
Testing Security Policies for Distributed Systems:
Vehicular Networks as a Case Study

Mohamed H.E. AOUADI, Khalifa Toumi, Ana Cavalli
IT/ TELECOM & Management SudParis, EVRY, F-91011

Abstract—Due to the increasing complexity of distributed
systems, security testing is becoming increasingly critical in
insuring reliability of such systems in relation to their security
requirements. . To challenge this issue, we rely in this paper1 on
model based active testing. In this paper we propose a framework
to specify security policies and test their implementation. Our
framework makes it possible to automatically generate test
sequences, in order to validate the conformance of a security
policy. This framework contains several new methods to ease
the test case generation. To demonstrate the reliability of our
framework, we present a Vehicular Networks System as an
ongoing case study.

I. INTRODUCTION

It is increasingly difficult to ensure the respect of ap-
plications to their security requirements. This difficulty is
due to the such systems’ complexity level of, variety, and
increasing distribution as well as the high degree of reliability
required for their global functioning. To guarantee such a
respect, we need to generate exhaustive test suites including
all possible scenarios. To reach this test integrity, we rely in
this paper on model-based methods. These methods require
a formal specification of the system (a model). To meet
security requirements, we specify a security policy in XACML
(eXtensible Access Control Markup Language. This security
policy needs to be integrated into the initial model. To do so
we develop an approach to automatic integration of security
rules into any initial model. Once we have a secured model
we perform tests to verify the conformance of the model to
its security policy. These tests are generated by TestGen-IF,
a testing tool developed in our laboratory. To gain time and
effectiveness when using our tool, we propose an approach that
derives test cases automatically. We also develop a Graphical
User Interface (GUI) to facilitate its use. To demonstrate the
reliability of our framework, we carry on a case study which
is a service of the Vehicular Networks. Vehicular networking
serves as one of the most important enabling technologies
required to implement a myriad of applications related to
vehicles, vehicular traffic, drivers, passengers and pedestrians.
These applications are more than novelties and far-fetched
goals of a group of researchers and companies [1], [2], [3].
Intelligent Transportation Systems (ITS) that aim to streamline
the operation of vehicles, manage vehicular traffic and assist
drivers with safety and other information by many services.
An example of such services is Dynamic Route Planning
(DRP) in which the driver receives an optimal route to reach
his destination. This route is calculated dynamically by the

1This work is supported by the Inter-Trust project.

ITS control center and takes into account the environment
conditions (traffic, congestion, weather, accidents, etc.).

In this paper, we propose an approach that makes it
possible to validate security rules. Our approach manipulates
three different inputs: a functional specification of the system
based on a well-known mathematically based formalism, the
Extended Finite State Machine (EFSM, see section III); a
specification of the security policy (based on XACML [4])
that we wish to apply to this system; and an implementation
of the system. Our solution provides a new specification of
the system that takes into account the security policy (we call
it secure functional specification), then it will generate tests
to check whether the implementation of the system conforms
with the secure functional specification. This approach will
be enriched by some improvements in the TestGen-IF tool,
namely a method to generate test purposes and a graphical
user interface (GUI). The reliability of our approach will be
demonstrated by a case study of the Vehicular Networks.

The main contributions of this paper are as follows:

• The specification and implementation of an approach
to integrate XACML security rules into a functional
model described by an EFSM.

• We propose a new method to semi-automatically de-
rive test scenarios. This method, based on TestGen-IF
simulator, is illustrated by a testing scenario.

• We provide a method to automatically derive testing
scenarios directly from the formal model as test cases.
These scenarios allow checking relevant security and
interoperability properties of an implementation under
test. We use the TestGen-IF tool to automatically
obtain the set of tests. Real scenarios of vehicular
networks communications are used in order to high-
light the advantages and the new functionalities of our
approach.

• we propose some improvements in the TestGen-IF tool
in the form of a method to automatically generate test
purposes and a GUI.

The rest of this paper is organized as follows. In section II
we discuss related work. Section III defines the two concepts
of XACML and EFSM. In section IV, we explain the approach
to integrating these security rules with an existing specification
in EFSM as well as related algorithms. In section V, we
present a case study, a DRP service with security features, a
complementary approach to generating test objective, the GUI
that we developed, and the results through the generated test

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 68

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

cases for the validation of security rules and the experimental
result. Finally, section VI presents our conclusions and some
directions for future work.

II. RELATED WORK

Most previous work has focused either on the description
of the policy itself or on the verification of rules. Security
rules are defined with modalities (such as permission, prohi-
bition, and obligation) that express possible constraints on the
behavior of the system.

In [5] the authors propose a testing strategy for auto-
matically deriving test requests from an XACML policy and
describe their pilot experience in test automation using this
strategy. In [6] the authors give an overview of existing
security testing approaches and, based on that, develop a novel
classification for model-based security tests along the two
dimensional-risk and automated test generation. In other works
[7], [8], the authors propose approaches based on active testing.
In [7], the authors propose a framework that specifies security
policies and tests their implementation and the behavior of the
system is described using the EFSM formalism [9]. In [10]
the authors propose a framework to specify security policies
and test their implementation on a system. This framework is
based on a specification of the system in EFSM formalism and
on a specification of the security policy based on the OrBAC
model.

Our approach distinguishes itself from these propositions
by assumptions on the policy and the method used to gen-
erate test sequences. First, we make no assumption about
the description language of the policy. Instead, we propose
a framework to specify rules in XACML so that we can apply
them to our mathematical model. XACML supports Attribute-
Based Access Control (ABAC) and can implement an access
control model based on RBAC or OrBAC models, making our
study more general than [10] where authors use OrBAC and
than [11] where authors use O2O. Then, we generate a whole
set of test cases automatically using a different test generation
tool developed in our laboratory. This latter is well adapted
to the EFSM formalism which makes our approach different
from [10] and [8].

III. PRELIMINARIES

A. The EFSM formalism

In order to model the initial system as well as the security
policy, we choose to use the EFSM formalism. This formal
description is used not only to represent the control portion of
a system but also to properly model the data portion, associated
variables, and the constraints that affect them.

An EFSM is an augmentation of the ordinary Finite-State
Machine [12] with guard functions (predicates) and action
functions. We consider that a transition can be executed only
when an input is received and the predicate is true.

Definition 1: An extended finite-state machine is a 5-tuple

E = 〈Q,~v,Σ, T, q0〉

where:

1) Q is a finite set of states and q0 is the initial state;
2) ~v = (v1, ..., vn) is a vector of typed variables;
3) Σ ⊆ (Li × L0) is a nonempty set of input/output

alphabet, where Li and L0 are the set of inputs and
outputs, respectively;

4) T is a set of transitions, defined by a tuple
〈q, σ, ℘, a, q′〉
where,

a) q and q′ are the source and the target state,
respectively;

b) σ ∈ Σ is the input/output of the transition;
c) a is an action of a transition. Variables values

can be updated after transition execution;
d) ℘ is a predicate over ~v.

Definition 2: The characteristic function of a subset A of
a set C is a function

χA : C → {0, 1}

defined as

χA(x) =

{
1 if x ∈ A
0 otherwise

We illustrate the notion of EFSM through a simple example
described in Figure1. The ESFM shown in Figure 1 is com-
posed of two states S0, S1 and three transitions labeled with
two inputs A and B, two outputs X and Y , one predicate P ,
and three tasks T , T ′and T ′′. The EFSM operates as follows:
Starting from state S0, when input A occurs, the predicate P
is tested. If the condition holds, the machine performs task T ,
triggers output X , and passes to state S1. If P is not satisfied,
the same output X is triggered, but action T ′ is performed and
the state loops over itself. Once the machine is in state S1, it
can come back to state S0 if it receives input B. If so, task
T ′′ is performed, and output Y is triggered.

Fig. 1. Example of simple EFSM with two states

B. XACML

XACML [4] is a platform-independent extensible markup
language (XML)-based language for the specification of access
control policies. An XACML policy consists of a target, a set
of rules, and a rule-combining algorithm. The target specifies
the subjects, resources, actions, and environments to which
a policy can be applied. If a request satisfies the target of
the policy, then the set of rules of the policy is checked, or
else the policy is skipped. The rule is composed by a target,

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 69

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

which specifies the constraints of the requests to which the rule
is applicable. The rule has a condition, which is a Boolean
function evaluated when the rule is applicable to a request.
If the condition is evaluated as true, the result of the rule
evaluation is the rule effect (”Permit” or ”Deny”); otherwise
a ”NotApplicable” result is given. If an error occurs during
the application of a policy to the request, ”Indeterminate” is
returned. Each policy has at least one rule (possibly more).
There must be at least one rule in a policy that matches the
incoming request so that the policy can be deemed applicable
to that request. The Sun XACML engine determines whether
a rule is applicable to an incoming request by evaluating the
target and optional condition (if it exists).
Target: A policy can have multiple rules. But it is not
necessary to evaluate all such rules for a given request. A rule
has a target element similar to the policy’s target element. The
role of this target element is to decide whether a rule should
be evaluated for a given request. If no target exists, the rule is
evaluated for all requests applicable to the policy.
Condition: You can treat the condition as the core element of
a rule. Within the condition we specify the exact authorization
logic, which always contains a Boolean expression. Based on
the outcome of the Boolean expression, the rule is evaluated as
true or false. We can use certain functions within the condition
element to implement authorization logic.
Figure 2 shows the structure of a policy and its rule.
We choose to use XACML for several reasons. First, XACML
is a standard ratified by standards organization OASIS and a
policy language implemented using XML. Second, XACML
supports Attribute-Based Access Control (ABAC) and can
implement an access control model based on RBAC or OrBAC
models, making our study more general than the works cited in
sectionII. Finally, XACML provides fine-grained authorization
with a high level of abstraction by means of policies and rules,
making our study more exhaustive by providing more flexible
security rules.

Fig. 2. The main components of an XACML policy

IV. INTEGRATION METHODOLOGY

The initial specification does not consider security issues
and does not deal with security rules. This specification is
provided in the form of an EFSM. We need to consider security
requirements and integrate them. To do so, we integrate them
into the initial specification using a specific algorithm. This
algorithm automatically integrates the security rules into the
initial specification in the form of an EFSM. Our approach
includes three steps. First, the algorithm seeks for the rules to
be applied to each transition of the specification and derives a
simple automaton from this set of rules. Then, it integrates
the automaton with the initial specification. At the end of
the process, this integration generates a new specification
that takes into account the security requirements. While the
main effects of an XACML rule is Permit or Deny, our
approach contains two algorithms. The first one deals with the
permissions and the second one deals with the prohibitions.

A. Permission integration

This process of the algorithm begins by seeking for the
transitions with a permission rule to integrate. Once this
transition is found, the algorithm can either create a new
predicate or strengthen an existing predicate depending on the
existence or the absence of a predicate in that transition. The
strengthening or creation of a predicate is done by adding
the conditions in the XACML security rule. This algorithm
is described below.
Algorithm 1: Permissions integration

Require: The transition Tr that maps the permissions.
Each permissioni applies to a conditioni
1: if (∃ associated predicate P) then
2: P := P ∧ (∨i (conditioni))
3: else
4: create predicate P := ∨i (conditioni)
5: end if

Figure 3 gives an example. In the left transition, the system can
pass from S1 to S2 when it receives input A. If the permission
involves a condition C, the transition is modified by creating a
predicate, as in the left transition. This predicate returns ”true”
if the condition is satisfied.

Fig. 3. Permission integration

B. Prohibition integration

This process of the algorithm begins by seeking for the
transitions with a prohibition rule to integrate. Once this
transition is found, the algorithm can either create a new
predicate or strengthen an existing predicate depending on the
existence or the absence of a predicate in that transition. The
strengthening or creation of a predicate is done by adding the
opposite of each condition in the XACML security rule. This

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 70

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

algorithm is described below.
Algorithm 2: Prohibition integration

Require: The transition Tr that maps the prohibitions.
1: if (∃ associated predicate P) then

2: P := P ∧ (∨i (¬conditioni))
3: else
4: create predicate P := ∨i (¬conditioni)
5: end if

An example is shown in the Figure 4. In the left transition,
the system can pass from S1 to S2 when it receives input A.
If the rule specifies that the system is prohibited from sending
output X in condition C, the transition is modified by the
creation of a corresponding predicate, as in the left transition.

Fig. 4. Prohibition integration

V. CASE STUDY

A. DRP description

In order to demonstrate the reliability of our approach, we
conduct a case study. Supported by the INTER-TRUST project,
this case study is an application to a service called Dynamic
Route Planning (DRP). The DRP service aims at providing
the driver with an optimal route to reach his destination.
This optimal route must take into account different changing
factors, such as traffic, the weather, and the state of the road
traffic. This route also allows for a reduction in travel times
by means of choosing the most efficient succession of roads.
The user (driver) wants to reach his destination by the optimal
route. Therefore, he must activate the service through his client
interface. Then, he must activate only the DRP service. Once
the service is activated, the system (modeled as the control
center or the server) must check if the user is authorized to
access the service. Here we consider at first a simple service
with various features, such as those commonly used in GPS
devices. First of all, the service is open to anyone. Without
using the security policy, any user can access the service with
premium-user privileges. Such access causes different security
problems, such as denial of service and malicious use of shared
data.

To tackle this problem, we specify a security rule that
protects the information within the organization by preventing
illegitimate users from using the DRP service. For this purpose,
the security rules restrict access to the service to authorized
users. To do so, the user has to introduce a valid username
and password. Another issue is that security rules restrict
parts of the service to premium users only. For example, a
regular user cannot get a route to a destination outside France.
Therefore, the system (the server) checks the GPS position
before calculating the route: If the user is a premium user, then

the service allows him to have an international route. However,
if the user is a regular user he is allowed to get only a national
route. We model the specification of this system by the EFSM
shown in Figure 5. This EFSM models the internal behavior
of the system (server) without security properties. This EFSM
has three states S1, S2, and S3. S1 presents the initial state
of the server before any interaction with the user. S2 shows
that the server is connected to the user and waiting for the
desired destination from the user. S3 shows that the service is
monitoring the navigation of the user, indicating that it already
calculated the optimal route and is just waiting for any other
request from the user to stop the service or to calculate another
route.

Fig. 5. Initial model of the server

The transitions marked t1, t2, and t3 are defines as follows:

• t1: ask_access(login,password,GPSposition)
/ access_authorised

• t2: ask_for_route(destination,class) /
response(optimalRoute)

• t3: exit_service / exit_ok

In this section, we aim to illustrate the integration method-
ology presented in section IV and present some complementary
approaches and methods. The integration methodology will be
illustrated by the scenario presented in subsection V-A and
will be illustrated in subsections V-C and V-D. In subsection
V-E, another scenario will be presented and will be used to
introduce a semi-automatic method to generating test cases (in
subsection V-G) and an approach to automatic generating of
test objectives (in subsection V-I). In subsection V-J we present
our new GUI. Subsection V-K presents the experimental results
and subsection V-L discusses them.

B. TestGen-IF tool

The tool was developed by our research team at Telecom
SudParis [13], [14] for modeling and simulating asynchronous
timed-systems such as telecommunication protocols or dis-
tributed applications. It is based on active testing techniques,
allowing automatic generation of test-cases from a formal
description of the studied system. The generation is made

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

according to specific objectives called test purposes.
TestGen-IF tool allows construction of the accessiblity graph
from an IF specification. Therefore, the inputs necessary for
TestGen-IF tool are the formal functional specification of the
system and the specification of test objectives that we wish to
check on the system implementation. Then, the tool makes a
partial exploration of the states space of a model, guided by test
objectives. The automatic test generation module, written in
C++ code, implements an automated test generation algorithm
called Hit-or-Jump [15].

C. Security policy specification

In this case study, we implement some security properties
to get a secure system that considers security issues. In the
security policy, services must be accessed only by authorized
users. To access the DRP service, the user must introduce
a valid login and password and must have a valid GPS
position. Once connected to the service, the regular user can
use only basic functionalities. For example, the user cannot use
international navigation, which is reserved for premium users.
This security policy is described in XACML. Each security
rule contains one or more conditions. We can summarize the
conditions as follows:

• C1 - GPS position is in France

• C2 - login and password are valid

• C3 - the user’s class is PREMIUM

• C4 - the user’s class is REGULAR

• C5 - GPS position is valid

• C6 - GPS position is not in France

• C7 - destination is not in France

• C8 - destination is in France

Thus, the security policy contains the three following rules:

• Rule 1: The server grants access to a user if he
has a valid couple (login,password) and a valid GPS
position.

• Rule 2: The server gives an international optimal route
for PREMIUM users.

• Rule 3: The server does not give an international
optimal route for REGULAR users.

D. Security policy integration

By applying our algorithm to the initial model and the
security policy described in subsection V-C we obtain a
secured model of the system that takes into account the security
policy. This model is presented by the EFSM shown in Figure
6.
The final model contains the same states, but some transitions
are modified and other transitions are added. We have two new
transitions:

• t4: ask_access (login ,password,
GPSposition) / access_denied

• t5: ask_for_route(destination, class)
/ need_premium_class

Fig. 6. Final (secure) model of the server

Model Number of
states

Number of
transitions

Number of sig-
nals

Initial model 3 3 6
Final model 3 5 8

TABLE I. INITIAL MODEL OF THE SERVER

Moreover, transitions are modified, and two conditions are
added to t1 and t2. Table I compares the model before and
after security policy integration.

E. Vehicle to Infrastructure (V2I) scenario with negotiation

Trust negotiation scenario:
To meet the secure interoperability requirements of the system
we propose a trust negotiation process. This scenario meets
the following requirement:

”Before exchanging personal information the vehicle
must trust the control center”

The scenario starts when the user asks to activate a service.
Once the DRP service is activated, the control center checks
if the user is authorized to access the service. To have access,
the vehicle must be located in the coverage area of the control
center so it needs its current position. It also needs his login
and password to do the identification and authentication.
However, due to security reasons, the vehicle cannot send
personal information anyhow to anyone. Therefore, the vehicle
must trust the control center. This trust can be established
after a trust negotiation between the user/vehicle and the
control center. In our model this negotiation is done by the
exchange of security certificates. The vehicle automatically
asks the control center for a certificate. It can accept it, reject
it, or delegate the user to make a decision. If a certificate
is accepted then it will move automatically to the next state
(cf. EFSM Figure7) to accomplish the identification and
authentication. If the certificate is rejected the control center
will try again with another certificate. For the third case, the
user will make a decision instead of the vehicle.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Formalization of the scenario:
The Figure 7 illustrates the EFSM that describes the internal
behavior of the vehicle with the negotiation process. This
EFSM has the following states:

• Off-line: is the initial state of the vehicle. We con-
sider that any vehicle at this state is not connected
to the control center and is not logged onto the
service. Once the user activates the DRP service by
the message activate_service, the vehicle asks
the control center to activate the DRP service (by
the request_service message) and moves to the
state Wait.

• Wait: The service is activated and the vehicle is
waiting for the control center to reply. The con-
trol center replies and asks for information (lo-
gin, password, position, identity, etc.) by sending
the request_information message to the ve-
hicle. The vehicle automatically answers by ask-
ing the control center for a certificate (by the
request_certificate message) which makes it
move to the state wait certificate.

• Wait certificate: The vehicle is waiting for
the certificate. Depending on the value of the
received certificate, the vehicle disagrees(output
disagree_certificate), agrees(output
agree_certificate), or delegates the user
who will decide. Then, the system will move to
the state wait decision or wait info, or stay in
wait certificate state depending on its answer.

• Wait decision: The vehicle is waiting for the decision
of the user. The user can accept the terms of the
certificate and send an agree message. Then, the
vehicle asks him for some information to log into
the service (output require_info_login) and
moves to the state wait info. The user can also
disagree with the certificate then the vehicle will
ask the control center for another certificate (output
request_certificate). Therefore, the vehicle
moves back to the state wait certificate.

• Wait info: The vehicle is waiting for necessary infor-
mation from the user to log in. Once the user gives this
information (input give_info with login and pass-
word variables), the vehicle forwards the information
to the control center (output response_info) and
moves to the wait_access state.

• Wait access: The vehicle is waiting for the re-
sponse of the control center which will give it
access or not to the service (input access_ok
or access_denied). Once the control center ac-
cepts the access, the vehicle will move to the state
logged in. If the access is denied, the vehicle moves
back to wait info state.

F. IF Specification

The description of a system in IF [16], [17] consists
of the definition of data types, constants, shared variables,
communication signals, and processes. In order to use the
TestGen-IF tool, we transcribed the formal model into an IF

model. In any IF model we must have a system and some
processes. In our model the system is V2I. The processes are
the actors of the scenario, so they can be the vehicle, the user,
and the control center. To simplify our model we will consider
only the vehicle process. The other actors are considered as
the environment. In Figure 8 we represent a short code of our
system in IF language.

Fig. 8. A sample code of the V2I under DRP system specification in IF

G. A semi-automatic method to get all the test scenarios

TestGen-IF tool allows an interactive simulation of the
system specified. The instances of the processes described in
the specification are shown with corresponding parameters,
as well as all the transitions possible from current state.
Therefore, all scenarios can be deducted from the interactive
simulation. Figures 9 and 10 illustrate the simulation of the
system specification we implemented. Usually, the simulation
is used to verify the specification and test all the transitions
and behavior of the system according to some data parameters.
We propose a new use for the interactive simulation, namely
to know the number of possible tests and distinguish them.

This method is semi-automatic because the simulator
shows all the possible transitions for the current state, the
user has to choose manually one transition, and the simulator
calculates the next state and then shows the expected output
and the expected next state. Each sequence of transitions from
an initial state to a final state constitutes a test scenario. The
tester does not have to know all transitions, all inputs, nor
all possible values of a variable anymore. This effectively
simplifies the test derivation in the case of a big system.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 73

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7. EFSM of the vehicle with trust negotiation

Fig. 9. Initial phase of interactive simulation

Moreover, this method needs only the IF specification and
don’t need test objectives.

H. A formal approach to generating test objectives

Motivation
We consider the scenario of subsectionV-E. As seen in this
subsection, to verify a security rule we need a set of test
objectives. This set of test objectives is specified manually.
This specification is possible in this case. However, it becomes
time consuming with the risk of errors if we have a large
number of possible parameter values. For instance, if we have
infinite possible values (or a very large number of possible
values) of the certificate parameter the test objectives
specification becomes impossible (or time consuming). To
tackle this problem we propose a formal approach that permits

Fig. 10. Interactive simulation after 2 steps

the automatic generation of a set of test purposes whenever a
parameter has many possible values.

I. The approach

The approach is based on an algorithm which takes the
signal (input or output), the initial state, and the parameter as
inputs. Based on the specification of the system provided by
the EFSM, the algorithm will generate a set of test objectives.

Algorithm 1: Test Objectives Generation

Require: The initial state S1, the signal input, the process

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 74

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

process, and the variable parameter.

1: for each valuei of the parameter
outputi=g(valuei, S1, input)
destinationi=f(valuei, S1, input, outputi)

2: function f(p,s,i,o){
return the state S2 destination of the transition
?i(p)!o which leaves from s }

3: function g(p,s,i){
return the output o sent by the system when we
apply i(p) on the state s }

4: write
obji = cond1 ∧ cond3 ∧ cond4 ∧ cond5
cond1 = process: instance = {process}0
cond2 = state: source: S1
cond3 = state: destination: destinationi
cond4 = action: input input(valuei)
cond5 = action: output outputi

Example
Consider the system shown in Figure7 which is in a
wait_certificate state. Under this state, the vehicle is
waiting for the certificate from the control center. The control
center sends a certificate via the message (input to the vehicle)
response(certificate). Depending on the certificate
value the system can go to the state wait_decision,
wait_info, or stay in its current state. Our algorithm
takes as input the current state wait_certificate, the
input without parameter response(certificate), and
the parameter certificate. Then the algorithm defines
all possible test objectives by calculating the output and the
destination state for each test objective. By applying this
algorithm to our case, study we obtain the three test objectives
shown below.

obj1 cond1 ∧ cond3 ∧ cond4 ∧ cond5
cond1 = process: instance = {vehicle}0
cond2 = state: source: wait certificate
cond3 = state: destination: wait info
cond4 = action: input response(certificate01)
cond5 = action: output require info login

obj2 cond1 ∧ cond3 ∧ cond4 ∧ cond5
cond1 = process: instance = {vehicle}0
cond2 = state: source: wait certificate
cond3 = state: destination: wait decision
cond4 = action: input response(certificate02)
cond5 = action: output ask user(certificate02)

obj3 cond1 ∧ cond3 ∧ cond4 ∧ cond5
cond1 = process: instance = {vehicle}0
cond2 = state: source: wait certificate

cond3 = state: destination: wait certificate
cond4 = action: input response(certificate03)
cond5 = action: output disagree certificate

J. TestGenIF interface

Another contribution of this paper is the specification and
the development of a graphical user interface. This interface
aims to simplify the tester tasks and to enhance the application
efficiency. Figure 11 shows the interface of our system. It is
composed of 3 parts:

• The first one contains the EFSM of the application.
This one contains all the details about the transitions
and the states.

• The second one offers the possibility to choose the
test purposes. With this tool, the tester has only to
choose the transitions to be tested. No commands or
a configuration should be done.

• The third part will show the results that are the
abstract test cases. Moreover, we have added a new
extension of the TestGen-IF tool in the form of an
execution engine. This engine will permit the test to be
executed automatically. However, this process would
have to be updated based on the application. Our work
also resulted in the creation of a plugin that allows
translation of the abstract test case into a concrete one
for some web applications. However, this translation
would need to be updated for use in other applications.

K. Experimental results

1) Fixing test objectives: The test cases are generated
by using an automatic test case generation tool, TestGen-IF
[18], which is based on the Hit-Or-Jump [15] algorithm. The
tool generates a test case guided by predefined test purposes
which are sequences of conditions. A test purpose verifies that
when the server communicates with its environment and if a
security rule is satisfied, the server behaves as specified by
the security rule. In order to validate the security between the
server and its environment, we define for each security rule
the corresponding test purpose and obtain seven test cases
that cover all of the security policy. The first step in the
experimentation is the specification of the system into an IF
code format.

When translating the formal EFSM model into an IF
specification, we consider the following variables’ values:

• The couple (logi, pwdj)i=j is a valid couple
(login,password).

• The class of the user is either premium or
regular.

• We have two values of GPSposition: GPSin (valid
GPS position) and GPSout (invalid GPS position).

• We have two values of destination:
destinationIn (inside France) and
destinationOut (outside France).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 75

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 11. The GUI interface of the TestGen-IF tool

While defining the test purposes, we notice that in some
cases, we need more than one condition in a test purpose to
verify a security rule. For example, when a user tries to access
a DRP service in a foreign country, the server should check
if the user’s class is premium before granting an access. In
this case, we define the test purpose as a sequence of two
conditions. The first condition verifies that the user is in a
foreign country. The second condition verifies that the user’s
class is premium.

2) Test case generation: Using the TestGen-IF tool we are
able to generate a test sequence that verifies the two conditions.
Figure 12 shows the test case generated for Rule 3 (presented
in V-C). Note that the inputs and outputs are applied and
observed by the tester. Another example is shown in Figure
13 which explains the test case generated for Rule 1.

Fig. 12. Test case related to the security Rule 3

Fig. 13. Test case related to the security Rule 1

L. Discussion

The results allow the integration of security properties
into an initial model with no security. The final (secured)
model is different from the initial model because we have

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 76

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

new transitions or conditions on the existing transitions. The
number of modifications in the model depends on the number
the complexity of security properties, making our approach
flexible and adaptable to the XACML policy. Our work not
only enables the securing of a model but also tests the security
properties of this model to verify that the model respects the
security properties. Our testing strategy is different from the
methods cited in section II because our tool, TestGen-IF, offers
high-performance test generation through its generation algo-
rithm called Hit-or-jump [15]. This algorithm makes TestGen-
IF faster than classical test generation tools (a gain of almost
20%) and less memory consuming. In addition, TestGen-IF
avoids the state explosion and deadlock problems. Figure 14
shows the different steps to use our approach.

Fig. 14. The different steps to use the approach

VI. CONCLUSIONS

In this paper, we present a framework that allows the testing
of security policy of distributed systems. This framework is
composed by several methods and approaches to best perform
the specification, integration, and testing of such systems. We
propose an approach that permits the automatic integration of
a security rule in a system. Then we propose an approach to
automatic generation of test objectives and we develop a GUI

which improves the performance and facilitates the use of our
testing tool called TestGen-IF. We plan to extend our work to
consider timed security policies and to improve our approach
to consider interoperability security policies.

REFERENCES

[1] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin,
and T. Weil, “Vehicular networking: A survey and tutorial on require-
ments, architectures, challenges, standards and solutions,” Communica-
tions Surveys & Tutorials, IEEE, vol. 13, no. 4, pp. 584–616, 2011.

[2] H. Moustafa and Y. Zhang, Vehicular networks: techniques, standards,
and applications. Auerbach publications, 2009.

[3] S. Olariu and M. C. Weigle, Vehicular networks: from theory to practice.
CRC Press, 2010.

[4] S. Godik, A. Anderson, B. Parducci, P. Humenn, and S. Vajjhala, “Oasis
extensible access control 2 markup language (xacml) 3,” Tech. rep.,
OASIS, Tech. Rep., 2002.

[5] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, and L. Schilders,
“Automated testing of extensible access control markup language-based
access control systems,” IET Software, vol. 7, no. 4, pp. 203–212, 2013.

[6] M. Felderer, B. Agreiter, P. Zech, and R. Breu, “A classification for
model-based security testing,” in VALID 2011, The Third International
Conference on Advances in System Testing and Validation Lifecycle,
2011, pp. 109–114.

[7] K. Li, L. Mounier, and R. Groz, “Test generation from security
policies specified in or-bac,” in Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, vol. 2.
IEEE, 2007, pp. 255–260.

[8] D. Senn, D. Basin, and G. Caronni, “Firewall conformance testing,” in
Testing of Communicating Systems. Springer, 2005, pp. 226–241.

[9] K. T. Cheng and A. Krishnakumar, “Automatic functional test genera-
tion using the extended finite state machine model,” in Proceedings of
the 30th international Design Automation Conference. ACM, 1993,
pp. 86–91.

[10] W. Mallouli, J.-M. Orset, A. Cavalli, N. Cuppens, and F. Cuppens, “A
formal approach for testing security rules,” in Proceedings of the 12th
ACM symposium on Access control models and technologies. ACM,
2007, pp. 127–132.

[11] M. El Maarabani, I. Hwang, and A. Cavalli, “A formal approach for
interoperability testing of security rules,” in Signal-Image Technology
and Internet-Based Systems (SITIS), 2010 Sixth International Confer-
ence on. IEEE, 2010, pp. 277–284.

[12] J. W. Thatcher and J. B. Wright, “Generalized finite automata theory
with an application to a decision problem of second-order logic,”
Mathematical systems theory, vol. 2, no. 1, pp. 57–81, 1968.

[13] A. R. Cavalli, E. M. D. Oca, W. Mallouli, and M. Lallali, “Two
complementary tools for the formal testing of distributed systems
with time constraints,” in Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time
Applications. IEEE Computer Society, 2008, pp. 315–318.

[14] I. Hwang, A. R. Cavalli, M. Lallali, and D. Verchere, “Applying
formal methods to pcep: an industrial case study from modeling to
test generation,” Software Testing, Verification and Reliability, vol. 22,
no. 5, pp. 343–361, 2012.

[15] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaı̈di, “Hit-or-jump: An
algorithm for embedded testing with applications to in services,” in
Formal Methods for Protocol Engineering And Distributed Systems.
Springer, 1999, pp. 41–56.

[16] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The if toolset,” in
Formal Methods for the Design of Real-Time Systems. Springer, 2004,
pp. 237–267.

[17] M. Bozga, S. Graf, and L. Mounier, “If-2.0: A validation environment
for component-based real-time systems,” in Computer Aided Verifica-
tion. Springer, 2002, pp. 343–348.

[18] I. Hwang, M. Lallali, A. Cavalli, and D. Verchere, “Modeling, val-
idation, and verification of pcep using the if language,” in Formal
Techniques for Distributed Systems. Springer, 2009, pp. 122–136.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 77

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

