

High Performance Computing Achieved in Personal Computers

Muhammad Saeed*1, Syed Asim Ali*2 , Maryam Feroze*3 and Dr Nasir Touheed#4

* Department of Computer Science/UBIT, University of Karachi, Pakistan

Faculty of Computer Science, Institute of Business Administration, Karachi , Pakistan

Abstract
The purpose of this paper is to provide an up to date survey of

the technologies that enables high performance computing on

general purpose personal computers. Multiprocessor or multicore

computers are widely available these days along with graphical

processing units installed for gaming and other high speed

common computing. Researchers can exploit data, instruction or

function level parallelism in their research tasks and can write

high speed multithreaded programs for Multiprocessor or

Multicores in OpenMP, or can develop parallel programs similar

of super computer applications for GPU in CUDA-C or Open-

CV. This paper covers a brief over view of each environment

along with programming examples.

Keywords: ILP - Instruction Level Parallelism, SMP -

Symmetric Multi-Processing, GPU - Graphical Processing Units.

1. Introduction

Researchers who don’t have state of the art super

computers or parallel or distributed computing

environments to work can still done research and

development of recent personal computers available all

over the world. All research tasks are usually done through

special applications written in some programming

language and every program can be divided into Data and

Instructions for processing. On the basis of instructions

and data Flynn’s categorized four types of computer

architectures known as Flynn’s Taxonomy [1]. Fig-1 shows

the Flynn’s computer classifications. Each type of

architectures contains processing and storage devices and

different improvements can be introduced at each level to

gain processing speed. Normal computers comes under

two categories one is uniprocessor SISD (Single

Instruction Stream Single Data Stream) and the other

comes under Shared Memory Multiprocessor MIMD

(Multiple Instruction Stream Multiple Data Stream).

Graphical Processing Units are available these days for

general purpose computing in personal computer and are

similar as super computers of SIMD (Single Instruction

Stream Multiple Data Stream) vector and array processor.

High-performance computing can be achieved in all three

types of general purpose computing devices in different

ways. In uniprocessor environment programs can be

developed in such a way that can exploit the existence of

cache, pipeline, multiple functional units and multi-issue

processors. In multiprocessing environments Programs can

be divided into multiple independent threads and can be

scheduled on all available cores or processors. Highly

parallel programs can be written in CUDA-C or in

OpenCL to exploit GPU for research purpose.

The table 1 provides the list of tools and techniques

available on different types of computers. Each technique

will be explained in their relevant subsections.

Table 1: High Performance Computing Tools for Personal Computers

Hardware or

Operating System Feature
Language or Library

Multithreading on

Single Processor
Any Language

Multiprocessing OpenMP , P-Threads

GPU CUDA-C , OpenCL

Parallel Systems

SIMD

SMP(Symmetric Multiprocessing)

Distributed Systems

Cluster Computing

Grids Computing

SISD

Single (IS + DS)

IS- Instruction Stream DS - Data Stream

SIMD

Single IS + Multiple DS

Vector Processor

Array

Processor

MIMD

Multiple (IS + DS)

Shared Memory

(Multiprocessor)

Distributed Memory

(Multicomputer)

SMP

Cluster Grid

Fig 1. Flynn’s Taxonomy

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 57

2015 International Journal of Computer Science Issues

In the subsequent sections each type of environments is

explained. Section 2 will cover the techniques that can be

used to gain high speed in uniprocessor environment.

Section 3 will cover multiprocessing environment and

tools that can be used for speedups. Section 4 will cover

tools and techniques to exploit GPU parallel computing

power.

2. High Performance in Uniprocessor

In SISD uniprocessor environment programs can be

developed in such a way that can exploit the existence of

cache, pipeline, multiple functional units and multi-issue

processors. Section 2.1 explains how the better code can

be written to gain speedup with cache memory. Section 2.2

is about loop unrolling and code rescheduling for better

pipeline performance.

2.1 Speedup gain using careful coding for Cache

Memory Cache is used to speedup data transfer rates

between memory and processor. Most of the research

applications uses data stored in one or two dimensional

arrays and most of the time especially in the computer

vision or graphics applications same operations are applied

on all data [2][3][4]. Usually arrays are stored in row or

column major in different languages and have very high

impact while accessing through loops. Here in the

following sections we have briefly described cache

memory, row and column major array arrangements in

memory and then coding habits to exploits cache for best

speedup gain.

2.1.1 Cache Memory

CPU cache is a fast speed memory installed within or

outside of processor to speed up the memory access.

During reading from main memory if the required data is

found within the cache it is called “Cache Hit” and data

can be provided by cache with reduced access time as

compare to the main memory. If data is not found in cache

then it is called “Cache Miss” and then data will be

provided by the main memory with slow speed. When new

data come from main memory it may get new space if

available otherwise some older cached data is replaced

depending on “Replacement Algorithm”. While writing

back to the memory there is a choice to updating only

cache and mark the entry as “Dirty Cache” or writing the

memory contents on the same time with slow speed. The

unit or amount of data transfers between cache and

processors is always in few words (1, 2, 4 or 8 bytes) on

the other hand between cache and memory unit of transfer

is in blocks of multiple words.

 2.1.2 Array organization in Memory

Primary memory is basically a linear array of storage

elements. Any data stored in memory can be accessed by

providing memory address. Most of the applications hold

data in arrays (collection or set of similar data elements)

either in one or two dimensional forms. One dimensional

array is used to represent vector of similar data elements

and can be accessed randomly with one to one address

mapping through single array index. On the other hand two

dimensional arrays are used to represent matrices and any

element can be accessed randomly through two indexes.

Two dimensional arrays are most important in most of the

scientific computing applications [3]. Row Major and

Column Major are two ways to store two dimensional

arrays in main memory. The impact of programming style

on execution speed is discussed in following sections for

both row and column major orders. In the Table 2 two

dimensional array is given that can be stored only linearly

in memory.

Table 2: Two Dimensional Array = Data [row , column]

[0,0]=0 [0,1]=1 [0,2]=2 [0,3]=3

[1,0]=4 [1,1]=5 [1,2]=6 [1,3]=7

[2,0]=8 [2,1]=9 [2,2]=10 [2,3]=11

[3,0]=12 [3,1]=13 [3,2]=14 [3,3]=15

2.1.2.1 Row Major

In row major memory order multidimensional arrays are

stored row by row in linear memory. And in each row

elements are stored column wise from lower index to

higher index. C/C++, Python and Mathematica are famous

languages and tools for researchers that stored

multidimensional data in row major order. The row major

order of matrix given in Table 2 is given in Table 3.a.

Table 3: Data[Row][Column] , a. Row Major, b. Column Major

a. Row Major b. Column Major

Data [0,0] 0

Data [0,1] 1

Data [0,2] 2

Data [0,3] 3

Data [1,0] 4

Data [0,0] 0

Data [1,0] 4

Data [2,0] 8

Data [3,0] 12

Data [0,1] 1

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 58

2015 International Journal of Computer Science Issues

Data [1,1] 5

Data [1,2] 6

Data [1,3] 7

Data [2,0] 8

Data [2,1] 9

Data [2,2] 10

Data [2,3] 11

Data [3,0] 12

Data [3,1] 13

Data [3,2] 14

Data [3,3] 15

Data [1,1] 5

Data [2,1] 9

Data [3,1] 13

Data [0,2] 2

Data [1,2] 6

Data [2,2] 10

Data [3,2] 14

Data [0,3] 3

Data [1,3] 7

Data [2,3] 11

Data [3,3] 15

2.1.2.2 Column Major

In column major memory order multidimensional arrays

are stored column by column in linear memory. And in

each column elements are stored row wise from lower

index to higher index. FORTRAN, OpenGL and

MATLAB are famous languages and tools for researchers

that stored multidimensional data in column major order.

The column major order of matrix given in Table 2 is

given in Table 3.b.

2.1.3 Code Optimization for Column Major Arrays.

Program use to access two dimensional arrays stored in

row major memory mapping in least possible time is given

below in Table 4. This is the style that programmers are

used to process multidimensional arrays.

Table 4: Accessing Row Major Arrays

for(int row=0; row <Maximum_Rows; row++)
 for(int column=0; row<Maximum_Columns; column ++)
 reading from  Data[row][column]  writing to

If the cache block size is enough to store an entire row then

cache miss only occurs when the entire row is processed

and the total miss count will be equals to the total number

of row in array.

The major problem that researchers faced while access

data stored in multidimensional arrays is that programmers

are used to access arrays in row major style and most of

them used row index in outer loop and column index in

inner loop. If the row major program is used to access

column major data then each element access will cause a

cache miss. And cache will give no speedup in that case.

To get benefit of cache speedup programmers and

researchers should understand how the compiler is

arranging multidimensional arrays in memory. If writing

programs in FORTRAN or MATLAB following code

given in Table 5 will be more effective.

Table 5: Accessing Column Major Arrays

for(int column=0;row<Maximum_Columns;column ++)

 for(int row=0;row <Maximum_Rows;row++)

 reading from Data[row][column] writing to

2.1.4 Cache blocking Algorithm and performance

Lots of research has been done to improve execution

performs by getting advantage of cache memory

[2][3][4].Loop blocking or cache blocking algorithms are

used to reduce chances of cache miss while accessing data

stored in multidimensional arrays.

To show the working of cache blocking, matrix

multiplication example is considered in most of the

research papers as it is the most frequently used

mathematical operations in research and development.

To gain the performance by reducing cache miss the matrix

must be accessed in blocks. The following code in Table 6

is much better [2][4] and gives improved access of data

with low latency.

Table 6: Block Code for Matrix Multiplication

for (kk=0;kk< N /block_size; kk++)
 for (jj=0; jj<N/ block_size; jj++)
 for (row= 0 ; row < N; row++)
 for (column=kk; column < min(kk+block_size-1, N) , column++)

{ r = A[row, column] /* register allocated */
 for (j= jj; j < min(jj+block_size-1, N); j++)

 C [row,j] += r*B[column,j]
 }

The above code is proven and tested by many researchers

[2][4] and they are agreed that blocking is very effective to

reduce cache miss rates and memory access latency.

2.2 Speedup gain using careful coding for Pipelining

Since long time microprocessors are coming with

instruction pipelines and only compilers optimize code for

its better performance gain. Researchers and Programmers

can also write better code to gain pipeline performance.

2.2.1 Instruction Pipeline

In MIPS architecture normal instruction executes in five

phases known as Fetch (F), Decode (D), Execute (E),

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 59

2015 International Journal of Computer Science Issues

Memory Access (M) and Write back (W) and circuit is

designed in five separate modules. In a simple system new

instruction always fetch after the completion of previous

instruction means next instruction fetched after each 5

clock ticks. While instruction is in one phase the circuit of

remaining phases remains unused and idle and makes 80%

of the processor unused. To overcome this problem and for

the 100% utilization of full five phases circuit pipeline is

the best solution.

2.2.2 Instruction Level Parallelism

Pipeline allows simultaneous executions of multiple

instructions each in different phase and this is referred as

ILP (Instruction Level Parallelism) [18, 19].

One major requirement to use pipeline to achieve

Instruction Level Parallelism is that instruction comes in

pipeline must be independent of each other or result must

be ready to read before next instruction requires it to

process. One of the major challenges is the data

dependency that cannot be handled in hardware. Compilers

or operating systems are required to change instruction

sequence to resolved dependency.

Problems Solution

Control Hazard

Hardware Improvement

Branch Prediction

Code Rescheduling

Data Hazard
Forwarding

Code Rescheduling

2.2.3 Loop Optimization to gain speedups

Most of the big data processing applications require

looping to perform same operation on a given dataset.

Each loop statement carries looping overhead in the form

counter initialization, condition checking and counter

increments that also causes control and data hazards. Loop

unrolling and then code scheduling can be done to reduce

loop overhead and gives 100% utilization of instruction

pipelining.
Table 7: Simple Loop

for(int I = 0; I < 500 ; I++)

 V1[I] = V2[I]+V3[I]

In high level coding the above code try to execute V1[I] =

V2[I] + V3[I] 500 times but loop also contains 3 additional

statements I=0, I <500, and I++. In total 3 statements run

total 500 times that will make 1500 and I=0 run once so in

total 1501 instructions cycle are required to complete this

loop. Loop unrolling will reduce 1501 count and

rescheduling will help in reducing stalls. 2 times unrolled

loop can be written as.

Table 8: Unrolled Optimized Code

for(int I = 0; I < 500 ; I=I+2)

 {

 V1[I] = V2[I]+V3[I]

 V1[I+1] = V2[I+1]+V3[I+1]

 }

The above code in Table 8 reduces loop overhead

statements 50%. Condition checking and counter

increment statements will required 250 instructions cycles

now. The above technique can be used to reduce the

program execution time specially when we process huge

data and perform same operations on every element.

3. High Performance using GPU

GPU are just like SIMD Vector and Array processor where

all processors can perform same operations on multiple

data sets. GPUs are now available on general purpose

computers for gaming applications. CUDA (Compute

Unified Device Architecture) and OpenCL (Open

Computing Language) are two famous programming

platforms that can use GPU and executes instructions on it.

In the following subsections GPU, CUDA Model and one

code example is given to show how researchers can get

performance and speedup gain by using GPU in personal

computers.

3.1 Graphics Process Unit (GPU)

Graphics Process Unit (GPU) is a special display

processing cards that are capable to process images and

videos on real time. Normally GPUs are used in gaming

consoles, robotics, smart phones, workstations and

personal computers. Modern GPUs are dinged in such a

way that it can efficiently manipulate computer graphics in

real time. GPU contains highly parallel structure and two

dimensional arrays of floating point ALU that’s makes

GPU more effective than general-purpose CPUs.

GPU can be configured both with uniprocessor and

symmetric multiprocessing environment [5]. It has its own

memory and for processing data must be transferred in

GPU memory.

Each GPU (CUDA) consists of Streaming Multiprocessors

(SM) and each SM consists of following units.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 60

2015 International Journal of Computer Science Issues

a. Stream Processor (SP): Single (32bits) and

double (64bits) precisions floating point

functional units.

b. SFU : Special Functional Units for frequently

used approximation functions like log/exp,

sin/cos,rcp/rsqrt

c. Wrap Scheduler: for instruction scheduling on

execution units.

d. Constant Cache: use to buffer data to provide SM

for execution.

e. Shared Memory: for data sharing among threads.

f. Other graphical units for texturing etc.

Fig 2. Basic architecture of Stream Multiprocessor

Fig 2. is a very basic SM (Stream Multiprocessor) and in

advanced GPU there are hundreds of SMs connected in a

grid form and shares GPU memory.

3.2 CUDA High Performance Programming Model

CUDA (Compute Unified Device Architecture) is a well-

known application programing platform and framework

that can use parallel architecture of GPUs to speedup

application executing. CUDA model is shown in Fig. 3.

This framework allows creating multiple threads that can

be executed in parallel on separate execution units.

Threads can be single or multidimensional in CUDA and

can be addressed through indexes. Group of consecutive

threads that define minimum work unit is called “thread

wrap” and multiple threads groups are called “Block”. The

part of host program that is used to dispatch work to GPU

is call kernel.

GPU

Grid N

Grid 2

Grid 1

B(0,0) B(1,0) B(N,0)

B(0,1) B(1,1) B(N,1)

B(0,M) . . . B(N,M)

T (N,0)

B(1,M)

T (1,M)

Block(1,1)

T (0,0) T (1,0) T (N,0)

T (0,1) T (1,1) T (N,1)

T (0,M) . . . T (N,M)

T (N,0)

T (1,M)

HOST

Serial Code

Serial Code

Kernel 2

Kernel 1

Kernel N

Legend

 B = Block

 T = Thread

 N, M = order size

Threads and Blocks are
multidimensional

Fig 3. CUDA Programming Model

Lots of researches are now moved to use GPU for their

research as CUDA is not only provides high speed parallel

floating point operations but can also be used for general

purpose computing and they are getting incredible speed.

Though CUDA was introduced for highly data parallel

programs in computer graphics but there are lots of APIs

available in CUDA that provide synchronizations and

atomic operations whenever sequential operations are

required

3.3 Matrix Addition examples on CUDA

In CUDA programming Blocks can be arrange in 1 or 2

dimensional space and Threads can be 1,2 or 3

dimensional space. For working in vectors 1 dimensional

allocation is best for mapping.

Matrix Addition (using 1 Block/SM)

__global__ void matrixAddition(float M1[N][N], float M2[N][N], float M3[N][N])
{

 int r = threadIdx.x;
 int c = threadIdx.y;
 M3[r][c] = M1[r][c] + M2[r][c];

}
int main()
{

 dim3 blocksPerGrid(1); /* 1 block per grid (1D) */
 dim3 threadsPerBlock(N, N); /* NxN threads per block (2D) */

 matrixAddition<<<blocksPerGrid, threadsPerBlock>>>(M1, M2, M3);
}

Matrix Addition (using Multiple Blocks/SM)

__global__ void matrixAddition(float M1[N][N], float M2[N][N], float M3[N][N])

{

 int r = blockIdx.x * blockDim.x + threadIdx.x;
 int c = blockIdx.y * blockDim.y + threadIdx.y;
 M3[r][c] = M1[r][c] + M2[r][c];
}
int main()

{
dim3 blocksPerGrid(N/16,N/16); / / (N/16)x(N/16) blocks/grid (2D)
dim3 threadsPerBlock(16, 16); // 16x16 threads/block (2D)
matrixAddition<<<blocksPerGrid, threadsPerBlock>>>(M1, M2, M3);
}

Fig 4. Matrix addition in CUDA-C

Matrix addition is the perfect example of two dimensional

operations where all individual additions are independent

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 61

2015 International Journal of Computer Science Issues

of each other. In the following code matrix additions is

done first through 1 block and then through multiple

blocks.

The complexity of CUDA programs went reduced since it

tries to execute multiple instructions in same clock cycle in

SIDM style. The complexity of vector and matrix addition

is reduced to O(1) if the number of operations done is

equal or less than the number of processing units available

otherwise become linear.

4. High Performance using Multiprocessor

Shared memory multiprocessing systems are general

purpose computers and can be used as desktop/personal

computer, workstation or server computers. Researcher

programmers can develop their multithreaded application

and can schedule utilized all processors or cores available

on the motherboard to speed up the execution of their task.

4.1 SMP Symmetric Multiprocessing

In shared memory multiprocessing systems multiple

processors are installed on a single motherboard and uses a

single shared memory. All processors must be of same

architecture and can execute same instruction set that’s

why also known as SMP- Symmetric Multiprocessing

systems. All processor can execute simultaneously and can

run different or same instruction on different data elements

in same instruction cycle.

CU: Control Unit

ALU: Arithmetic and Logic Unit
M: Memory

Fig 5. Flynn’s MIMD Multiprocessor

Normally operating systems are multitasking and supports

multithreading at kernel level. These operating systems can

use one processor and can interleave processes or threads

while scheduling and majority of the application

developers can work on such systems. To support multiple

processors on shared memory architecture operating

systems must supports SMP (Symmetric Multiprocessing).

These days almost all operating systems supports SMP and

allows applications to be designed and built in such a ways

that their threads can run parallel on different processor

concurrently.

Process Threads
Time Slot at (Processor-0 and Processor-1)

1 2 3 4 5 6 7

A 8
AT1 AT2 AT3 AT4 AT6 AT8

 AT5 AT7

B 4 BT1 BT2 BT3 BT4

C 1 CT1

Fig 6. SMP : Overlap in Thread Execution

Fig 6 shows how multiple threads are overlap on different

processor and interleave at the same processor. Light gray

box shows that the thread is running on processor-0 and

dark gray is used for processor-1.

4.2 Multiprocessing using OpenMP

OpenMP is an advanced multithreading technique that

allows research developers to use all processors available

on motherboard. The performance gained on these systems

can be N times speedup when using OpenMP to

parallelized sequential programs. It comes as a set of APIs

that allow thread overlapping and parallel execution of

threads of same process over different and multiple

processors.

4.2.1 Vector and Matrix Addition using OpenMP

Vector and matrix addition are examples of coarse grained

operations in which each operation is independent of each

other. As now there are multiple processors available so

the whole data can be divided into N equal parts where N

represent number of processors and each processor can

done job sequentially. Or we can create more threads and

divide data equally and allow OpenMP to schedule threads

in parallel. Table 9 contains the code for vector addition in

OpenMP.
Table 9: Vector Addition using OpenMP

void v_add(double* V1, double* V2, double* V3)

{ #pragma omp parallel

 { #pragma omp for

 for(int i=0; i<Vector_Array_SIZE; i++)

 V3[i] = V1[i] + V2[i];

 }

}

In OpenMP “#pragma omp parallel” is used to create

threads and any code enclosed in curly braces executed in

parallel. The above code will run vector addition loop in

.

CU ALU M

CU ALU M

CU ALU M

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 62

2015 International Journal of Computer Science Issues

parallel and will also use enhanced parallel for loop to split

the work automatically. “#pragma omp for” is used to

invoke enhanced for loop. This code will give N times

speedup for N processors.

Table 10: Matrix Addition using OpenMP

Void m_add(double M1[][],double M2[][] ,double *M3[][])

{

 #pragma omp parallel for private(c)

 for (r = 0; i < TotalRows; r++)

 for (c = 0; j < TotalCols; c++)

 M3[r][c] = M1[r][c] + M2[r][c];

}

The above code in table 10 will perform matrix addition

just like the vector addition. Here the matrices are divided

through their row number while column number is a

private variable in each thread. This code will also give N

times speedup for N processors.

5. Conclusions

We have provided a brief survey of different technologies

that can provide high performance capabilities on personal

computers and how we can gain speed-ups in programs

execution while using the different hardware features of

general purpose computers. Programming habits for

accessing multidimensional arrays was discussed and a

better algorithm is proposed to access arrays stored in

column major order. Cache blocking, loop unrolling

examples were also described. The structure of GPU and

development framework CUDA was explained with

examples. At the end OpenMP was described to show

multiprocessing over multiprocessor and multicore

architectures.

References
[1] Flynn, M. J. (September 1972). "Some Computer

Organizations and Their Effectiveness". IEEE Trans.

Compute. C–21 (9): 948–960.

[2] Lam, Monica D., Edward E. Rothberg, and Michael E. Wolf.

"The cache performance and optimizations of blocked

algorithms." ACM SIGOPS Operating Systems Review

25.Special Issue (1991): 63-74.

[3] Donald E. Knuth, The Art of Computer Programming

Volume 1: Fundamental Algorithms, third edition, section

2.2.6 (Addison-Wesley: New York, 1997).

[4]Intel Developers Zone, “How to Use Loop Blocking to

Optimize Memory Use on 32-Bit Intel® Architecture”, Dec

10, 2008.

[5] Nicholas Wilt , “The CUDA Handbook , A Comprehensive

Guide to GPU Programming”, Addison-Wesley.

[6] Chao Wang et al, “Parallel algorithms for mining frequent

structural motifs in scientific data”, ICS '04 Proceedings of

the 18th annual international conference on Supercomputing,

ACM 2004.

[7] Jin-Soo Kim et al, “Memory Characterization of a Parallel

Data Mining Workload”, WWC '98 Proceedings of the

Workload Characterization: Methodology and Case Studies,

IEEE 1998.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 1, January 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 63

2015 International Journal of Computer Science Issues

