

New Approach for Drawings of 3-Planar Graphs

Shimaa E. Waheed1,3, Amal Ali M. Mady1, Mohamed A. El-Sayed2,4, S. Abdel-Khalek1

1 Department of Math, Faculty of Science, Taif University, KSA;
2 Department of CS, Computer and IT College, Taif University, KSA;

3 Department of Math, Faculty of Science, Benha University, Egypt;
4 Department of Math, Faculty of Science, Fayoum University, Egypt.

Abstract
The field of graph drawing is concerned with finding

algorithms to draw graph in an aesthetically pleasant way, based
upon a certain number of aesthetic criteria that define what a
good drawing, (synonyms: diagrams, pictures, layouts), of a
graph should be. This problem can be found in many such as in
the computer networks, data networks, class interrelationship
diagrams in object oriented databases and object oriented
programs, visual programming interfaces, database design
systems, software engineering…etc.
Given a plane graph G, we wish to find a drawing of G in the
plane such that the vertices of G are represented as grid points,
and the edges are represented as straight-line segments between
their endpoints without any edge-intersection. Such drawings are
called planar straight-line drawings of G. An additional objective
is to minimize the area of the rectangular grid in which G is
drawn. In this paper we introduce a new algorithms that finds an
embedding of 3-planar graph in linear time O(n).
Keywords: 3- Planar Graph; Graph Drawing; drawing on grid.

1. Introduction

Since Euler’s Königsberg bridge problem dating back
to 1736, planar graphs have provided interesting problems
in theory and in practice. The drawing of graphs is widely
recognized as a very important task in diverse fields of
research and development. Examples include VLSI
design, plant layout, software engineering and
bioinformatics. Using the elaborate techniques of a
canonical ordering and Schnyder realizers, every planar
graph can be drawn on a grid of quadratic size, and such
drawings can be computed in linear time [1, 2]. Large and
complex graphs are natural ways of describing real world
systems that involve interactions between objects: persons
and/or organizations in social networks, articles incitation
networks, web sites on the World Wide Web, proteins in
regulatory networks, etc [3, 4].
Graphs that can be drawn without edge crossings (i.e.
planar graphs) have a natural advantage for visualization.
When we want to draw a graph to make the information
contained in its structure easily accessible, it is highly
desirable to have a drawing with as few edge crossings as
possible[1, 5].

A straight-line embedding of a plane graph G is a plane
embedding of G in which edges are represented by
straight-line segments joining their vertices, these straight
line segments intersect only at a common vertex.
A straight-line drawing is called a convex drawing if every
facial cycle is drawn as a convex polygon. Note that not
all planar graphs admit a convex drawing. A straight-line
drawing is called an inner-convex drawing if every inner
facial cycle is drawn as a convex polygon [6].
A strictly convex drawing of a planar graph is a drawing
with straight edges in which all faces, including the outer
face, are strictly convex polygons, i. e., polygons whose
interior angles are less than 180 [7,8]. However, a problem
with graph layout methods which are capable of producing
satisfactory results for a wide range of graphs is that they
often put an extremely high demand on computational
resources [9]. Visualizing graphs using virtual physical
models is probably the most heavily used technique for
drawing graphs in practice. There are many techniques to
produce length-sensitive drawings for large graphs by
reformulating the energy function [10,11,12].
One of the most popular drawing conventions is the
straight-line drawing, where all the edges of a graph are
drawn as straight-line segments. Every planar graph is
known to have a planar straight-line drawing [13]. A
straight-line drawing is called a convex drawing if every
facial cycle is drawn as a convex polygon. Note that not
all planar graphs admit a convex drawing. Tutte [14] gave
a necessary and sufficient condition for a triconnected
plane graph to admit a convex drawing. Thomassen [15]
also gave a necessary and sufficient condition for a
biconnected plane graph to admit a convex drawing.
Based on Thomassen’s result, Chiba et al. [16] presented a
linear time algorithm for finding a convex drawing (if any)
for a biconnected plane graph with a specified convex
boundary. Tutte [14] also showed that every triconnected
plane graph with a given boundary drawn as a convex
polygon admits a convex drawing using the polygonal
boundary. That is, when the vertices on the boundary are
placed on a convex polygon, inner vertices can be placed
on suitable positions so that each inner facial cycle forms a
convex polygon. The canonical decomposition is a

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 1

2015 International Journal of Computer Science Issues

generalization of the canonical ordering of De Fraysseix et
al. [17].
We also presented a linear time algorithm for computing
an inner-convex drawing of a triconnected plane graph
with a star-shaped boundary [13].
Rosenstiehl and Tarjan [18] posed the question of whether
it is always possible to find such an embedding into a
polynomial-size grid. Later, de Fraysseix, Pach and
Pollack [19] indeed gave a method that embeds an n-
vertex planar graph into the (2n-4)×(n-2) grid in an O(n
log n) time. Kant [20] developed a method for
constructing convex grid drawing of 3-connected plane
graphs in linear-time. His algorithm, related to those of
Refs. [21] and [4a], uses a (2n-4)×(n-2) grid, and the grid
size was improved to (n-2)×(n-2) by Schnyder and Totter
[22] and Chrobak and Kant [20], independently. All these
algorithms can be implemented in linear time.
In this paper, we will describe a new technique for graph
layout that attempts to satisfy edge length constraints. This
technique uses a modified Kant approach of convex
drawing. In this paper we will show how to construct
convex drawings of 3-connected plane graphs into a
smaller, (n-3)×(n-3), grid in linear time. In addition, The
paper present a different techniques for orthogonal
drawing of 3- planar graph aiming to improve them to get
the optimal upper and lower area bounds.
The remainder of the paper is organized as follows. In
section 2, we give some definitions in graph drawing,
specially, the canonical decomposition of plane graph . In
sections 3, we introduce an algorithm that finds an
embedding of G into a grid, (n-2)×(n-2). In sections 4, We
will show how to modify the previous algorithm in order
to reduce the grid size to (n-3)×(n-3). Section 5 present a
new algorithm of 3-planar graph in orthogonal drawing. In
section 6,we improve the grid size of orthogonal drawing
into a smaller grid in linear time. 	

2. The Canonical Decomposition

In this section we present the concept of canonical
decomposition for triconnected planar graphs. The
canonical decomposition is a generalization of the
canonical ordering of De Fraysseix et al. [23]. Define a
plane graph G to be internally 3-connected if (a) G is 2-
connected, and (b) if removing two vertices u,v
disconnects G then u, v belong to the outer face and each
connected component of G-{u, v} has a vertex of the outer
face. In other words, G is internally 3-connected iff it can
be extended to a 3-connected graph by adding a vertex and
connecting it to all vertices on the outer face. Let G be an
n-vertex 3-connected plane graph with an edge e(v1,v2) on

the outer face.

Let π=(V1,...,Vm) be an ordered partition of V, that is ,

V1...Vm = V and for Vi Vj for ij. Define Gk to be

the subgraph of G induced by V1...Vk, and denote by

Ck the external face of Gk. We say that π is a canonical

decomposition of G with bottom edge e(v1,v2) if:

(CD1) Vm is a singleton, {z0}, where z0 lies on the outer

face and z0{v1,v2}.

(CD2) C1 is a face of G, and each Ck is a cycle containing

e(v1,v2).

(CD3) Each Gk is 2-connected and internally 3-connected.

(CD4) For each 2 k  m-1, one of the two following
conditions holds:
(i) Vk is a singleton, {z}, where z belongs to Ck and has at

least one neighbor in G-Gk .

(ii) Vk is a chain, (z1, z2,..., zt), where each zi has at least

one neighbor in G-Gk , and where z1 and zt each have one

neighbor on Gk-1 and these are the only two neighbors of

Vk in Gk-1 .

By an ordered plane graph (G,π) we will understand a
plane graph G with a given canonical decomposition
π=V1,...,Vm. By the contour of Gk we will mean its outer

face written as Ck.We will commonly view Ck as a path

(w1,w2,...,wj) starting with w1=v1 and ending with wj=v2 ,

ignoring the edge e(v1,v2). We will also view Ck as being

ordered from “left” to “right”, where w1 is the leftmost

and wj is the rightmost vertex on Ck. Let wp be the leftmost

and wq be the rightmost neighbors of v in Ck, we will say

that the vertex v covers the vertices wp+1,..., wq-1.

Throughout the rest of the paper we will call a plane graph
internally convex if all its internal faces are convex.

k Vk Ck

1
9-
14

9-14

2 8 9,10,11,8,12,13,14

3 7 9,10,11,7,8,12,13,14

4 5,6 9,5,6,10,11,7,8,12,13,14

5 4 9,5,6,10,11,7,4,8,12,13,14

6 3 9,5,6,3,13,14

7 2 9,5,2,3,13,14

8 1 9,5,2,1,14

Figure 1: The canonical decomposition with bottom edge e(9,14)

We will use the following lemma proved by Kant in [21],
and our explanation is similar to the one given by Chrobak
and Kant [20]:

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 2

2015 International Journal of Computer Science Issues

Lemma 1: Each 3-connected plane graph has a canonical
decomposition.
As it was shown by Kant [21] (Theorem 2.3) a canonical
decomposition can be constructed in linear time. In Figure
1 an example (which is given in [20]) of a canonical
decomposition of a triconnected planar graph given, with
bottom edge e(9,14).
By P(v) we will denote the current position of vertex v in
the grid, i.e., P(v):=(x(v),y(v)). By P(u,v) we denote the
embedding of edge e(u,v), that is, the line segment that
connects P(u) with P(v). To each vertex w we assign a set
of vertices,)(wU , that will contain certain vertices that are

located below w and have to be shifted right whenever w
is shifted right.
We will describe first an algorithm that uses the (n-2)×(n-
2) grid, n3, and then show how to improve it to (n-3)×(n-
3), n>3. The algorithm is enhanced to (f-1) × (f-1) grid.

3. ConvexDraw Algorithm

The algorithm will be to add sets Vk, one by one, in

forward order V1, ,..., Vm, adjusting the embedding at

every step. For zi, i=1,2,…,t, P(zi) :=(x(zi), y(zi)), since

x(zi) and y(zi) are integers so P(zi) is always a grid point.

Let (G,) be a given ordered plane graph with n vertices,
where = V1,..., Vm and n3. Suppose that 2km and that

we are about to add Vk to Gk-1.

Algorithm ConvexDraw
Input: A convex graph G with  vertices and m
contours.
Output: Outline graph embedded in (-2)×(-2) grid.
Begin
We initialize the embedding by drawing C1 =(v1=z1, z2,...,

zt= v2), as follows :

 P(z1):=(0,0);

 P(zt):=(t-2,0);

 P(zi):=(i-2,1), for all i=2,…,t-1;

 .32,1}{)(,...,t,, izzU ii 

Then, for each k= 2,…,m, we do the following:
 Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 .

 Let Vk =(z1, z2,..., zt), and Vk may be a singleton or a

chain.
 Let wp be the leftmost and wq be the rightmost

neighbors of Vk in Ck-1.

We now execute the following steps:
Step 1: (Shift operation) for each vertex v is belong
to{ , ...,jpiwU i 1 ,)( } do

x(v) = x(v) + t; (1)

Step 2: (Install operation) For each i=1,…,t, let P(zi) be

defied by :

x(zi) =x(wp)+i-1, (2)

y(zi) = y(wq) + x(wq) - x(wp) - t +1; (3)

Step 3: (Update operation) :
}11 ,)({} {)(11  , ...,qpiwUzzU i and

.32}{)(,...,t,, izzU ii 

End

In the other words, in step 2, we draw the Vk horizontally,

in such a way that the slope of the segment P(zt,wq) is -

45o. Vertex z1 is placed above wp, that the slope of the

segment P(wp,z1) is 90o. Note that by moving some of the

points P(wi) in step 1, we ensure that all neighbors of Vk

will be visible from P(zi) for i=1,2,…,t.

Lemma 2: Let 1km, and Ck=(w1=v1,w2,...,wj=v2) and 

is the number of vertices of Gk . Then P(v1)=(0,0),

P(v2)=(-2,0), and all contour segments e(wi,wi+1),

i=1,2,...,j-1, have slopes in {-45o ,0o,90o}.

Proof: the proof is by induction on k. For G1 the lemma is

obvious, the segment e(w1,w2) has slope of 90o, the

segments e(wi,wi+1), i=2,3,…,j-2 have slope of 0o, and the

segment e(wj-1,wj) has slope of -45o, and P(v2)=(j-2,0).

So suppose that it holds for Gk-1. As in the algorithm,

before installing Vk, the contour Ck-1=

(w1=v1,w2,...,wj=v2), P(v1)=(0,0).and P(v2)=(-2,0) where

 is the number of vertices in Gk-1 . Let wp,wp+1,..., wq be

the neighbors of Vk in Ck-1.

When we are going to install Vk, we always have wj=v2,

x(wj)= -2 and from (1), by moving all the vertices
wp+1,...,wj by t to the right, x(wj)= -2+t, but +t equal to
the number of vertices in Gk , hence P(v2)=(-2,0). Let

wp,wp+1,..., wq be the neighbors of Vk in Ck-1.After

installing Vk we can divide the segments of the contour Ck

into three intervals, the first interval is {e(wi,wi+1),

i:=1,2,..,p-1} , the second interval is {e(wp,z1),e(z1,z2),

….,e(zt-1,zt), e(zt,wq)} and the third interval is {e(wi,wi+1),

i:=q,..,j-1}.
In the first interval, if it contains any line-segment, the
slope will be the same as its slope at the contour Ck-1. But

for the second interval, the line-segment e(wp,z1), has

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 3

2015 International Journal of Computer Science Issues

slope [y(z1)-y(wp)]/[x(z1)-x(wp)], from (2) the denominator
x(z1)-x(wp)=0, from (3) the numerator y(z1)-y(wp) greater
than zero and less than infinity , so the line-segment
e(wp,z1) has the slope equal to 90o. The line-segments

e(zi,zi+1), i=1,2,…,t-1, have the slope equal to 0o, because

y(zi+1)-y(zi) equal to zero from (3). But for the line-

segments e(zt,wq), y(wq)-y(zt)= -{x(wq)-x(zt)}, i.e., the line-

segments e(zt,wq) has the slope equal to -45o. For the third

interval, the line-segments has the same slopes as Ck-1

because the only change that we have shifted vertices
wq,...,wj to the right by t and this will not effect the slopes

of the line-segments from Ck-1 to Ck. Hence, the contour

segments e(wi,wi+1) , i=1,2,...,j-1 of Gk have slopes in {-

45o ,0o,90o}.�
The lemma above implies immediately that adding Vk does

not destroy the embedding, as stated in the corollary
below.

Corollary 1: For each 1km, when we add Vk, then after

applying the shift operation, all neighbors of Vk are

visible, that the edges between Vk and Ck-1 do not intersect

themselves or edges in Ck-1.

What remains to show is that do destroy the planarity
property and convexity when we apply the shift operation.
This is proven in the next lemma.

Lemma 3: Let Gk be straight-line embedded and

internally convex. Additionally, it has the following
property: Suppose Ck=(v1=w1, w2,...,wj=v2), and any

integer t. if we shift all nodes in { , ...,jpiwU i 1 ,)( }

by t to the right, then Gk remains straight-line embedded

and internally convex.

Proof: the proof is by induction on k. For G1 the lemma is

obvious, by inspection. Assume the lemma holds for Gk-1,

we will show that the lemma properties are preserved
when we add Vk. As in the algorithm, before installing Vk,

the contour Ck-1= (w1=v1,w2,...,wj=v2) and wp be the

leftmost and wq be the rightmost neighbors of Vk in Ck-1.

When we are going to install Vk, from (1) by moving all
the vertices)(..,. ,)(1 jp wUwU  by t to the right, we

have three classes of faces in Gk-1. First class, all vertices

of the face are belong to)(..,. ,)(1 pwUwU , there is no

any shift. Therefore, all faces of this type are not change,
and its properties in Gk will be the same as in Gk-1. Second

class, all vertices of the face are belong to
)(..,. ,)(1 jp wUwU  , so, all vertices shifted by t to the

right. Therefore, all faces of this type are moved by t to the
right and its properties in Gk will be the same as in Gk-1.

Third class, the vertices of a face classified two to sets, the
first set are belong to)(..,. ,)(1 pwUwU , they not moved

to the right, the second set are belong
to)(..,. ,)(1 jp wUwU  , they moved to the right by t, in

this case, any edge of the considerable face which has one
vertex element in the first set and the second element lies
in the second set will be stretched, and this will not affect
its properties.
Let us assume now that Vk. is a singleton, Vk ={z1} . Let z1

have  neighbors among wp,wp+1,..., wq and let F1,F2,...,

F-1 be the faces created when adding Vk. From the

algorithm all these faces preserved the lemma properties.
The proof when Vk is a chain is very similar. �

4. Improving the Grid Size

Now we sketch how to modify the algorithm ConvexDraw
in order to reduce the grid size to (n-3)×(n-3). First we
pick Vm ={z0} to be the neighbor of v2 different from v1 on

the outer face of G. We construct a canonical
decomposition and run the algorithm ConvexDraw for m-1
steps. In the last step, having already embedded Gm-1, we

set P(z0):=(1,n-3) and we do not shift any vertices to the

right.
Algorithm MConvexDraw
Input: A convex graph G with  vertices and m
contours.
Output: Outline graph embedded in (-2)×(-2) grid.
Begin
We initialize the embedding by drawing C1 =(v1=z1, z2,...,

zt= v2), as follows :

 P(z1):=(0,0);

 P(zt):=(t-2,0);

 P(zi):=(i-2,1), for all i=2,…,t-1;

 .32,1}{)(,...,t,, izzU ii 

For each k= 2,…,m-1, we do the following:
 Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1 .

 Let Vk =(z1, z2,..., zt), and Vk may be a singleton or a

chain.
 Let wp be the leftmost and wq be the rightmost

neighbors of Vk in Ck-1.

 Calculate the shift operation.
 Install operation.
 Execute the update operation.
 Finally , for k= m, we put P(Vm={z0}) =(1,n-3)

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 4

2015 International Journal of Computer Science Issues

End

Let us call this algorithm MConvexDraw. In order to show
correctness, we only need to show that adding z0will

result in a correct, convex embedding. By lemma 2 and
the algorithm, before adding z0we have

x(w1)=x(w2)=….=x(wp)=0, and x(wq)=n-3, where wq=v2.

The edge with slope -45o from v2 contains the point (1,n-

4). This implies that all vertices wp,...,wq are visible from

(1,n-3). The convexity of the outer face follows from the
choice of z0. Consequently, we obtain the following

theorems:

(a) Gm-2

(b) Gm

Figure 2: The drawing of the graph G

Table 1: The values of the different variables in ConvexDraw.

k Vk wp wq
x-coordinates of vertices

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 9-14 - - 0 0 1 2 3 4
2 8 11 12 1 0 0 1 3 4 5
3 7 11 8 1 2 0 0 1 4 5 6
4 5,6 9 10 0 1 3 4 0 2 3 6 7 8
5 4 7 8 3 0 1 3 5 0 2 3 7 8 9
6 3 6 13 1 4 0 1 4 6 0 3 4 8 9 10

7 2 5 3 0 2 5 0 2 5 7 0 4 5 9 10 11
8 1 2 14 1 0 2 5 0 2 5 7 0 4 5 9 10 11
y-coordinates 11 11 9 5 2 2 4 3 0 1 1 1 1 0

Theorem 1: Given a 3-connected plane graph G,
algorithm MConvexDraw constructs a straight-line
convex embedding of G into a (n-3) × (n-3) grid.

Theorem 2: Given a plane graph G, the above algorithm
MConvexDraw computes a convex embedding of G into
the (n-3) × (n-3) grid in O(n) time.

 In Figure 2 an example of a drawing is given. After
adding vertex 3, we have U(w)={w} for w{5,6,9,13,14},
U(3)={3,4,7,8,10,11,12}. Therefore, when adding vertex
2, the vertices in U(3)U(6)U(13) U(14)
={3,4,6,7,8,10,11,12, 13,14} will be shifted right. After
adding vertex 2, we have U(w)={w} for w{5,9,13,14},
U(3)={3,4, 7,8,10,11,12} and U(2)={2,6}. Table 1 show
the values of the different variables in ConvexDraw.
Notice that the drawing is not strictly convex, i.e. there are
angles of size 180 o.

The 3-regular plane graphs are plane graphs where every
vertex has exactly 3 neighbours. Especially in the
mathematical literature 3-regular graphs are also called
"cubic" graphs.

Lemma 4 Let (G,π) given a 3-plane graph . Algorithm
MConvexDraw constructs a straight-line convex
embedding of G at most in (2f-7) × (2f-7) grid.

Proof: Assume first that G is 3-plane graph. By Euler's
formula, N is even, number of edges M=3N/2 and
f=N/2+2. Let a canonical decomposition of G be given.
Science N=2f-4, and from Theorem 1, the grid size is at
most in (2f-7) × (2f-7). �

Theorem 3: Let (G,π) given a 3-connected plane graph
with M (the number of Vi). Algorithm MConvexDraw can
be constructs a straight-line convex embedding of G at
most in (f-1) × (f-1) grid.
Proof: That is easy ,where MConvexDraw modified in
some steps as the following:
 Let Ck-1= (w1,w2,...,wj) be the contour of Gk-1 .

 Let Vk =(z1, z2,..., zt). Vk may be a singleton or a chain .

 Let wp be the leftmost and wq be the rightmost

neighbors of Vk in Ck-1 .

 Δx =x(wq)- x(wP); Δy =y(wp)- y(wq)
 Step 1 : Shift operation :
 If Δy ≤ 0 then
 If t> Δx then shift(wp+1) by t-Δx
 Else no shift
 Else

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 5

2015 International Journal of Computer Science Issues

 If t> Δx -Δy then shift(wq) by t-
Δx+Δy
 Else no shift

Step 2: Install operation:
 For each i=1,…,t, let P(zi) be defied by :

 x(zi):=x(wp)+i-1,

 y(zi):= y(wq)+x(wq)-x(wp)- t +1;

Step 3: Update operation;

 
1

111

q-

pi i)Under(w}{ z):Under(z


 .

 .32 ,...,t,} , i{ z):Under(z ii 

5. Linear-Time Algorithm

The linear-time implementation is achieved by
representing the sets Under(v) using a binary tree T. When
we embed Vk, it is not really necessary to know exact

positions of wp and wq. If we know only their y-coordinates
and their relative x-coordinates (that is, x(wq)-x(wp)), then
we can compute y(v), v{z1, z2,…, zt}, and the x-

coordinate of v relative to wp, that is x(v)-x(wp). For each
vertex v, the x-offset of v is defined as Δx(v)=x(v)-x(w),
where w is the T-father of v. More generally, if w is an
ancestor of v, the x-offset between w and v is
Δx(w,v)=x(v)-x(w).
 By T(v) we denote the subtree of T rooted at v. With
each vertex v we store the following information :

Left(v)= the left T-child of v,
Right(v)= the right T-child of v,
Δx(v)= the x-offset of v from its T-father,
Δy =y(wp)- y(wq)

x(v)= the x-coordinate of v, and
y(v)= the y-coordinate of v.

 The root of T is v1. Right(v) is the next node in the

contour. Thus the path Ck=(w1,w2,...,wj) consists of: v1,

Right(v1), Right(Right(v1)),....., etc. If v is in the contour

then Left(v) is the node u such that T(u)=Under(v)-{v}.
Under(wi) consists of wi and its T-subtree rooted at

Left(wi). Thus we have the relationship:


j

ia ai).Under(w:)T(w




 The algorithm consists of two phases. In the first
phase we add new vertices one by one, and each time we
add a vertex we compute its x-offset and y-coordinate, and
update the x-offsets of one or two other vertices. In terms
of our T, when we add Vk, we need to shift T(wp+1) to the

right. The crucial observation that leads to the linear-time
algorithm is that it is not really necessary to know the
exact positions of wp and wq at the time when we install

Vk=(z1, z2,…, zt). If we only know their y-coordinates and

offset Δx (wp,wq) then for each i>1 we can compute y(zi)

and the x-offset of zi relative to zi-1, the x-offset of z1

relative to wp, and the x-offset of wq relative to zt. In the

second phase, we traverse the tree and compute final x-
coordinates by accumulating offsets.

 The first phase is implemented as follows:
 First, we use the initial values of the vertices z1, z2,…, zt

of V1

Initialize:
 Δx (z1), y(z1), Right(z1), Left(z1):= 0, 0, z2, Nil;

 FOR i:=2 TO t-1 DO BEGIN Δx (zi), y(zi), Right(zi),

Left(zi):=1, 1, zi+1, Nil; END;

 Δx (zt), y(zt), Right(zt), Left(zt):= 1, 0, Nil, Nil;

 Then, we embed other vertices, one by one:
FOR k:= 2 TO M-1 DO
BEGIN
 Notation:
 Let Ck-1= (v1=w1,w2,...,wj= v2) be the contour of Gk-1

.
 Let Vk =(z1, z2,..., zt).

 Let wp be the leftmost, and wq be the rightmost

 neighbors of Vk in Gk-1.

 Stretch gaps:
 Δx (wp,wq):= Δx (wp+1)+ . . .+ Δx (wq);

 Δy = y(wp) - y(wq);

 IF Δy <= 0 THEN
 IF (t - Δx (wp,wq) > 0) THEN

 x (wp+1)= Δx (wp+1)+ t – Δx (wp,wq);

 ELSE
 IF (t - Δx (wp,wq) + Δy > 0) THEN

 x (wq)= Δx (wq)+ t – Δx (wp,wq) + Δy;

 Adjust offsets:
 Δx(z1):=0;

 Δx(wp,wq):= Δx (wp+1)+ . . .+ Δx (wq);

 y(z1):= y(wq)+ Δx (wp,wq)- t +1;

 FOR i:=2 TO t DO BEGIN
 Δx (zi):=1, y(zi):= y(z1);

 END;
 Δx(wq):= Δx (wp,wq)- (t-1);

 Install vk:

 Right(wp):= z1;
 FOR i:=2 TO t DO Right(zi-1):= zi;

 Right(zt):= wq;

 IF p+1q THEN
 IF Δy <= 0 THEN

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 6

2015 International Journal of Computer Science Issues

 BEGIN
 Left(wq):=wp+1 ;

 Right(wq-1):=Nil;

 Δx(Wp+1):= Δx(Wp+1)-Δx (wp,wq);

 END
 ELSE
 BEGIN
 Left(wp):=wp+1 ; Right(wq-1):=Nil;

 END
 ELSE Left(z1):= Nil;

END {FOR}
Finally, we put the vertex z0 of VM at the position x(z0):=

1, y(z0):= x(wj).

Table 2: The values of the different variables in ConvexDraw.
k Vk Δx(v)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 9-14 0 1 1 1 1 1
2 8 0 0 1 1 1 1 1
3 7 0 1 0 1 1 1 1 1
4 5,6 0 1 0 1 0 1 1 1 1 1
5 4 0 0 1 0 2 0 1 1 1 1 1
6 3 0 0 0 1 0 2 0 1 1 1 6 1
7 2 0 1 0 0 0 0 2 0 1 1 1 6 1

Figure 3: The tree T and Δx(v).

At this point all y-coordinates and x-offsets have already
been computed. In the second phase, we compute x-
coordinates, invoking AccumalateOffests, beginning by
the root v1 of T and the zero value of its x-offset, i.e. we

invoke AccumalateOffests(v1,0) , where

AccumalateOffests is as follows:
PROCEDURE AccumalateOffests(v: vertex,  :integer)
BEGIN
 IF vNil THEN
 BEGIN
 x(v):= Δx(v)+ ;
 AccumalateOffests(Left(v), x(v));
 AccumalateOffests(Right(v), x(v))
 END;
END.

In figure 3 the construction of the tree and the values of
Δx(v) are given for the example from Figure 1.
 Correctness. In order to prove correctness, since the
x-coordinate of a vertex v equal to the sum of the offsets
on the path from the root v1 to v, it is sufficient to show

that all offsets Δx(v) are computed correctly. To see that
the Stretch step works correctly, recall that the T-sub tree

rooted at wi consists of 
j

ia a).Under(w


 So, incrementing

the offset of wi increments the cumulative offset from v1

of each member of that T-subtree, i.e., shifts them all to
the right. During the adjustment step of Vk, only the

offsets of wq get changed. But wp remains an ancestor of

each, and their offsets from wp remain unchanged, by

simple algebra. It follows that the cumulative offsets of all
vertices already in the graph remain unchanged by the
adjustment step.
Complexity. The linear time complexity is achieved by
appropriately distributing information in the vertices of the
graph, we have already mentioned that the canonical
decomposition can be found in time O(n). In the first
phase, when we add Vk =(z1, z2,…, zt), the cost is

proportional to q-p+t, where wp and wq denote, as usual,

the leftmost and rightmost neighbors of Vk in Ck-1 . So the

time complexity of the first phase is O(n). Obviously, the
second phase runs in linear time.

Theorem 4: Given a 3-Connected planar graph G, the
above Linear-time Algorithm computes a convex
embedding of G into the (f-1) × (f-1) grid in O(n) time.

(a) 3-planar graph G with 20
vertices

(b) The drawing of G with area
10×10

Figure 4: Given 3-planar graph and its convex embedding

Lemma 5 Let (G,π) given a 3-plane graph. There is an
algorithm constructs a straight-line convex embedding of
G at most in n/2+1 × n/2+1 grid.
Proof: Assume first that G is tri-connected. By Euler's

formula, n is even, number of edges m=3n/2 and f=n/2+2.

Let a canonical decomposition of G be given. Science

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 7

2015 International Journal of Computer Science Issues

M<f, and from lemma 4, the grid size is at most f-1=

n/2+1. �

Theorem 5: There is a O(n) time algorithm to draw a 3-
planar graph with convex embedding of G into the
n/2+1 × n/2+1 grid.

6. Conclusion

We showed that 3-planar graphs can be embedded on O(n)

× O(n) integer grid, so that edges are drawn as straight-

line segments in linear time algorithm. The results

produced are good and the algorithm is scalable to large

graphs. In addition, The paper present a different

techniques for convex drawing of 3- planar graph aiming

to improve them to get the optimal upper and lower area

bounds. The algorithm improves the lower and upper

bounds of n/2+1 × n/2+1 grid area.

References

 [1] Brandenburg, F.J., Eppstein, D., Gleißner, A.,
Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the
density of maximal 1-planar graphs. In: Didimo, W.,
Patrignani, M. (eds.) Graph Drawing. LNCS, vol.
7704, pp. 327–338. Springer 2013.

[2] Mohamed A. El-Sayed, “GA For Straight-Line Grid
Drawings Of Maximal Planar Graphs”, Egyptian
Informatics Journal Production and Hosting by
Elsevier, www.elsevier.com/locate/eij. Vol. 13, No.
1, pp. 9–17, 2012.

[3] Didimo,W.: Density of straight-line 1-planar graph
drawings. Information Processing Letter, 113(7),
236–240 , 2013

[4] Fabrice Rossi and Nathalie Villa-Vialaneix"
Optimizing an organized modularity measure for
topographic graph clustering: A deterministic
annealing approach" , Preprint submitted to
Neurocomputing October 26, 2009.

[5] Bannister, Michael J.; Cheng, Zhanpeng; Devanny,
William E.; Eppstein, David (2013), "Superpatterns
and universal point sets", Proc. 21st International
Symposium on Graph Drawing (GD
2013), arXiv:1308.0403

[6] Mohamed A. El-Sayed, S. Abdel-Khalek , and Hanan
H. Amin "Study of Neural Network Algorithm for
Straight-Line Drawings of Planar Graphs",
International Journal of Computer Science and
Information Security (IJCSIS) ISSN 1947-5500, Vol.
9, No. 9, pp. 13-19, 2011.

[7] Ahmed A. A. Radwan, Mohamed A. El-Sayed,
Linear-time Algorithm for Convex Grid Drawings of
3-connected Planar Graph. International Journal of
Applied Mathematics, Vol. 2. (11), 1335-1348, 2000.

[8] Imre Bárány and Günter Rote, "Strictly Convex
Drawings of Planar Graphs", Documenta
Mathematica 11, pp. 369–391, 2006.

[9] Bernd Meyer "Competitive Learning of Network
Diagram Layout", Proc. Graph Drawing '98,
Montreal, Canada, Springer Verlag LNCS 1547.S.
pp. 246–262.

[10] Emden R. Gansner, Yifan Hu, and Shankar Krishnan
, COAST: A Convex Optimization Approach to
Stress-Based Embedding, Graph Drawing: Lecture
Notes in Computer Science Vol 8242, pp 268-279,
2013.

[11] Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress
model for graph layout. IEEE Trans. Vis. Comput.
Graph. 19(6), 927–940 ,2013.

[12] Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.:
Drawing large graphs by low-rank stress
majorization. Computer Graphics Forum 31(3), 975–
984 , 2012.

[13] I. Fary, "On straight line representations of planar
graphs", Acta Sci. Math. Szeged, 11, pp. 229-233,
1948.

[14] W. T. Tutte, Convex representations of graphs, Proc.
of London Math. Soc., 10, no. 3, pp. 304-320, 1960.

[15] C. Thomassen, Plane representations of graphs, in
Progress in Graph Theory, J. A. Bondy and U. S. R.
Murty (Eds.), Academic Press, pp. 43-69, 1984.

[16] N. Chiba, T. Yamanouchi and T. Nishizeki, Linear
algorithms for convex drawings of planar graphs,
Progress in Graph Theory, Academic Press, pp. 153-
173, 1984.

[17] H. de Fraysseix, J. Pach and R. Pollack, How to draw
a planar graph on a grid, Combinatorica, 10, 41-51,
1990.

[18] P. Rosenstiehl and R.E. Tarjan, Rectilinear planer
layouts and bipolar orientations of planar graphs,
Discrete Comput. Geom. 1, 343-353,1986.

[19] H. de Fraysseix, J. Pach and R. Pollack, Small sets
supporting Straight-Line Embeddings of planar
graphs, in: proc. 20th Ann. Symp. on Theory of
computing 426-433,1988.

[20] M. Chrobak and G. Kant, Convex grid drawings of
3-connected planar graphs, International Journal of
Computational Geometry Vol.7. 211-233, 1997.

[21] G. Kant, Drawing Planar Graphs using the lmc-
ordering ,in proc. 33rd symp. On Foundations of
Computer Science, pp. 101-110, 1992.

[22] W. Schynder, W. Trotter, Convex drawings of planar
graphs , Abstract Amer. Math. Soc. 13, 5, 1992.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

2015 International Journal of Computer Science Issues

