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Abstract 
Measuring uncertainty of information system plays an important 

role in rough set theory. Shannon’s information entropy is an 

effective tool for measuring uncertainty in information system 

and it has been successfully applied to measure uncertainty of 

different systems in rough set theory. However, previous studies 

are only for classical rough set theory which can only deal with 

nominal attributes. Neighborhood rough set is a more 

comprehensive model which can handle numerical attributes and 

nominal attributes simultaneously. Some basic knowledge about 

neighborhood rough set is firstly studied in this paper. 

Neighborhood information entropy, neighborhood conditional 

information entropy and a measure of neighborhood mutual 

information are introduced respectively. Some of their important 

properties are also given. These results will be very helpful for 

understanding the essence of knowledge content and uncertainty 

measurement in neighborhood information systems. 

Keywords: Neighborhood information system; Uncertainty; 

Entropy; Mutual information; Rough set theory. 

1. Introduction

Granular computing (GrC), proposed by L. A. Zadeh in 

1996 [1], is an emerging soft computing paradigm of 

information processing and knowledge discovering. It 

concerns the processing of complex information entities 

called information granules, which arise in the process of 

data abstraction and derivation of knowledge from 

information [2,3,10, 23]. Rough set theory (RST) is one of 

the most important tools in GrC and it has been proven to 

be effective to manage uncertainty that arises from inexact, 

noisy, or incomplete information. The essence behind RST 

it to classify objects of discourse, which are contained in a 

finite universe, into equivalence classes with respect to 

some attributes. The objects in each class are indiscernible, 

and this indiscernible relation induces a partition of the 

universe into some blocks, called knowledge granules or 

elemental concepts. Then, RST use these basic knowledge 

granules to characterize and approximate arbitrary 

concepts in complex universe. The focus of RST is on the 

ambiguity caused by limited discernibility of objects in the 

domain of discourse. Its key concepts are those of object 

indiscernibility and set approximation [4,5,6,23]. 

One of the major issues in RST is to study uncertainty of 

information (or knowledge) in an information system. 

Shannon’s entropy is the most important tool for 

information uncertainty measurement [13]. The entropy of 

a system gives a measure of the uncertainty about its actual 

structure. It has been a useful mechanism for 

characterizing the information content in various modes 

and applications in many diverse fields. In RST, Shannon’s 

entropy has been successfully applied to measure 

uncertainty of information systems under different 

situations. M. J. Wierman first used a variant of Shonnon’s 

entropy to measure uncertainty in RST [14]. Liang et al. 

studied information entropy, rough entropy and knowledge 

granulation and their application to attribute reduction in 

RST [15,16]. I. Düntsch and G. Gediga used Shannon’s 

entropy to measure uncertainty of rules in RST [18]. T. 

Beaubouef et al. used a variant of Shannon’s entropy to 

measure uncertainty in rough sets and rough relational 

databases [19]. Liang et al. proposed a new information 

entropy which can be used to measure the fuzziness of 

rough set and rough classification [21]. Qian et al. 

proposed the concepts of combination entropy and 

combination granulation for measuring the uncertainty in 

complete information systems, which information gains 

possess intuitionistic knowledge content nature [17]. 

However, previous works only focus on classical rough 

sets. In another word, they just study the problem in 

information systems which only contain nominal attributes 

(also called categorical attributes or discrete attributes). 

In this paper, we study the problem of uncertainty 

measurement in neighborhood rough set theory (NRST). 

Neighborhood rough set is a variation of RST which can 

handle nominal attributes and numerical attributes 

simultaneously [7,11,12]. Moreover, literature [20] 

proposed a more universal NRST model to deal with 

incomplete information. Neighborhood information system 

is a knowledge representation tool in which a family of 

knowledge granules is induced by a neighborhood relation. 
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Neighborhood information entropy, neighborhood 

conditional information entropy and a measure of 

neighborhood mutual information are introduced 

respectively. Some of their important properties are also 

given. These results will be very helpful for understanding 

the essence of knowledge content and uncertainty 

measurement in neighborhood information systems. 

The rest of the paper is organized as follow. Section 2 

briefly recalls the knowledge about complete information 

system and incomplete information system. Section 3 

introduces some basic knowledge of NRST. In section 4, 

some concepts and properties of neighborhood information 

entropy, neighborhood conditional information entropy 

and neighborhood mutual information are studied. Finally, 

the conclusions are given in section 5. 

2. Complete and Incomplete Information

System

Information system is a major form of knowledge 

representation in RST. It provides a convenient tool for the 

representation of objects in terms of their attribute values. 

According to whether or not there are missing data (null 

values), information systems can be classified into two 

categories: complete information system and incomplete 

information system. 

2.1 Complete information system 

An information system can be formally denoted as a pair 

 ,IS U A , where,

(1) U  is a non-empty finite set of objects; 

(2) A  is a non-empty finite set of attributes; 

(3) For every a A , there is a mapping : aa U V , 

where 
aV  is called the value set of a . 

If 
aV  contains a null value for at least one attribute a A , 

then IS  is called an incomplete information system, 

otherwise it is a complete information system. 

Each subset of attributes B A  determines a binary 

indistinguishable relation  IND B  as follow:

        , , = y  IND B x y U U a B a x a    

Obviously,    a BIND B IND a 

It can be easily shown that  IND B  is an equivalence

relation on the set U . The quotient set induced by this 

equivalence relation, denoted by  U IND B  or U B ,

constitutes a partition of the universe. The equivalence 

class including x  is denoted by  
B

x . Each equivalence

class is called a knowledge granule. 

2.2 Incomplete information system 

It may happen that some of the attribute values for an 

object are missing. For example, in medical information 

systems there may exist a group of patients for which it is 

impossible to perform all the required tests. These missing 

values can be represented by the set of all possible values 

for the attribute or equivalence by the domain of the 

attribute. To indicate such a situation, a distinguished value, 

a so-called null value is usually assigned to those attributes. 

As mentioned above, if 
aV  contains a null value for at least 

one attribute a A , then IS  is called an incomplete 

information system. Furthermore, the null value can be 

denoted by *.  

Literatures define a binary relation on U , also named 

tolerance relation, just as follow: 

        , , = y     SIM B x y U U a B a x a or x or y       

It can be easily shown that    a BSIM B SIM a  . 

Let  BS u  denote the set     ,v U u v SIM B  .

 BS u  is the maximal set of objects which are possibly 

indistinguishable by B  with u . Let  U SIM B  denote

the family sets induced by  SIM B . A member  BS u

from  U SIM B  called a tolerance class or a granule of

information in an incomplete information system. It should 

be noticed that the tolerance classes in  U SIM B  do not

constitute a partition of U . They constitute a covering of 

U . 

Let  ,IS U A  be an incomplete information system and

1 2,B B A . We say that 2B  is coarser than 1B (or 1B  is 

finer than 2B ), denoted by 1 2B B , if and only if 

   
1 2B BS x S x  for x U  . If 

1 2B B  and 1 2B B , we 

say that 2B  is strictly coarser than 1B  (or 1B  is strictly 

finer than 2B ) and denoted by 1 2B B .In fact, 1 2B B   

for x U  , we have that    
1 2B BS x S x , and

,y U y x   , such that    
1 2B BS y S y .
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3. Neighborhood Rough Set Theory 

Classical rough set, also called Pawlak rough set, can only 

deal with nominal attributes. This limits its application in 

practice. In this section, we briefly recall some knowledge 

in NRST [7,8,9,11,12], which is a much more 

comprehensive than the classical one. 

Definition 3.1: A neighborhood information system is a 

triple  , ,NIS U A  , where U  is a non-empty finite set 

of objects; A  is a non-empty finite set of attributes;   

represents distance function in A ; A  and   form a 

family of neighborhood relation on U . 

If there is null value for at least one object x  in each 

attributes, NIS  is called an incomplete neighborhood 

information system, otherwise it is complete. Similarly, we 

denote the null value by .  

A suitable distance function is the key to a successful 

application of neighbor theory. In literature [20], author 

proposed a distance function which can deal with nominal 

attribute, numerical attribute and set-valued attribute as 

well as missing data. In addition to the distance function 

given above, there are a number of distances for 

heterogeneous features and missing data [22]. Generally, 

for 
1 2 3, ,x x x U  , distance function   usually satisfies: 

(1)  1 2, 0x x  ,  1 2, 0x x   if and only if 
1 2x x ; 

(2)    1 2 2 1, ,x x x x   ; 

(3)      1 3 1 2 2 3, , ,x x x x x x    . 

Definition 3.2: Given a neighborhood information system 

 , ,NIS U A  , threshold 0  , we can define a binary 

relation on U , called neighborhood relation: 

      , , ,N BSIM A x y B A x y       

It can be easily found that  NSIM A
 is reflexive and 

symmetrical but not transitive. It induces a covering on U . 

The information granules induced by  NSIM A
 can be 

defined as: 

      , ,A NSN x y x y SIM A y U     

Proposition 3.1: Given a neighborhood relation 

 NSIM A
 on neighborhood information system 

 , ,NIS U A  , B A , it includes some properties as 

follows: 

(1)    N a B NSIM B SIM a 

 ; 

(2)  BSN x  ; 

(3)  x U BSN x U

  . 

The proof procedures are omitted because it’s obvious. 

 BSN x
 is the neighborhood information granule centered 

with sample x  and the size of the neighborhood depends 

on threshold  . More samples fall into the neighborhood 

of x  if   takes a great value. 

With the above discussion, we can see there are two key 

factors to impact on the neighborhood. One is the used 

distance, the other is threshold  . The first one determines 

the shape of neighborhoods and the latter controls the size 

of neighborhood granules. Furthermore, we can also see 

that a neighborhood granule degrades to an equivalent 

class if we let 0  . In this case, the samples in the same 

neighborhood granule are equivalent to each other and the 

neighborhood rough set model degenerates to Pawlak’s 

one. Therefore, the neighborhood rough sets are a natural 

generalization of Pawlak rough sets. 

In order to deal with heterogeneous features, some 

definitions to compute neighborhood of samples with 

mixed numerical and categorical attributes are given. 

Definition 3.3: Given 
1B A  and 

2B A , and they 

represent numerical attribute set and nominal attribute set 

respectively. The neighborhood granule of sample x  

induced by 
1B , 

2B  and 
1 2 B B  are defined as follow: 

(1)     
1 1

, ,B i B i iSN x x x x x U     ; 

(2)     
2 2

, 0,B i B i iSN x x x x x U     ; 

(3)       
1 2 1 2

, , 0,B B i B i B i iSN x x x x x x x U      

. 

Where   means “and” operation. 

The first item is designed for numerical attributes; the 

second one is for categorical attributes, and the last one is 

for mixed numerical and categorical attributes. Therefore 

Definition 3.3 is applicable to numerical, categorical data 

and their mixture. According to this definition, the samples 

in a neighborhood granule have the same values in terms of 

categorical features and the distance in term of numerical 

features is less than threshold  . 

Proposition 3.2:  Given a neighborhood information 

system  , ,NIS U A  , threshold  , 1 2,B B A . If 

1 2B B , then x U  ,    
1 2B BSN x SN x  . 

Proposition 3.3: Given a neighborhood information 

system  , ,NIS U A  , threshold 1  and 2 , B A . If 

1 2  , then x U  ,    1 2

B BSN x SN x
 

 . 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 1, No 2, January 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 31

2015 International Journal of Computer Science Issues



 

 

The proof procedures are omitted and the detailed content 

can be found in [7,20]. 

4. Uncertainty Measuring in Neighborhood 

Information System 

In this section, neighborhood entropy, neighborhood joint 

entropy, neighborhood conditional entropy and 

neighborhood mutual information are introduced 

respectively. Moreover, some of their important properties 

are also studied. 

Definition 4.1: Given a neighborhood information system 

 , ,NIS U A   and a threshold 0  . B A  is a subset 

of attributes. The neighborhood of object 
ix U in B is 

denoted by  BSN x
. Then the neighborhood uncertainty of 

the sample is defined as: 

  
 

logi
B ix

SN x
NH B

U



                         (1)  

Furthermore, the neighborhood entropy of the universe can 

be computed as: 

    
 

1 1

1 1
logi

U U
B ix

i i

SN x
NH B NH B

U U U



 
 

      (2) 

Since 
ix U  ,  B iSN x U  ,   1B iSN x U  , 

therefore we can get  0 logix
NH B n   and 

 0 logNH B n  . Moreover,   logix
NH B n   if and 

only if   1B iSN x  ;   0ix
NH B   if and only if 

 B iSN x U  .   logNH B n   if and only if for 

ix U  ,   1B iSN x  ;   0NH B   if and only if for 

ix U  ,  B iSN x U  . 

Proposition 4.1: Given a neighborhood information 

system  , ,NIS U A   and two thresholds 1 0  , 2 0  . 

B A  is a subset of attributes. If 
1 2  , 

   
1 2

NH B NH B  . 

Proof: Since 1 2  , for ix U  , we have 

   1 2

B i B iSN x SN x
 

 , then    1 2

B i B iSN x SN x
 

 . Hence,  

 
 

 
 

1

1

2

2

1

1

1
log

1
                 log

U
B i

i

U
B i

i

SN x
NH B

U U

SN x
NH B

U U













  

 




 

This completes the proof. 

Proposition 4.1 states that the neighborhood entropy 

increases with the decrease of distance threshold  , in 

other words, neighborhood information granules become 

small.  

Proposition 4.2: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2,B B A  are two subsets of attributes. If 
1 2B B , 

   1 2NH B NH B  . 

Proof: Since 
1 2B B , for 

ix U  , we have 

   
1 2B i B iSN x SN x  , then    

1 2B i B iSN x SN x  . Hence,  

 
 

 
 

1

2

1

1

2

1

1
log

1
                  log

U
B i

i

U
B i

i

SN x
NH B

U U

SN x
NH B

U U













  

 





 

This completes the proof. 

Definition 4.2: Given a neighborhood information system 

 , ,NIS U A   and a threshold 0  . 
1 2,B B A  are 

two subsets of attributes. Then the neighborhood joint 

entropy is defined as: 

  
 

1 2

1 2

1

1
, log

U
B B i

i

SN x
NH B B

U U






  


          (3) 

Where  
1 2B B iSN x

  is the neighborhood of object
ix in 

attribute space 1 2B B . 

Proposition 4.3:    1 2 1,NH B B NH B  , 

   1 2 2,NH B B NH B   

Proof: Since 1 2 1B B B  , 1 2 2B B B  , therefore, for 

ix U  , we have    
1 2 1B B i B iSN x SN x  , 

   
1 2 2B B i B iSN x SN x  . Then,    

1 2 1B B i B iSN x SN x  , 

   
1 2 2B B i B iSN x SN x  .Hence,

   1 2 1,NH B B NH B  ,    1 2 2,NH B B NH B  . 

This completes the proof. 
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Definition 4.3: Given a neighborhood information system 

 , ,NIS U A   and a threshold 0  . 
1 2,B B A  are 

two subsets of attributes. The neighborhood conditional 

entropy of 
1B  to 

2B  is defined as: 

  
 

 
1 2

2

1 2

1

1
log

U
B B i

i B i

SN x
NH B B

U SN x



 


  


            (4) 

Proposition 4.4:      1 2 1 2 2,NH B B NH B B NH B     

Proof: 

   

   

   

 

 
 

1 2 2

1 2 2

1 2

2

1 2 2

1 1

1

1 2

1

,

1 1
log log

1
log log

1
log

U U
B B i B i

i i

U
B B i B i

i

U
B B i

i B i

NH B B NH B

SN x SN x

U U U U

SN x SN x

U U U

SN x
NH B B

U SN x

 

 

 





 







  

 
   
 
 

  

 











 

This completes the proof. 

Proposition 4.5: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2,B B A  are two subsets of attributes. If 
1 2B B , then  

 2 1 0NH B B  . 

Proof: Since 
1 2B B , hence for 

ix U  , we have 

   
1 2B i B iSN x SN x  . 

Then        
1 2 1 2 1B B i B i B i B iSN x SN x SN x SN x      . 

Hence,  

 
 

 

 

 

1 2

1

1

1

2 1

1

1

1
log

1
                    log

                    0

U
B B i

i B i

U
B i

i B i

SN x
NH B B

U SN x

SN x

U SN x



 









 

 









 

This completes the proof. 

Proposition 4.6: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2 3, ,B B B A  are two subsets of attributes. If 1 2B B , 

then     1 3 2 3NH B B NH B B  . 

Proof: Since 
1 2B B , hence for 

ix U  , we have 

   
1 2B i B iSN x SN x  . 

Hence,          
1 3 2 3B i B i B i B iSN x SN x SN x SN x     ,  

and,        
1 3 2 3B i B i B i B iSN x SN x SN x SN x     . 

Hence, 

 
 

 

   

 

   

 

 

1 3

3

1 3

3

2 3

3

1 3

1

1

1

2 3

1
log

1
                  log

1
                  log

                  

U
B B i

i B i

U
B i B i

i B i

U
B i B i

i B i

SN x
NH B B

U SN x

SN x SN x

U SN x

SN x SN x

U SN x

NH B B



 

 



 











 

 

 















 

This completes the proof. 

Proposition 4.7: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2 3, ,B B B A  are two subsets of attributes. If 

3 1 2B B B  , then     3 1 3 2NH B B NH B B  . 

Proof: Since 
3 1 2B B B  , hence for 

ix U  , we have 

     
3 1 2B i B i B iSN x SN x SN x    , and 

     
3 1 2B i B i B iSN x SN x SN x    . 

Then, we have 

         
3 1 3 2 3B i B i B i B i B iSN x SN x SN x SN x SN x       . 

Hence, 

   

 

 

 

 

   

 

   

 

 

 

 

 

3 1 3 2

1 2

3 1

1

3 2

2

3 3

1 2

3 1 3 2

1 1

1

1

1

1 1
log log

1
log

1
     log

1 1
log log

U U
B B i B B i

i iB i B i

U
B i B i

i B i

U
B i B i

i B i

U
B i B i

i iB i B i

NH B B NH B B

SN x SN x

U USN x SN x

SN x SN x

U SN x

SN x SN x

U SN x

SN x SN x

U USN x SN x

 

 

 

 



 



 

 

 









 
    
 
 

 



  

 







 





1
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3 3

1 2

1

2

1

1

1
log log

1
log

0

U
B i B i

i B i B i

U
B i

i B i

SN x SN x

U SN x SN x

SN x

U SN x

 

 









 
   
 
 

 
 
 
 





  

This completes the proof. 

Proposition 4.8: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2 3, ,B B B A  are two subsets of attributes. If 

1 2 3B B B  , then     3 1 3 2 0NH B B NH B B   . 

Proof: Since 
1 2 3B B B  , hence for 

ix U  , we have 

     
1 2 3B i B i B iSN x SN x SN x    , and 

     
3 1 1B i B i B iSN x SN x SN x   ,

     
3 2 2B i B i B iSN x SN x SN x    . 

Hence, 

 
 

 

   

 

 

 

3 1

1

3 1

1

1

1

3 1

1

1

1

1
log

1
                    log

1
                    log

                    0

U
B B i

i B i

U
B i B i

i B i

U
B i

i B i

SN x
NH B B

U SN x

SN x SN x

U SN x

SN x

U SN x



 

 













 

 

 













 

 
 

 

   

 

 

 

3 2

2

3 2

2

2

2

3 2

1

1

1

1
log

1
                    log

1
                    log

                    0

U
B B i

i B i

U
B i B i

i B i

U
B i

i B i

SN x
NH B B

U SN x

SN x SN x

U SN x

SN x

U SN x



 

 













 

 

 













 

This completes the proof. 

Definition 4.4: Given a neighborhood information system 

 , ,NIS U A   and a threshold 0  . 1 2,B B A  are 

two subsets of attributes. The neighborhood mutual 

information of 1B  and 2B  is defined as: 

  
   

 
1 2

1 2

1 2

1

1
; log

U
B i B i

i B B i

SN x SN x
NMI B B

U U SN x

 

 



 






  

 (5) 

Proposition 4.9: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2,B B A  are two subsets of attributes. Then following 

equations hold: 

(1)    1 2 2 1; ;NMI B B NMI B B   

(2)        1 2 1 2 1 2; ,NMI B B NH B NH B NH B B       

(3)      1 2 1 1 2;NMI B B NH B NH B B      

                               2 2 1NH B NH B B    

Proof: (1) This conclusion is straightforward. (2)  

     

   

 

   

 

   

 

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1 1

1

1

1

,

1 1
log log

1
   log

1
log log

      log

1
log

1
log

U U
B i B i

i i

U
B B i

i

U
B i B i

i

B B i

U
B i B i

i B B i

NH B NH B NH B B

SN x SN x

U U U U

SN x

U U

SN x SN x

U U U

SN x

U

SN x SN x U

U U U SN x

S

U

  

 



 



 



 







 

  




  








 
  
 
 

 

 













   

 

 

1 2

1 2
1

1 2;

U
B i B i

i B B i

N x SN x

U SN x

NMI B B

 







 
 
 
 






 

This completes the proof. 

(3) Follows from above conclusion and proposition 4.4  

   

      

 

1 1 2

1 1 2 2

1 2

,

;

NH B NH B B

NH B NH B B NH B

NMI B B

 

  





  



 

   

      

 

2 2 1

2 1 2 1

1 2

,

;

NH B NH B B

NH B NH B B NH B

NMI B B

 

  





  



 

This completes the proof. 
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Proposition 4.10: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2 3, ,B B B A  are two subsets of attributes. If 

3 1 2B B B  , then    1 3 2 3; ;NMI B B NMI B B  . 

Proof: Since 
3 1 2B B B  , hence for 

ix U  , we have 

     
3 1 2B i B i B iSN x SN x SN x    , and 

     
3 1 2B i B i B iSN x SN x SN x    . 

Then, we have 

         
3 1 3 2 3B i B i B i B i B iSN x SN x SN x SN x SN x       . 

Hence, 

   

   

 

   

 

   

 

   

 

1 3

1 3

2 3

2 3

1 3

1 3

2 3

2 3

1 3 2 3

1

1

1

; ;

1
log

1
  log

1
log

   log

U
B i B i

i B B i

U
B i B i

i B B i

U
B i B i

i B B i

B i B i

B B i

NMI B B NMI B B

SN x SN x

U U SN x

SN x SN x

U U SN x

SN x SN x

U U SN x

SN x SN x

U SN x

 

 



 



 



 












 








 
 
 





















 

   

   

   

   

 

 

1 2 3

1 3 2

1 3

3 2

1

2

1

1

1

1
log

1
log

1
log

0

U
B i B B i

i B B i B i

U
B i B i

i B i B i

U
B i

i B i

SN x SN x

U SN x SN x

SN x SN x

U SN x SN x

SN x

U SN x

 

 

 

 












 




 



 













 

This completes the proof. 

Proposition 4.11: Given a neighborhood information 

system  , ,NIS U A   and a threshold 0  . 

1 2 3, ,B B B A  are two subsets of attributes. If 

1 2 3B B B  , then  

     1 3 2 3 3; ;NMI B B NMI B B NH B    . 

Proof: Since 1 2 3B B B  , hence for ix U  , we have 

     
1 2 3B i B i B iSN x SN x SN x    , and 

     
3 1 1B i B i B iSN x SN x SN x   ,

     
3 2 2B i B i B iSN x SN x SN x    . 

Hence, 
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This completes the proof. 

5. Conclusions 

In this paper, the concepts of the neighborhood entropy 

 NH B , the neighborhood joint entropy  1 2,NH B B , 

the neighborhood conditional entropy  1 2NH B B  and 

neighborhood mutual information  1 2;NMI B B  are 

introduced to measure uncertainty of neighborhood 

information system. Some important properties of these 

concepts are derived. These results have a wide variety of 

applications, such as measuring the knowledge content, 

measuring the significance of an attribute set, constructing 

a decision tree and building a heuristic function in a 

heuristic reduct algorithm in neighborhood information 

systems. 
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