inclus : TypeSet TypeSet -> Bool

 [ctor] .

5) op InputTypeList : Service -> TypeSet

 [ctor] .

6) op OutputTypeList : Service ->

 TypeSet [ctor] .

7) vars st1 st2 st3 st4 st5 st6 st7 st8

 st9 : TypeSet .

8) vars t1 t2 t3 : Type .

9) var ServiceN : ServiceN .

10) eq Intersect(t1 st1 , t1 st2) = t1

 Intersect (st1 , st2) .

11) eq Intersect(st1 , st2) = none

 [owise] .

12) eq Union(t1 st1 , t1 st2) = t1

 Union (st1 , st2) .

13) eq Union(t1 st1 , t2 st2) = t1 t2

 Union (st1 , st2) .

14) eq Union(none , st2) = st2 .

15) eq Union(st1 , none) = st1 .

16) eq Union(none , none) = none .

17) eq Inclus(st1 , st1 st2) = true .

18) eq Inclus(st1 , st2) = false

 [owise] .

19) eq InputTypeList((ServiceN : st1 ->

 st2)) = st1 .

20) eq OutputTypeList((ServiceN : st1 ->

 st2)) = st2 .

21) eq Remove(t1 st1 , t1 st2) =

 Remove(st1 , st2) .

22) eq Remove(st2 , none) = st2 .

23) eq Remove(st2 , st1) = st2 [owise].

endfm

fmod SERVICE-SPEC is
1) sorts Service ServiceSet Type

 TypeSet ServiceN SetServiceN .

2) subsort Type < TypeSet .

3) subsort Service < ServiceSet .

4) subsort ServiceN < SetServiceN .

5) op __ : TypeSet TypeSet -> TypeSet

 [ctor comm id: none prec 22 as soc] .

6) op __ : SetServiceN SetServiceN ->

 SetServiceN [ctor id: none prec 25] .

7) op `(_:_->_`): ServiceN TypeSet

 TypeSet -> Service [ctor prec 23] .

8) op _;_ : ServiceSet ServiceSet ->

 ServiceSet [ctor comm id: none prec

 24 assoc] .

9) op none : -> SetServiceN [ctor] .

10) op none : -> ServiceSet [ctor] .

11) op none : -> TypeSet [ctor] .

endfm

fmod GRAPH is
1) sorts Node Nodes Edge Edges Graph .
2) subsort Node < Nodes .

3) subsort Edge < Edges .

4) op niln : -> Node [ctor] .

5) op __ : Nodes Nodes -> Nodes [ctor

 assoc comm id: niln prec 23] .

6) op _in_ : Node Nodes -> Bool .

7) op link`(_._`) : Node Node -> Edge

 [ctor prec 22] .

8) op nile : -> Edge [ctor] .

9) op __ : Edges Edges -> Edges [assoc

 comm id: nile prec 23] .

10) op _in_ : Edge Edges -> Bool .

11) op |_`,_| : Nodes Edges -> Graph

 [ctor prec 24] .

12) ops source target : Edge -> Node .

13) op addN : Graph Nodes -> Graph .

14) op addE : Graph Edges -> Graph .

15) vars e1 e2 : Edge .

16) vars n1 n2 : Node .

17) vars Ns Ns’ : Nodes .

18) vars Es Es’ : Edges .

19) eq n1 in n1 Ns = true .

20) eq n1 in Ns = false [owise] .

21) eq e1 in e1 Es = true .

22) eq e1 in Es = false [owise] .

23) eq source(link(n1 . n2)) = n1 .

24) eq target(link(n1 . n2)) = n2 .

25) eq addN(| Ns , Es | , niln) = | Ns , Es | .

26) eq addN(| Ns , Es | , n1 Ns’) = if not (

n1 in Ns) then addN(| n1 Ns , Es | , Ns’

) else addN(| Ns , Es | , Ns’) fi .eq

addE(| Ns , Es | , nile) = | Ns , Es | .

27) eq addE(| Ns , Es | , e1 Es’) = addE(

addN(|Ns , e1 Es |, source(e1)

target(e1)), Es’) .

endfm

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 44

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5. The functional Module «COMP-MODEL».

3.2 Construction of the composition plan

The second phase of the graph-based composition

approach formalized in this work is to calculate the

composition plans (i.e. services invocation sequence)

using the graph model result of the first step and a user

query. The inputs of this step are then: the services

composition graph model and a request of the form

R.InputTypeList  R.requiredType-List.

The module system «COMPOSITION-PLAN» presented

in the figure 6 allows us to find from a services

composition the compositions schemas completing a

request. In this module, to add a node of the graph to the

composition schema we must check two constraints: the

node must have a maximum affinity (equal to 1) with the

request and a link must exist with the last node in the

schema.

Through the various modules presented in this section, we

find that we have given a modular specification of the

composition approach. So we can easily enrich this

specification, and add other operations, sorts, equations, or

even modules to specify different syntactic aspects which

are not considered in our specification.

By the implementation of these modules in the Maude

language, we obtain running specifications.

Fig. 6. The System Module «COMPOSITION-PLAN».

4. Case study

To better show the proposed formalization we present in

this section a case study of the services collection

«WEATHER-WS». Initially the set S of all services is

composed of six atomic services S = {S1, S2, S3, S4, S5,

S6}. Where each service has the inputs and outputs shown

in Table 1.

mod COMPOSITION-PLAN is
1) including COMP-MODEL .
2) protecting RAT .
3) sorts Request COMP-PLAN .
4) op _->_ : TypeSet TypeSet -> Request
 [ctor prec 25] .

5) op<<_`,_`,_`,_>>:Cmp-Mod Request
 Nodes SetServiceN->COMP- PLAN .

6) op aff : Request Node -> Nat [ctor] .
7) op Card : TypeSet -> Nat [ctor] .
8) vars ts1 ts2 ts1' ts2' ts3 ts4 ts5
 ts6 : TypeSet .

9) vars sn1 sn2 : ServiceN .
10)vars srvs1 : ServiceSet .

11)vars invs : SetServiceN .

12)var e : Edge .

13)var es : Edges .

14)var nds nds’ : Nodes.

15)var t1 : Type .

16)eq Card (t1 ts1) = 1 + Card (ts1) .

17) eq Card (none) = 0 [owise] .
18) eq aff (ts1 -> ts2, <sn1, ts3, ts4>)
 = Card(Intersect (ts2, ts4)) /Card

(ts2).

19)crl [COMP-PL] :<< (sn1 : ts1 -> ts2) ;

srvs1 & | < sn1 , ts3 , ts4 > nds , es

| , ts5 -> ts6 , niln , none >> => <<

srvs1 & | < sn1 , ts3 , ts4 > nds ,es |,

ts5 -> Remove(ts6 , ts2) , < sn1 , ts3

, ts4 > , sn1 >> if Inclus(ts5 , ts3)

/\ aff(ts5 -> ts6 ,< sn1,ts3 , ts4 >)==

1 .

20)crl [COMP-PL] : << (sn1 : ts1 -> ts2) ;

srvs1 & | < sn1 , ts3 , ts4 > nds ,

link(< sn1 ,ts3 , ts4 > . < sn2 , ts1'

, ts2' >) es | , ts5 -> ts6 , < sn2 ,

ts1' , ts2' > nds' , sn2 invs >> => <<

srvs1 & | < sn1 , ts3 , ts4 > nds ,

link(< sn1 , ts3 , ts4 > . < sn2 , ts1'

,ts2' >) es | , ts5 -> Remove(ts6 , ts2

) , < sn1 , ts3 , ts4 > < sn2 , ts1' ,

ts2' > nds' , sn1 (sn2 invs) >> if

Inclus(ts5 , ts3) /\ aff (ts5 -> ts6

,< sn1 , ts3 , ts4 >) == 1 .

endm

mod COMP-MODEL is
1) including GRAPH .

2) including SET-OPERT .

3) sorts NodeSer Cmp-Mod N .

4) subsort NodeSer < Node .

5) op _&_ : ServiceSet Graph -> Cmp-Mod

 [ctor prec 25].

6) op <_`,_`,_> : ServiceN TypeSet

 TypeSet -> NodeSer [ctor prec 22].

8) op NamSer : Node -> ServiceN [ctor].

9) op NamSer : Service -> ServiceN [ctor].

10) vars ts1 ts2 ts3 ts4 : TypeSet .

11) vars t1 t2 t3 : Type .

12) vars sn1 sn2 sn3 sn4 : ServiceN .

13) vars srv1 srv2 srv3 : Service .

14) vars srvs1 srvs2 srvs3 : ServiceSet .

15) var e : Edge .

16) var es : Edges .

17) var nds : Nodes .

18) eq NamSer (< sn1 , ts1 , ts2 >) = sn1 .

19) eq NamSer ((sn1 : ts1 -> ts2)) = sn1 .

20) ceq (sn2 : ts3 -> ts4) ; srvs1 & | <

sn1 , ts1 , ts2 > nds , es | = (sn2 :

 ts3 -> ts4) ; srvs1 & addE(| < sn1 ,

ts1 , ts2 > nds , es | , link(< sn1 ,

 ts1 , ts2 > . < sn2 , Union(ts1 , ts3)

, Union(ts2 , ts4) >)) if (Inter sect(

ts2 , ts3) =/= none) /\ (Inclus(ts4

, ts2) == false) /\ (not (link(< sn1 ,

ts1 , ts2 > . < sn2 , Union(ts1 , ts3)

, Union(ts2 , ts4) >) in es)) .

endm

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 45

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Inputs and outputs of the WEATHER-WS collection

services.

Atomic

Service

InputTypeList OutputTypeList

S1 city longitude, latitude

S2 longitude, latitude weather

S3 zipecode logitude, latitude

S4 zipecode weather

S5 longitude, latitude,

road

zipecode

S6 city zipecode

Fig. 7. The System module «WEATHER-WS».

The figure 7 shows the transformation of the WEATHER-

WS collection services presented in Table 1 to a rewriting

logic. More precisely, this transformation is done by

declaring a system module that imports the generic

module «COMPOSITION-PLAN» using the clause

“extending”, and the statement of manufacturing

operations to identify in this case, the name of the

collection (weather-ws), the names of atomic services (S1,

..., S6) and the types of exchanged data (city, longitude, ...

road). Finally, the last algebraic equation of the

«WEATHER-WS» module groups all these elements.

To generate the graph-based model associated with the

collection of WEATHER-WS services we must use the

“reduce” Maude command while specifying the set S of all

services and the initial node. Figure 8 shows an example of

the running of this command. Figure 9 is a graph

representation of the obtained results.

To show how to generate the various composition plans of

a query, we introduce the example shown in the figure 10.

This query has as input an element of type «city» and as

required elements the set of types: «longitude», «latitude»

and «weather». We must use the “search” Maude

command while specifying the entire composition plan.

The same figure shows the result obtained after the

running.

5. Conclusions

In this work, we showed how the formalism of graphs can

be used to improve the composition of web services and

make it automatic. More precisely, we have proposed

rewriting logic and its Maude language as a support for a

graph-based approach for automatic composition of web

services. The proposed model has made possible the

exploration of different composition schemas as well as

the formal analysis of service compositions. Our

contribution has broadly followed two main steps:

 The first step consists of defining the graph model

(implementation of the equational theory). This model

offered the adequate semantic mechanisms specifying

the constraints of connection between web services.

 The second step consists to generating the different

schemas of possible compositions (composition plans)

to accomplish a particular query. This phase is based

on a mapping between the required elements and the

provided elements of each node in the graph. This part

constitutes the dynamic aspect of the formalization.

As an extension of this work, we aim to use the strategy

technique of the Maude system to optimize the selection of

the chosen services in the second phase of our

formalization.

mod WEATHER-WS is
1) ops city longitude latitude weather

 zipcode road : -> Type [ctor] .

2) ops s1 s2 s3 s4 s5 s6 : -> ServiceN[ctor].

3) op weather-ws : -> ServiceSet [ctor] .

4) eq weather-ws = (s1 : city ->

 longitude latitude) ; (s2 :

 longitude lati tude -> weather); (

 s3 : zipcode -> longitude latitude);

 (s4 : zipcode -> weather) ; (s5 :

 longitude latitude road -> zipcode) ;

 (s6 : city -> zipcode) .

endm

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 46

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 8. Composition model of the WEATHER-WS collection.

Fig. 9. Graph representation of the composition model.

< s1,city,longitude latitude >

< s2,city longitude latitude , longitude latitude weather >

< s5,city longitude latitude road , longitude

latitude weather zipcode >

< s5,city longitude latitude road , longitude latitude

zipcode >

< s2,city longitude latitude road , longitude latitude

weather zipcode >

< s4,city longitude latitude zipcode road , longitude latitude

weather zipcode >

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 47

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.4 built: Dec 9 2008 20:35:33

Copyright 1997-2008 SRI International

Fri march 14 21:33:34 2014

search in WEATHER-WS : << weather-ws & | < s1,city,longitude latitude >,nile |,

 c ity -> longitude latitude weather,niln,none >> =>*

 << C:Cmp-Mod,city -> none,nd:Nodes,S:SetServiceN >> .

Solution 1 (state 5)

states: 6 rewrites: 1389 in 4964211348ms cpu (10ms real) (0 rewrites/second)

C:Cmp-Mod --> (s3 : zipcode -> longitude latitude) ; (s4 : zipcode -> weather)

 ; (s5 : longitude latitude road -> zipcode) ; (s6 : city -> zipcode) & | <

 s1,city,longitude latitude > < s2,city longitude latitude,longitude

 latitude weather > < s2,city longitude latitude road,longitude latitude

 weather zipcode > < s4,city longitude latitude zipcode road,longitude

 latitude weather zipcode > < s5,city longitude latitude road,longitude

 latitude zipcode > < s5,city longitude latitude road,longitude latitude

 weather zipcode >,link(< s1,city,longitude latitude > . < s2,city longitude

 latitude,longitude latitude weather >) link(< s1,city,longitude latitude >

 . < s5,city longitude latitude road,longitude latitude zipcode >) link(<

 s2,city longitude latitude,longitude latitude weather > . < s5,city

 longitude latitude road,longitude latitude weather zipcode >) link(< s5,

 city longitude latitude road,longitude latitude zipcode > . < s2,city

 longitude latitude road,longitude latitude weather zipcode >) link(< s5,

 city longitude latitude road,longitude latitude zipcode > . < s4,city

 longitude latitude zipcode road,longitude latitude weather zipcode >) |

nd:Nodes --> < s1,city,longitude latitude > < s2,city longitude latitude,

 longitude latitude weather >

S:SetServiceN --> s1 s2

Solution 2 (state 9)
states: 10 rewrites: 1797 in 4964211348ms cpu (21ms real) (0

rewrites/second)

C:Cmp-Mod --> …………….

nd:Nodes --> < s1,city,longitude latitude > < s2,city longitude latitude
road,longitude latitude weather zipcode > < s5,city longitude latitude

road,longitude latitude zipcode >

S:SetServiceN --> s1 (s5 s2)

Solution 3 (state 10)
states: 11 rewrites: 1905 in 4964211348ms cpu (204ms real) (0

rewrites/second)

C:Cmp-Mod -->………………

nd:Nodes --> < s1,city,longitude latitude > < s2,city longitude latitude,
longitude latitude weather > < s5,city longitude latitude road,longitude

latitude weather zipcode >

S:SetServiceN --> s1 (s2 s5)

No more solutions.

states: 12 rewrites: 1993 in 4964211348ms cpu (674ms real) (0

rewrites/second)

The set of nodes

invoked in Cmp-

Mod

The set of services used in composition

Figure 10. Composition model plan of the WEATHER-WS collection with running the “search”
Maude command.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 48

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] M.P. Papazoglou, W.J. Heuvel, “Service oriented

architectures: approaches, technologies and research issues”,
The International Journal on Very Large Data Bases, v.16

n.3, pp. 389-415, 2007

[2] S.V. Hashemian, F. Mavaddat, “A Graph-Based Approach

to Web Services Composition”, Proceedings of the The
2005 Symposium on Applications and the Internet, p.183-

189, 2005

[3] C. Peltz, “Web Services Orchestration and Choreography”,

IEEE Computer, Vol.36, No.10, pp. 46-52. 2003
[4] R. Hamadi, B. Benatallah, “A Petri net-based model for web

service composition”, Proceedings of the 14th Australasian

database conference, pp.191-200, Adelaide, Australia,

2003
[5] S. Ripon, M. Salah Uddin, A. Baru, “Web Service

Composition--BPEL vs cCSP Process Algebra”, ACSAT '12

Proceedings of the 2012 International Conference on

Advanced Computer Science Applications and
Technologies, pp. 150-155, 2012

[6] K. YUE, M. YUE, W. LIU, X. LI, “A Graph-Based

Approach for Type Matching in Web Service Composition”,

Journal of Computational Information Systems, Vol. 6, No.
7, pp.2141-2149, 2010.

[7] F. Latrehe, F. Belala, “A Semantic Framework for

Analyzing Web Services Composition”, International

Journal of Computer Applications, Vol. 5, No. 4, pp. 47-53,
2010.

[8] J. Meseguer, “A logical theory of concurrent objects”,

Proceedings of the European conference on object-oriented

programming on Object-oriented programming systems,
languages, and applications, pp.101-115, 1990

[9] N. Marti-Oliet, J. Meseguer, “Rewriting logic as logical and

semantic framework”, Technical Report SRI-CSL-93-05,

SRI International, Computer Science Laboratory, 1993
[10] N. Marti-Oliet, J. Meseguer, “Rewriting logic: roadmap and

bibliography”, Theoretical Computer Science, Vol. 285, No.

2, pp.121–154, 2002

[11] M. Clavel, F. Duran, S. Ecker, P. Lincoln, N. Marti-Oliet, J.
Meseguer, C. Talcott, “The Maude 2.0 System”. In Proc.

Rewriting Techniques and Applications (RTA), Volume

2706 of LNCS, Spring-Verlag, pp. 76-87, 2003

[12] M. Clavel, F. Duran, S. Ecker, P. Lincoln, N. Marti-Oliet, J.
Meseguer, J. Quesada, “Maude: specification and

programming in rewriting logic”, Theoretical Computer

Science, Vol. 285, No. 2, pp.187-243, 2002

[13] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M.
Mecella, “Automatic Composition of e-Services”,

Proceedings of the First International Conference on

Service-Oriented Computing (ICSOC), pp. 43-58, 2003

[14] P.C. Xiong, Y.S. Fan, M.C. Zhou, “A Petri Net Approach to
Analysis and Composition of Web Services”, In IEEE

Trans. on Sys., Man and Cybern., Part A, 2009

[15] S. Thone, R. Depke, G. Engels, “Process-Oriented, Flexible

Composition of Web Services with UML”, Proceedings of
the Joint Workshop on Conceptual Modeling Approaches

for e-Business (eCOMO), 2002

[16] A. Barros, M. Dumas, P. Oaks, “Standards for Web Service
Choreography and Orchestration: Status and Perspectives”,

Proc. of 2006 Business Process Management Workshops,

Nancy, France, pp.61-74, 2006

[17] Yousra Chtouki, Hamid Harroud, Mohammed khalidi

Idrissi, Samir Bennani, “”Service Orchestration Algorithm
for Web Services: Evaluation and Analysis”, IJCSI

International Journal of Computer Science Issues, Vol. 10,

Issue 5, No 1, September 2013

[18] Sofiane Chemaa, Raida Elmansouri and Allaoua Chaoui,
“Web Services Modeling and Composition Approach using

Object-Oriented Petri Nets”, IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012

Walid Berrouk received his master in computer science from the
Mentouri University in 2012. His research interests include web
service composition and formal specification and verification.

Ouanes AISSAOUI is a Ph.D. student of Badji Mokhtar University
in department of computer science. He received his master in
computer science from the Badji Mokhtar University in 2011. His
research interests include self-adaptive systems, software
architecture and formal specification.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 49

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

