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Abstract 
The nature of clinical data makes it difficult to quickly select, 

tune and apply machine learning algorithms to clinical prognosis. 

As a result, a lot of time is spent searching for the most 

appropriate machine learning algorithms applicable in clinical 

prognosis that contains either binary-valued or multi-valued 

attributes. The study set out to identify and evaluate the 

performance of machine learning classification schemes applied 

in clinical prognosis of post-operative life expectancy in the lung 

cancer patients. Multilayer Perceptron, J48, and the Naive Bayes 

algorithms were used to train and test models on Thoracic 

Surgery datasets obtained from the University of California 

Irvine machine learning repository. Stratified 10-fold cross-

validation was used to evaluate baseline performance accuracy of 

the classifiers. The comparative analysis shows that multilayer 

perceptron performed best with classification accuracy of 82.3%, 

J48 came out second with classification accuracy of 81.8%, and 

Naive Bayes came out the worst with classification accuracy of 

74.4%. The quality and outcome of the chosen machine learning 

algorithms depends on the ingenuity of the clinical miner. 

 

Keywords: Thoracic Surgery, Data Mining, Multilayer 

Perceptron Algorithm, J48 Decision Tree Algorithm, Naive 

Bayes Algorithm, Machine Learning Algorithm. 

1. Introduction 

In clinical medicine, time plays crucial role in disease 

prognosis as well as data collection and decision-making. 

The healthcare system generates an unprecedented 

terabytes of data leading to information overload, and the 

ability to make sense of such data is becoming increasingly 

important with in-depth knowledge of exploratory data 

analysis and machine learning scheme [1]. The healthcare 

system is data rich, information poor. The system generates 

unprecedented volume of data, but lack effective analysis 

tools to extract and discover hidden knowledge. It is 

almost impossible to make sense of very large data without 

appropriate computer programs such as Spreadsheet, data 

visualization software, statistical packages, OLAP (Online 

Analytical Processing) application, and data mining [1]. 

The advances in data collection and processing require 

new techniques and tools to intelligently transform the 

unprecedented volume of data into useful information [2] 

that support clinical prognosis and patient care. Data 

mining is a process of nontrivial extraction of implicit, 

previously unknown and potentially useful information 

from the data stored in a database [3]. Data mining finds 

correlation and patterns among attributes in a very large 

datasets to build up knowledgebase based on the given 

constraint. The knowledge extraction, transformation and 

representation in human understandable structure for 

further use are often referred to as Knowledge Discovery 

in Databases [4], which deals with inconclusive, noisy and 

sparse data to finding valid, useful, novel and 

understandable patterns in data [2]. The concept of 

knowledge discovery in databases (KDD) encompasses 

data storage and access, and scaling machine learning 

algorithms to very large datasets and interpreting the 

results [4]. KDD also involves different data mining 

algorithms used to build models that enable unknown data 

to learn to identify new information. The most commonly 

associated feature of data mining techniques regardless of 

origin is the automated discovery of relationships and 

dependencies of attributes in the observed data [5]. The 

automated discovery of relationships is supported by many 

machine learning algorithms such as Artificial Neural 

Networks (ANN), Cluster Analysis (CA), Genetic 

Algorithms (GA), Support Vector Machines (SVM), and 

Decision Trees (DTs) to predict future trends and 

behaviours, allowing businesses to make proactive, 

knowledge-driven decisions [6]. Though C4.5, k-means, 

SVM, Apriori, EM (expectation maximization), PageRank, 

AdaBoost, kNN (k-nearest neighbours), Naïve Bayes, and 

Classification and Regression Tree (CART) have been 

identified as the most influential algorithms for 

classification, clustering, regression, association rules, and 

network analysis ranked based on expert nominations, 

citation counts, and a community survey [7].  

Predictive analytics comprises of machine learning 

algorithms such as artificial neural networks (ANN) and 

decision trees (DTs) among a myriad of other algorithms 

used in knowledge extractions, and apply the obtained 

knowledge to detect or predict trends in new data [8]. The 

widespread availability of new computational methods and 

tools for data analysis and predictive modelling requires 
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medical informatics and clinicians to systematically select 

the most appropriate strategy to cope with clinical 

prediction problems [9]. The machine learning process 

support clinicians and medical informatics to analyse 

retrospective data, and to exploit large amount of data 

routinely collected in their day-to-day activity [10]. The 

data is analysed to extract useful information that supports 

disease prognosis and to develop models that predict 

patient’s health more accurately [6]. Data mining can be 

used in a predictive manner in a variety of application for 

fraud and intrusion detection, market basket analysis 

(MBA), customer segmentation and marketing, phenomena 

of “beer & baby diapers”, corporate surveillance and 

criminal investigation, financial and risk management, and 

medical and healthcare [11]. In this paper, we set out to 

identify and evaluate the performance of machine learning 

classification schemes applied in the prediction of post-

operative life expectancy in the Lung Cancer patients. 

2. Literature Review 

2.1 Application of Data Mining in Clinical Medicine 

In clinical diagnosis and prognosis, machine learning 

classification schemes are classified into three categories: 

those used for disease diagnosis, disease prognosis, or both 

diagnosis and prognosis [3]. Clinical prognosis 

encompasses the science of estimating the complication 

and recurrence of disease and to predict the survival of 

patient or group of patients. In other words, it involves 

prediction modelling estimation of different parameters 

related to patient’s health. Survival analysis applies various 

techniques to estimate the survival of a particular patient 

suffering from disease over a particular time period, 

defined as a patient remaining alive for a specified time 

period of 10 years or longer after the disease diagnosis. 

Unfortunately, survival estimates developed using such a 

definition of survival may not accurately reflect the current 

state of treatment and the probability of survival. However, 

improvement in early detection and treatment will increase 

the expectations of survival [12]. The most influential of 

these data mining techniques for classification, clustering, 

regression, association rules, and network analysis ranked 

based  on expert nominations, citation counts and 

community survey were identified in the work of [7] to 

include C4.5, k-means, Support Vector Machine (SVM), 

Apriori, Expectation Maximization (EM), PageRank, 

Adaboost, k-nearest neighbor (kNN), Naïve Bayes, and 

CART.  

2.2 Application of Predictive Data Mining in Clinical 

Prognosis 

In disease prognosis, [13] examined potential use of 

classification based data mining techniques such as Rule 

based DT, Naïve Bayes and ANN in the prediction of heart 

attack. In an analysis of cancer data in building prediction 

models for prostate cancer survivability, [14] used DT, 

ANN and SVM alongside logistic regression to develop 

prediction models for prostate cancer survivability. A k-

fold cross-validation methodology was used in model 

building, evaluation and comparison, and SVM performed 

best followed by artificial neural networks and decision 

trees. In the investigation of expected survival time of 

patients with pancreatic cancer, [15] demonstrated that 

machine learning algorithms such as ANN, Bayesian 

Networks, and SVM are capable of improved prognostic 

predictions of pancreatic cancer patient survival as 

compared with logistic regression alone. A review of 349 

patients who underwent ACL reconstruction at outpatient 

surgical facility, [16] developed machine learning 

classifiers based on logistic regression, BayesNet, 

Multilayer perceptron, SVM, and Alternating decision tree 

(ADTree) to predict which patients would require 

postoperative  Femoral Nerve Block (FNB). The Machine 

Learning algorithms specifically the ADTree outperformed 

traditional logistic regression with regards to Receiver 

Operating Curve (ROC), and vice-versa with regard to 

kappa statistics and percent correctly classified. In 

prognosis of tumor detection and classification in digital 

mammography, [17] applied back-propagation neural 

networks and constraint form association rule mining for 

tumor classification in mammograms. The formal proved 

to be less sensitive at a cost of high training times 

compared to the latter with better results than reported in 

related literatures. 

In prediction of breast cancer prognosis, [18] developed an 

ANN, a Bayesian network, and a hybrid Bayesian network 

(HBN) that combined ANN and Bayesian network  to 

obtain a good estimation of prognosis as well as a good 

explanation of the results. The HBN and ANN models 

outperformed the Bayesian network model in breast cancer 

prognosis. [19] Presented a comparative analysis of the 

Naïve Bayes, the back-propagated neural network, and the 

C4.5 decision tree algorithms in prediction of breast cancer 

survivability rate. The C4.5 algorithm had a much better 

performance compared to others. In cancer prognosis, [20] 

investigated a hybrid scheme based on fuzzy decision trees 

for cancer prognosis. Performance comparisons suggest 

hybrid fuzzy decision tree classification is more robust and 

balanced than independently applied crisp classification. A 

comparative analysis of algorithms show that DTs, ANNs 

and Bayesian are the well-performing algorithms used for 
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disease diagnosis, while ANNs is the well-performing 

algorithm, followed by Bayesian, DTs and Fuzzy 

algorithms.  

2.3 Uniqueness of Clinical Data Mining and Ethics 

Clinical researchers from other disciplines are often 

unaware of the particular constraints and difficulties 

involved in mining privacy-sensitive, heterogeneous, and 

voluminous clinical data. The miner has the responsibility 

to conduct valid research in a manner that ensures patient 

confidentiality by anonymizing data. The select of 

medicine as a researcher resource should be secondary to 

patient-care activity [21]. The ethical, security and legal 

aspects of clinical data mining includes data ownership, 

fear of lawsuits, expected benefits, and special 

administrative issues [22]. Patient medical records almost 

always encompass patient’s age, diseases suffer or suffered 

from, and whether they smoke cigarettes or not, are often 

elicited to serves as basis for preliminary diagnosis and or 

prognosis. Clinical data often originate from clinical 

consultation with patients, medical images, ECG, EEG and 

RTG signals, physician's notes and interpretations and 

other screening results that may bear upon clinical analysis 

and treatment of the patient [22-23]. The data may contain 

noise, contradiction, missing values and important 

information (signs, symptoms, clinical reasoning, and so 

on) that may be stored in an unstructured way. However, 

the assessment of clinical data quality, data coding quality, 

unstructured data transformation to structure aid detection 

of medical errors that bears upon clinical prognosis. A 

much better approach to deal with clinical data have been 

developed to support the retrieval of narrative or imaging 

documents, to classify medical reports automatically, and 

to preserve the patient's privacy and confidentiality in 

medical reports for secondary usage [24]. 

 

Often time, clinical appointment is gathered in decision 

table with conditional and decisional attributes. The 

conditional attribute is defined as the set  isssS ,..,, 21  

where S is symptoms, and the decisional attribute is 

defined as the set  kdddD ,...,, 21 where D  represent 

diseases. If  NpppP ,..,, 21  is defined as the set of 

patients, then the decision table can be constructed as the 

set of quadruple in Eq. (1)  

 },,,{ pDSPT   (1) 

Where  is a function represented in Eq. (2) 

 }{)(* dkwDSPp   (2) 

The values of symptoms are marked with the symbol niv , , 

which denote a symptom value for thi  symptom and 

thn patient. The values of diseases are marked with 

dkkw ,  for thk  disease and thdk  value. The values of 

niv ,  are usually binary with 1 denotes occurrence of 

symptoms and 0 denotes lack of occurrence. Often time 

clinical data are positive-valued (except in the case of 

ECG), and the values of symptoms ordinarily fit into 

definite range. For instance resting blood pressure is no 

lower than 30 and no higher than 300 [23].   

2.4 Handling Imbalanced Clinical Data 

Clinical data are often noisy and incomplete resulting in 

missing values. In clinical prognosis, it is difficult to 

specify a likely range of values to replace missing values 

without biasedness [23]. The missing values could be 

substituted with a) most likely values; b) all possible 

values for that attribute; and c) intermediate approach of 

specifying a likely range of values in an unbiased manner, 

instead of only one most likely [22]. Another simple 

method to handle missing values imputation includes; a) 

data reduction and elimination of all missing values; b) use 

of most common values, mean or median; and c) closest fit 

approach and methods based on machine learning 

algorithms such as k-nearest neighbor, neural networks and 

association rules [25]. A dataset is said to be imbalanced 

when the number of instances of one class is much lower 

than the instances of the other class, often referred to as 

“rare classes” [26], or when the classification categories 

are not approximately equally represented due to class 

distribution or costs of errors instances. Resampling 

techniques such as random sampling with replacement, 

random under-sampling, focused oversampling, focused 

under-sampling, oversampling with synthetic generation of 

new samples based on the known information, and 

combinations of the above techniques have been used in 

handling imbalanced data [27]. Data imbalance can be 

resolved either at: a) data level using either oversampling 

the minority class (Positive instances) or under-sampling 

the majority class (Negative instances) or both; or b) 

algorithmic level adjusting classifier to be trained by 

modifying the class cost, establishing a bias towards the 

positive class, learning from just one class (recognition 

based learning) instead of learning from two classes 

(discrimination based learning) [26].  

Sampling techniques such as under-sampling the majority 

class, oversampling the minority class, changing score-

based classifier decision threshold, and modifying 

algorithms to incorporate different weights for errors on 

positive and negative instances are used to handle 

imbalanced data [28]. In an attempt to re-balance 

imbalanced datasets, [29] proposed the use of: a) under-

sampling of the majority class; b) over-sampling of the 
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minority class; c) modify the sensitivity of the classifier so 

that errors on minority class (positive), to be costlier than 

errors on the majority class (negative); and d) Synthetic 

Minority Oversampling Techniques (SMOTE). SMOTE 

creates new synthetic training data for the minority class by 

adding random value (SMOTE-Randomize) to some 

features of the original training data, and providing new 

data that lies close to the original ones in the multi-

dimensional space of the problem. Support vector 

machines (SVM) in which asymmetrical margins are tuned 

to improve recognition of rare positive cases; and a new 

resampling approach in which both oversampling and 

under-sampling rely on synthetic cases (prototypes) 

generated through class specific sub-clustering are used in 

solving data imbalance problem [30]. [31] Proposed a 

hybrid sampling technique which incorporates both over-

sampling and under-sampling, with an ensemble of support 

vector machines (SVM) for learning from imbalanced data 

to improve the prediction performance. 

3. Predictive Data Mining Algorithms to 

Compare  

3.1 Decision Tree Algorithm 

Decision Tree is a popular classifier in machine learning 

environment that is simple and easy to implement, and 

requires no domain knowledge or parameter setting and 

can handle high dimensional data, more appropriate for 

exploratory knowledge discovery and analysis [32-33]. 

Decision tree is a non-parametric supervised learning 

algorithms that model non-linear relations between 

predictors and outcomes and for mixed data types 

(numerical and categorical), isolates outliers, and 

incorporates a pruning process using cross-validation as an 

alternative to testing for unbiasedness with a second data 

set [34]. It predicts the value of a target variable by 

learning simple decision rules inferred from the data 

features [35]. It is the most widely used machine learning 

algorithms in clinical prognosis capable of handling 

continuous attributes that are essential in case of medical 

data [23]. The decision tree is popular and widely used 

because of its shorter learning curve and interpretability, 

and the tree ability to handle covariates attributes measured 

at different level [36]. Decision trees are significantly 

faster than neural networks with a shorter learning curve 

that is mainly used in the classification and prediction to 

represent knowledge. The instances are classified by 

sorting them down the tree from the root node to some leaf 

node. The nodes are branching based on if-then condition 

[37].  

There are many variants of decision tree such as CART, 

ID3, C4.5, SLIQ, and SPRINT [38]. The classification and 

regression tree (CART), Chi-squared automatic interaction 

detector (CHAID), quick-unbiased efficient statistical tree 

(QUEST), C4.5 and Interactive Dichotomiser (ID3) are 

more suitable than classical statistical methods. It uses 

recursive partitioning to assess the effect of specific 

variables on survival, thereby generating groups of patients 

with similar clinical features and survival times in a tree-

structured model that can be analyzed to assess its clinical 

utility [34] & [5]. Also, decision trees are praised for their 

transparency, allowing bioinformatics experts to examine 

and understand the decision model and its workings, and 

each path in the decision tree can be regarded as a decision 

rule [9]. The decision tree is built of nodes which specify 

conditional attributes – symptoms  isssS ,...,, 21 , 

branches which show the values of kiv ,  i.e. the thh  

range for thi   symptom and leaves which present 

decisions  kdddD ,...,, 21   and their binary values, 

 1,0dkw . A decision tree may be converted to a set of 

association rules by writing down each path from the root 

to the leaves in a form of rules [23]. For instance, the 

decision tree in Fig.1 can be written as a set of association 

rule in Eq. (3). 

 
Fig.1 Sample decision tree applicable in Clinical Prognosis 

      1,, 11,221,11  dvSvS
 

     0,, 12,221,11  dvSvS
 

     1,, 21,332,11  dvSvS
 

     0,, 22,332,11  dvSvS
 

   1, 33,11  dvS
 

 

 

 

 

 

 

(3) 
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3.2 Naïve Bayes Algorithm  

Bayesian network has been successfully applied in 

diagnosis and antibiotic treatment of pneumonia, and 

Naïve Bayes algorithm performance has been tested 

against a colorectal cancer. It takes domain experts and 

structure learning such as genetic algorithm (GA) to 

successfully construct network topology from training data 

[23] & [18]. The principle of Naïve Bayes is based on 

Bayes rules of simple conditional probability used to 

estimate the likelihood of a property given small amount of 

training data to estimate parameters such as mean and 

variance necessary for classification [39]. Naïve Bayes is a 

statistical classifier which assumes no dependency between 

attributes but attempts to maximize the posterior 

probability in determining the class. The performance of 

Naïve Bayes has been observed to be consistent before and 

after attributes reduction [32]. The probabilities applied in 

the Naïve Bayes algorithm is intended to learn the 

probability of the likelihood of some symptom S with the 

highest posterior probability distribution, given some 

observation or prognosis x where there exist a dependence 

relationship between S and x , denoted as )|( xSP , and 

the posterior probability distribution can be computed as 

shown in Eq. (4).  

 
)()|(

)(

)()|(
)|( SpSxp

xp

SpSxp
xSp   

 

(4) 

 

The posterior probability distribution is proportional to the 

product of two terms; the marginal 

likelihood )|( Sxp with respect to x , and the prior 

probability of the symptom )(Sp . Naïve Bayes model 

forms a network of nodes that are interconnected with 

directed edges and form a directed acyclic graph [23], used 

to model the dependencies among variables [15]. Each 

node in the directed acyclic graph represents a stochastic 

variable and arcs represent a probabilistic dependency 

between a node and its parents [9]. 

3.3 Artificial Neural Networks (ANN) Algorithm  

ANN models are based on a set of multilayered 

interconnected equation which uses non-linear statistical 

analysis to reveal previously unrecognized relations 

between given input variables and an output variable. It 

has been found accurate and reliable in disease diagnosis 

and prediction outcome in diverse clinical trials, by means 

of symptoms routinely available to clinicians. It has also 

been found promising for studying neurodegenerative 

disorders [40]. Despite the complexity and difficulties 

involved in understanding ANN’s prediction, it has been 

successfully applied in clinical prognosis especially in the 

phase of coronary artery disease prediction, EEG signals 

processing and the development of novel antidepressants 

[23]. ANN is a computational model that is biologically 

inspired, highly sophisticated analytical techniques, 

capable of modelling extremely complex non-linear 

functions [41]. It is a network of highly interconnected 

processing neurons inspired by biological nervous systems 

operating in parallel through a subgroup of processing 

element known as layer in the network. It consists of Input 

layer, the hidden layer and the output layer, which are 

trained to perform specific functions by adjusting the 

values of the weights between elements [42-43]. ANN 

model is formed by an input layer, one or more hidden 

layers, and the output layer. The number of neurons and 

layers depends on the complexity of the system being 

studied. The neurons in the input layer receive the data, 

transfer the data to neurons in the hidden layers through 

the weighted links for processing, and the result is 

transferred to the neurons in the output layer for analysis 

[44]. ANN are systems modelled based on the cognitive 

learning process and the neurological functions of the 

human brain, consisting of millions of neurons 

interconnected by synapses [45], and capable of predicting 

new observations after learning from existing data. As the 

human brain is capable to, after the learning process, draw 

assumptions based on previous observations, neural 

networks are also capable to predict changes and events in 

the system after the process of learning [37]. The 

interconnected sets of neurons are divided into three: input, 

hidden, and output ones.  

In clinical medicine, the patient’s symptoms could serve as 

input set S , and disease could serve as output set D  to 

the neural network. The hidden neuron processes the 

outcome of preceding layers. The process of learning in 

ANN is to solve a taskT , having a set of observations and 

a class of functions F , which is to find as the 

optimal solution to the task [23]. The most popular of the 

ANN is Multilayer Perceptron algorithm (MLP). MLP is 

most suitable for approximating a classification function, 

and consists of a set of sensory elements that make up the 

input layer, one or more hidden layers of processing 

elements, and the output layer of the processing elements 

[5]. The Multi-Layer Perceptron (MLP) with back-

propagation (a supervised learning algorithm) is arguably 

the most commonly used and well-studied ANN 

architecture capable of learning arbitrarily complex 

nonlinear functions to arbitrary accuracy levels [46], and 

its ability to process complex problems which a single 

hidden layer neural network cannot solve [47]. It is 

essentially the collection of nonlinear neurons 

(perceptron’s) organized and connected to each other in a 
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feed forward multi-layer structure. Error! Reference 

source not found. presents a graphical depiction of ANN 

for clinical prognosis. 

 

Fig.2 Graphical depiction of ANN for clinical prognosis 

4. Model Evaluation Metrics 

Though empirical studies have shown that it is difficult to 

decide which metric to use for different problem, each of 

them has specific features that measure various aspects of 

the algorithms being evaluated [48]. It is often difficult to 

state which metrics is the most suitable to evaluate 

algorithms in clinical medicine due to large weighted 

discrepancies that often arise between predicted and actual 

value or otherwise [23]. The performance evaluation of 

machine learning algorithms is assessed based on 

predictive accuracy, which is often inappropriate in case of 

imbalanced data and error costs vary remarkably [27]. 

Machine learning performance evaluations involve certain 

level of trade-off between true positive and true negative 

rate, and between recall and precision. Precision, Recall 

and F-Measure are commonly used in the information 

retrieval as performance measure [49]. Receiver Operating 

Characteristic (ROC) curve serves as graphical 

representation of the trade-off between the false negative 

and false positive rates for every possible cut off. 

4.1 K-Fold Cross-Validation  

To train and evaluate model statistical performance on the 

same data yields an overoptimistic result. Cross-validation 

was used to fix such a problem, starting from the remark 

that testing the output of the algorithm on new data would 

yield a good estimate of its performance accuracy [50]. 

Cross-validation is a statistical method that evaluates and 

compares machine learning schemes by dividing data into 

train and test set. The train set is used to learn or train a 

model and test set is used to validate the model. In 

practice, the training and validation sets must cross-over 

successively such that each data point has a chance of 

being validated against [51]. k Fold cross-validation is 

often used to minimize the bias associated with the random 

sampling of the training and hold-out data samples in 

comparing the baseline performance accuracy of two or 

more methods or classifiers [12]. 

In k fold cross-validation, the data is first partitioned 

into k  equally (or near equally) sized folds. The k  

iterations are subsequently trained and validated such that 

within each iteration, a different fold of the data is held-out 

for validation while the remaining 1k folds are used for 

learning. Prior to data splits into k folds, the data is 

stratified to rearrange the data so as to ensure each fold is a 

good representative of the entire datasets [51]. The folds 

are often stratified since cross-validation accurately 

depends on the random assignment of the individual cases 

into k distinct folds. The folds are stratified in a manner 

that they contain approximately the same proportion of 

predictor labels as the original dataset [12] and [14]. In 

k fold cross-validation, the given dataset S is randomly 

split into k mutually exclusive subsets ),...,,( 21 kSSS of 

approximately equal size. The classifier is trained and 

tested k times. Each time t ϵ },...,2,1{ k , it is trained on 

all but one fold tS and tested on the remaining single 

fold tS . The cross-validation estimate of the overall 

accuracy is calculated simply as the average of the 

k individual accuracy measures as shown in Eq. (5) 

 
CVA = 



k

i

iA
1

 
 

(5) 

where CVA stands for cross-validation accuracy, k is the 

number of folds and A is the accuracy measure of each 

fold [14].  

 

4.2. Accuracy, Sensitivity & Specificity 

The efficiency of any machine learning model is 

determined using measures such as True Positive Rate, 

False Positive Rate, True Negative Rate and False 

Negative Rate [52]. The sensitivity and specificity 

measures ae commonly used to explain clinical diagnostic 

test, and to estimate how good and consistent was the 

diagnostic test [53]. The sensitivity metrics is the true 

positive rate or positive class accuracy, while specificity is 

referred to as true negative rate or negative class accuracy. 

However, there is often a trade-off between the four 

performance measure metrics in “real world” applications 

[54] 
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a) Accuracy – Eq. (6) compares how close a new test 

value is to a value predicted by if ... then rules [22].  

 
Accuracy %100

FNFPTNTP

TNTP




  

 

(4) 

b) Sensitivity – Eq. (7) measures the ability of a test to be 

positive when the condition is actually present. It is 

also known as false-negative rate, recall, Type II error, 

β error, error of omission, or alternative hypothesis 

[22]. 

 
Sensitivity %100

FNTP

TP


  

 

(5) 

c) Specificity – Eq. (8) measures the ability of a test to 

be negative when the condition is actually not present. 

It is also known as false-positive rate, precision, Type 

I error, α error, error of commission, or null 

hypothesis [22].  

 
Specificity %100

FPTN

TN


  

 

(6) 

d) Predictive Accuracy – Eq. (9) gives an overall 

evaluation. It is also known as the percentage 

proportion of correctly classified cases to all cases in 

the set. The larger the predictive accuracy the better 

the situation.  

 
             PA %100

FNFPTNTP

TNTP




  

 

 

(7) 

4.3. Recall, Precision and F-measure 

Eqs. (10-12) are additional parameters that could help 

physician determine exactly whether a patient is ill or not. 

Recall is the same in application as sensitivity. F-measure 

is the harmonic mean of both recall and precision, while 

specificity is the reverse of sensitivity.  

 
Precision

FPTP

TP


  

 

(8) 

 

Recall
FNTP

TP


  

 

 

(9) 

 

F-measure
recallprecision

recallprecision




**2
 

 

 

(10) 

 

4.4. Error Costs and Estimation 

Some of the widely used errors variants incorporated into 

most machine learning tool(s) include [23].  

 

a) Mean absolute error (MAE): Eq. (13) is the average of 

individual errors while neglecting the signs to 

diminish the negative effects of outliers [23].  
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b) Root mean square error 
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c) Relative absolute error  
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where 
i

ai
n

a
1

denotes a total absolute error 

normalized by the error of a predictor which uses 

an average of the actual values from a dataset 

[23]. 

 

d) Root relative squared error: 
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(14) 

where p is predicted target values nppp ,...,, 21 while a  

represents actual value: naaa ,...,, 21  

 

4.4 Receiver Operating Characteristics (ROC)    

ROC summarizes classifier performance over a range of 

trade-offs between true positive TP  and false 

positive FP error rates. The Areas under the Curve (AUC) 

is accepted performance metric for the Receiver Operating 

Characteristic (ROC) curve. On the ROC curve, the ROC 

plots the curve with X axis to represents percentage (%) 

of false positive FP ; 
)(

)%(
FPTN

FP
FP


 and plot 

the curve with Y axis to represents percentage (%) of 

true positive TP ; 
)(

)%(
FNTP

TP
TP


 , and the ideal 

point on the ROC Curve would be an interval between 

(0,100) [27]. ROC is useful for exploring the trade-offs 

among different classifiers over a range of scenarios, 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 195

2015 International Journal of Computer Science Issues



 

 

which is not ideal for situations with known error costs. 

The area under the curve (AUC) is most preferred because 

the larger the area the better the model. The AUC also has 

a nice interpretation as the probability that the classifier 

ranks a randomly chosen positive instance above a 

randomly chosen negative one [55]. Area under the ROC 

Curve (AUC) is a useful metric for classifier performance 

as it is independent of the decision criterion selected and 

prior probabilities. AUC can establish a dominance 

relationship between classifiers. If the ROC curves are 

intersecting, the total AUC is an average comparison 

between models [27].  

5. Empirical Results and Analysis  

5.1 Thoracic Surgery Dataset 

The thoracic surgery database was obtained from the 

University of California Irvine (UCI) machine learning 

repository database [56]. The thoracic datasets is dedicated 

to classification problem related to the post-operative life 

expectancy in the lung cancer patients: class 1 - death 

within one year after surgery, class 2 - survival; recoded as 

Risk1Y: 1 year survival period - (T)rue value if died (T, 

F), where the class value (Risk1Y) is binary valued. The 

thoracic surgery datasets are not approximately equally 

distributed. The data was collected retrospectively at 

Wroclaw Thoracic Surgery Centre for patients who 

underwent major lung resections for primary lung cancer 

for period of 4 years [57]. The dataset contains 470 

instances, and 17 attributes, 14 of which are nominal and 3 

numeric – Age, PRE4 and PRE5 as shown in Table 1.  

Although random over-sampling can increase the 

likelihood of over-fitting occurring, it may introduce an 

additional computational task if the dataset is already fairly 

large but imbalanced. Synthetic Minority Over-sampling 

Technique (SMOTE) in WEKA was used to generate 

synthetic minority examples to over-sample the minority 

class. The aim is to form new minority class examples by 

interpolating between several minority classes examples 

that lie together, using the concept of k-nearest neighbour. 

In this way, the over fitting problem was avoided causing 

the decision boundaries for the minority class to spread 

further into the majority class space [58]. The predicted 

class Risk1Y: 1 year survival period - (T)rue value if died 

(T, F), where the class value (Risk1Y) is binary valued, 

initially had a sample distribution of T (70) and F (400). 

After repeated application of Synthetic Minority Over-

sampling Technique (SMOTE) randomize in WEKA, the 

same sample distribution was now T (560) and F (400).   

 

Table 1 Thoracic Surgery database 

Thoracic 

Dataset 

Recode 

                            Attributes 

Description  Values  

(Nominal/Numeric) 

DGN Diagnosis-specific 

combination of ICD-10 codes 

for primary and secondary as 

well multiple tumors if any 

DGN3,DGN2,DGN

4,DGN6,DGN5, 

DGN8,DGN1  

PRE4 Forced vital capacity - FVC  Numeric 

PRE5 Volume that has been exhaled 

at the end of the first second 

of forced expiration - FEV1  

Numeric 

PRE6 Performance status - Zubrod 

scale  

PRZ2,PRZ1,PRZ0 

PRE7 Pain before surgery T, F 

PRE8 Haemoptysis before surgery  T, F 

PRE9 Dyspnoea before surgery T, F 

PRE10 Cough before surgery T, F 

PRE11 Weakness before surgery T, F 

PRE14 T in clinical TNM - size of the 

original tumor, from smallest 

to largest 

OC11,OC14,OC12,

OC13 

PRE17 Type 2 DM - diabetes mellitus  T, F 

PRE19 MI up to 6 months T, F 

PRE25  PAD - peripheral arterial 

diseases 

T, F 

PRE30 Smoking T, F 

PRE32 Asthma T, F 

AGE Age at surgery  Numeric 

Risk1Yr 1 year survival period - (T)rue 

value if died (T,F)  

T, F 

 

6. Results and Discussion 

Waikato Environment for Knowledge Analysis (WEKA) 

was used to simulate the baseline performance accuracy of 

the classifiers in a more convenient manner to determine 

which scheme is statistically better than the other [59]. 

Stratified 10-fold cross-validation was used to rearrange 

the data to ensure that each fold is a good representation of 

the whole datasets. The stratified 10-fold cross-validation 

(k = 10) is the most common [60], and universal [50] 

evaluation models, with lower sample distribution variance 

compared to the hold-out cross-validation. Final analysis 

show that Multilayer Perceptron classifier performed best 

with classification accuracy of 82.3%, with True Positive 

rate of 82.4% and a ROC Area (AUC) of 84.7% with a 

minimum error rate of 21.6% (mean absolute error) and 

maximum error rate of 78.4% (root relative squared error). 

J48 classifier came out to be second best with a 

classification accuracy of 81.8%, with True Positive rate of 

81.9% and a ROC Area (AUC) of 82.2% with a minimum 

error rate of 22.7% (mean absolute error) and maximum 

error rate of 80.6% (root relative squared error). The Naive 

Bayes classifier came out to be worst of the three 

algorithms with a classification accuracy of 74.4%, with 

True Positive rate of 74.5% and a ROC Area (AUC) of 

79.2% with a minimum error rate of 29.0% (mean absolute 

error) and maximum error rate of 91.2% (root relative 
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squared error). Table 2 and Fig. 3 present the detail results 

of the comparative analysis for better visualization and 

analysis.  
 

Table 2 10-fold cross-validation performance evaluation comparison 

Performance Metrics MLP  J48 Naïve Bayes 

Correctly Classified Instances 82.3 81.8 74.4 

Mean absolute error                       21.6 22.7 29.0 

Root mean squared error 38.6 39.7 44.9 

Relative absolute error 44.5 46.7 59.7 

Root relative squared error 78.4 80.6 91.2 

True Positive (TP) Rate 82.4 81.9 74.5 

False Positive (FP) Rate 20.7 20.1 33.2 

Precision 82.5 81.8 76.8 

Recall 82.4 81.9 74.5 

F-Measure 82.1 81.8 72.7 

ROC Area (AUC) 84.7 82.2 79.2 

 

 

Fig.3 10-fold Stratified cross-validation performance comparison 

7. Conclusions 

This work was to identify and evaluate the performance of 

machine learning classification schemes applied in the 

prediction of post-operative life expectancy in Lung 

Cancer patients. Thoracic surgery dataset used for this 

study was obtained from the University of California Irvine 

(UCI) machine learning repository database. Data was 

collected retrospectively at Wroclaw Thoracic Surgery 

Centre for patients who underwent major lung resections 

for primary lung cancer for period of 4 years [57]. The 

dataset contained 470 instances, and 17 attributes, 14 of 

which are nominal and 3 numeric – Age, PRE4 and PRE5. 

The thoracic surgery datasets are not equally distributed. 

Synthetic Minority Over-sampling Technique (SMOTE) 

was used to generate synthetic minority examples to over-

sample the minority class and smoothen the sample 

distribution from T (70) and F (400) to T (560) and F (400) 

after repeated application of Synthetic Minority Over-

sampling Technique (SMOTE) randomize in WEKA. 

SMOTE operates by interpolating between several 

minority classes examples that lie together, using the 

concept of k-nearest neighbor to avoid over fitting causing 

the decision boundaries for the minority class to spread 

further into the majority class space [58].  

In this study, the thoracic datasets is dedicated to 

classification problem related to the post-operative life 

expectancy in the lung cancer patients: class 1 - death 

within one year after surgery, class 2 - survival; recoded as 

Risk1Y: 1 year survival period - (T)rue value if died (T, F), 

where the class value (Risk1Y) is binary valued. 

Multilayer Perceptron, J48 and Naive Bayes machine 

learning algorithms were calibrated to optimize the 

baseline performance accuracy of each classifier. Also 

stratified 10-fold cross-validation was used to measure the 

unbiased predictive accuracy of each classifier compared. 

Based on the stratified 10-fold cross-validation 

comparative analysis, Multilayer Perceptron achieved 

classification accuracy of 82.3%, true positive (TP) rate of 

82.4%, and a ROC Area (AUC) of 84.7%. The J48 

classifier achieved a classification accuracy of 81.8%, true 

positive (TP) rate of 81.9%, and a ROC Area (AUC) of 

82.2%. And Naive Bayes classifier achieved a 

classification accuracy of 74.4%, true positive (TP) rate of 

74.5%, and a ROC Area (AUC) of 79.2%. 

Constraints involved in mining privacy-sensitive, 

heterogeneous and voluminous data must be considered in 

clinical mining. It is the responsibility of the researcher to 

anonymize data to ensure privacy-preserved clinical 

mining [21]. The clinical data contains either unique 

binary-valued attributes or multi-valued attributes from 

positive defined interval such as blood pressure or body 

temperature; and negative values resulting from screening 

diagnosis such as ECG, and RTG [23]. The uniqueness of 

clinical data requires researchers to take into consideration 

ethical, security and legal aspects of clinical mining, such 

as data ownership, fear of lawsuits, expected benefits, and 

special administrative issues [22]. However, the quality of 

machine learning algorithms applicable in clinical 

prognosis is dependent on the ability of the researcher to 

carefully choose, tune and apply machine learning 

classification to clinical prognosis.  
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