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Abstract
There is the technique of creation of finite element model of designs 
with a difficult configuration is described in article. Constructed the 
algorithms of creation of a finite element grid for designs with a 
simple configuration. Through their association the finite element 
model set designs be formed. Developed the algorithms of a choice of 
the initial front for minimization of width of a tape of nonzero 
coefficients. Carried out the streamlining of numbers of knots of finite 
element model on the basis of a frontal method. Examples of the 
solution of specific objectives are given.
Keywords: finite element, sewing together, discrete model, grid, 
edge, knot.

1. Introduction

There is the technique of creation of finite element model of 
designs with a difficult configuration is described in article. 
Constructed the algorithms of creation of a finite element grid 
for designs with a simple configuration. Through their associa-
tion the finite element model set designs be formed. Developed 
the algorithms of a choice of the initial front for minimization 
of width of a tape of nonzero coefficients. Carried out the 
streamlining of numbers of knots of finite element model on 
the basis of a frontal method. Examples of the solution of spe-
cific objectives are given.
At the solution of applied tasks by finite elements method 
(FEM) the main problem connected with formation and the 
decision of the allowing system of the linear algebraic equa-
tions of a high order arises. Coefficients of a system`s matrix 
have simmetriny and tape structure. In this case it is enough to 
store in memory of the computer only diagonal and not zero 
elements which are below the main diagonal of a matrix, lim-
ited by width of not zero coefficients tape.It is known that tape 
width directly depends on a way of numbering of knots in fi-
nite element model. This dependence is described by the rela-
tion (1):
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the maximum and minimum numbers
of knots in i-th finite element, V – dimension of a task, N –
total number of knots of a grid.

When carrying out computing experiments on the basis of 
FEM it is necessary to automate process of creation of finite 
element model of a real object. If the area of a body has diffi-
cult configuration, creation of finite element grid will be the 
labor-intensive process demanding big ability and bunch of 
time. In this regard the technique of creation of finite element 
model of multicoherent area is offered. This method based on 
formation of finite element model of object by means of "sew-
ing together" (association) of elementary subareas. The ele-
mentary area is meant as area with simple configuration for 
which there is an algorithm of creation of finite element grid. 
Quadrangles and quadrangular prisms are used as finite ele-
ments.

2. Technology of the solution

The topology of finite element model of object is represented 
simple hierarchy of volumes, surfaces, lines and points [1]:
1) three-dimensional area in the form of system of the volume
elements connected among themselves limited to the surfaces 
which are crossed in nodal points; boundary surfaces and lines, as 
well as each volume element, can have some number of internal 
knots; surfaces can be crossed only along boundary lines;
2) two-dimensional area with system of the surfaces adjoining
lengthways the boundary lines connected among themselves 
which are crossed in nodal points; thus boundary lines can also 
include some number of intermediate knots; surfaces can be lim-
ited to several lines; two lines have to connect so that one of them 
crossed another in a trailer point.
The finite element model of area is described by the following 
discrete set (2):

    Ω = {N, M, MК, MN},          (2)

where 
N – number of knots of a finite element grid;
M – quantity of finite elements;
MK – the massif of coordinates of knots;
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MN – an array of numbers of knots on elements.
"Sewing together" of two subareas has an appearance (3):

                         Ω =  Ω′ + Ω′′,                        (3)
where

Ω′= {N1, M1, МК′, MN′},
Ω′′= {N2, M2, МК′′, MN′′},

discrete models of the subareas which are subject to association.
Generalizing the above, it is possible to conclude that if Ω – re-
sultant area, and – the corresponding elementary subareas (4):

                                                        (4)
where 
p – number of the subareas which are subject to association.
Thus, formation of a finite element grid of multicoherent area 
is carried out by means of consecutive "sewing together" of 
elementary subareas.

3. Solution Method

For descriptive reasons we will consider process of formation 
of finite element model of two-dimensional area of a difficult 
configuration (figure 1).

Fig. 1. Initial area.

The following subareas are used as elementary areas (figure 2):
1) any quadrangle;
2) a rectangle with elliptic cut in top;
3) 1∕4 part torah;
4) 1∕4 part of an ellipse.
Basic data for creation of a finite element grid of these areas 
are:
1) any quadrangle – coordinates of tops, number of splittings 
on axes of OX and OY;
2) a rectangle with elliptic cut in top – coordinates of the center 
and radiuses of an ellipse, the sizes of the parties of a rectangle, 
number of radial splittings and number of divisions on an axis 
OX;
3) 1∕4 part a torah - coordinates of the center and radiuses of an 
ellipse, number of radial splittings and number of divisions on 
an axis OX;
4) 1∕4 part of an ellipse – coordinates of the center and radiuses 
of an ellipse, number of splittings on axes of coordinates.

Fig. 2. Forms of elementary subareas.

Taking into account a configuration the studied area breaks 
into a set of elementary areas (figure 3).

  Fig. 3. The studied area breaks into a set of elementary areas.

Formation of area of a difficult configuration through of using 
the library of elementary areas allows simplifying process of 
creation of finite element grid due to reduction of volume of 
the entered basic data. The algorithm of construction is reduced 
to a consecutive task of parameters of elementary subareas, 
formation of a finite element grid and their association (figure
4).
The described technique of creation of finite element model of 
area of a difficult configuration allows, without increasing 
quantity of finite elements and number of knots, to consider all 
geometrical features of a configuration of area.

          Fig. 4. Formation of discrete model of a difficult configuration.
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4. Algorithm for three-dimensional finite 
element model 

Three-dimensional finite elements can be received by such 
operations as expression or leaving of a trace at rotation ap-
plied to the surfaces covered with a grid. We will consider as a 
design example in the form of a rectangular parallelepiped with 
ellipsoidal dredging in top (figure 5). It represents 1/8 part of a 
parallelepiped with an ellipsoidal cavity in the center.

Fig. 5. A parallelepiped with ellipsoidal dredging in top.

The beginning of system of coordinates we will arrange in the 
center of a cavity, and we will send to an axis of coordinates 
along edges. Rectangle sides with elliptic cut in a corner, break 
as follows. Ellipse points of intersection connect to axes of 
coordinates a straight line. The piece shares on n of equal parts. 
From the beginning of coordinates through points of splitting 
radial straight lines before crossing with an ellipse contour are 
drawn. Coordinates of points of intersection are defined from 
the following system of the equations:
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where  ii yx , - coordinates of points on a straight line 
 ;,1 ni  , 
n- plural number,
a, b – ellipse half shafts.
Further, the average knot, received on an ellipse, connects to 
an opposite corner of a rectangle. The parties not adjacent to 
cut break into pieces in the same relation. The knots construct-
ed on an ellipse connect to the knots received on the parties of 
a rectangle. These straight lines break into pieces on the basis 
of a proportion (5):

                          l

l

a

а ii 
  i=1,…, m,                         (5)

where 
ai – the set piece i length on the party of a rectangle, adjacent to 
cut,
l – length of the straight line connecting knot on an ellipse to 
the party of a rectangle,
li – piece i-go length on this straight line,
m – quantity of pieces on the party of a rectangle, adjacent to 
an ellipse.
Length of a piece of a straight line is calculated on the follow-
ing formula (6):

                          221
2

21 yyxxl  ,                     (6)

where  11,yx knot coordinates on an ellipse,  22,yx – knot co-
ordinates on the party of a rectangle.
Coordinates of internal knots of a side are determined by ratios
(7):
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Creation of discrete model of a surface of ellipsoidal dredging 
is connected with formation of a spatial triangle (figure 6) 
which angular knots have coordinates 
     cbа ;0;0,0;;0,0;0; where cba ,, – ellipsoid half shafts.

Fig. 6. Finite element representation of an ellipsoidal triangle.

The parties of this triangle share on n of equal parts. Then the 
geometrical center of a triangle connects to median knots of the 
parties of a triangle and the received pieces break as equals’
parts. In each of the received quadrangles we draw the straight 
lines connecting the splitting knots located on the opposite 
sides of quadrangles. Coordinates of knots on the parties of 
quadrangles are defined from the ratios similar (7), and coordi-
nates of internal knots - from the decision of system of the 
equations:
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where        444333222111 ,,,,,,,,,,, zyxzyxzyxzyx coordinates of 
the knots lying on the opposite sides of quadrangles. Coordi-
nates of the knots located on a surface of ellipsoidal dredging 
decide from a condition of crossing of the radial straight lines 
passing through the knots lying on a triangle on an ellipsoid 
surface as follows:
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 iii zyx ,,   i-th coordinates – that knot, (i = 1,…, N),

N – number of knots on a triangle,     22121 nnnN  .

The final stage in creation of a finite element grid of a design is 
splitting other three sides which aren't adjoining dredging. 

Each side shares 42n on rectangles. Then the knots located on 
the middle of the parties of dredging and also in its tops con-
nect to parallelepiped tops. To the central knot there has to 
correspond the point of intersection of three sides not adjacent 
to dredging. Splitting points on these straight lines are defined 
on the basis of proportions (5). 

Thus, it is possible to hurt an initial body into hexa-
gons.Numbering of knots of a body with ellipsoidal dredging 
in top is carried out by the frontal method described above. For 
what at first dredging knots are consistently numbered.  Then, 
without interrupting a numbering order, knots of the subse-
quent layers are numbered. The number of knots on each layer 
will be identical. It should be noted that all layers in a form 
will be similar to dredging, except the last which is formed by 
three crossed parallelepiped sides.To form a finite element grid 
of a parallelepiped with a through cylindrical cavity in the 
middle, it is necessary to use finite element a rectangle grid 
with an elliptic cavity in top with addition of the coordinates 
set on OZ axis. 
Coordinates of nodal points of each layer of a parallelepiped on 
axes of OX and OY coincide with coordinates of knots of a 
rectangle. 
The algorithm of splitting a rectangle with elliptic dredging in 
top can be used for creation of finite element representation of 
the hollow cylinder. For this purpose it is necessary to replace 
the equations of the parties of a rectangle with the equation 
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and to add the corresponding values on OZ axis.

5.    Algorithm of construction 

The algorithm of construction includes the following stages:
1) formation of library of finite element models of elementary 

subareas;
2) procedure of association of subareas;
3) procedure of definition of the initial front of knots;
4) procedure of streamlining of numbers of knots of finite ele-

ment model.
Procedure of association of two subareas includes the follow-

ing   stages:
1) on the basis of comparison of coordinates of the knots locat-
ed in the MK′ and MK′′ are formed:
kp - number of the coinciding knots located on border of asso-
ciation of subareas; 
the M1 and M2 including the corresponding numbers of knots 
located on border of association of subareas; 
2) N = N1 + N2 – kp; 
3) M = M1 + M2;
4) initial M1 to lines of the MN array appropriates the corre-
sponding values of the MN′ sets Ω′;
5) the subsequent values of elements of lines of the MN array are 
defined by means of procedure of replacement of local numbers 

of knots of a set Ω′′, located in the MN′′ array, on global num-
bers. If value of the current i-th numbers of the knot located in 
the MN′′ is present at the MN′′, the corresponding local number 
of knot from the M1 array is assigned to it. Otherwise, its value is 
calculated on the basis of a ratio: i + N1 – z, where value of a var-
iable z is defined as number of knots of the M2 array which num-
ber there is less than value i;
6) for formation of initial N1 of lines of the MK array values of 
the MK′ array  are used;
7) the next lines of the MK array are formed of MK′′, with the 
withdrawn lines which numbers are specified in the M2.

The final stage of algorithm of creation of finite element model 
is streamlining of numbers of knots that is connected with reduc-
tion of width of a tape of system of the allowing FEM equations. 
The essence of streamlining consists in renumbering of knots on 
the basis of a frontal method [2]. In the real work the frontal 
method is modified taking into account that the initial front gets 
out as sequence of numbers of the knots located on border of the 
considered area [3]. For streamlining of numbers of knots three 
fronts are used: in the first numbers of knots of initial or current 
fronts, in the second – numbers of knots previous settle down, 
and in the third – the new front is formed.
The algorithm of a method consists of the following stages:
1) as the initial front boundary knots get out;
2) finite elements which contain knots with the same numbers, as 
well as numbers of knots of the front are defined;
3) are excluded from (2) numbers of knots chosen on a step par-
ticipating in current previous and in formed fronts;
4) the grid knots having identical numbers, as numbers of knots 
in the current front according to the following rule are renum-
bered: everyone the following numbered knot gets on unit a big-
ger number, than previous, and the initial renumbered knot has 
number one;
5) contents of the current front (now it becomes previous) re-
main, contents of the new created front in flowing with its subse-
quent clarification are copied, i.e. the front "moves" on a konech-
noelementny grid;
6) all actions described in points (2)-(5) until the created front 
becomes empty repeat.
On the example of two-dimensional area the best results turn out 
at a choice as the initial front of the ordered set of the knots lo-
cated on edges and tops of a finite element grid of multicoherent 
area. In this regard we will enter the corresponding definitions.
In finite element representation of multicoherent area the knot 
which is found in the only finite element is called as top. The set 
of the knots located on border of area or on the border concluded 
between two tops is called as an edge. 
Process of search of an edge is carried out as follows:
1) in a random way the knot which is found in two finite ele-
ments gets out and is added to the front;
2) search of the knots which are found only once in two finite 
elements described in point (1) is carried out. If those aren't 
present, search of the knots which are found two times if those 
aren't present is run in them, formation of the initial front 
comes to an end. Then it is cleared and carried out transition to 
point (1). Otherwise, number of this knot is added to the front;
3) if in the course of repeated use of the described actions the 
top is found in the second step two times, performance of 
search of an edge comes to an end and streamlining on the 
front is carried out;
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4) all knots which are found one or two times, are added to the 
front and the actions described in points (2) - are carried out 
(3);
5) steps (1) - repeat (4), all edges concluded between two tops 
won't be found yet. 
To prevent it is necessary "to mark" and not to use the cycling 
of this process, all knots which are found in two final elements 
further. Other edges can be found replacement of a condition in 
the third point, i.e. the exit will come from a cycle if the 
"marked" knot is found. 

6. Computing experiment 

On the basis of this algorithm the software is developed and 
streamlining of numbers of knots of the two-dimensional mul-
ticoherent area (figure 7) consisting of association of triangular 
and quadrangular areas [4] is carried out.

Fig. 7. Initial finite element grid.

The parties of a triangle are divided into k, and the parties of a 
quadrangle on k/2 of pieces, respectively. At k=4 reduction of 
a difference between maximum and minimum numbers of 
knots with 25 to 7 is observed. At k=46 – with 2209 to 49 (i.e. 
approximately by 45 times).

7. Conclusion

The developed way of formation of a finite element grid allows 
breaking into smaller elements of different vicinity of inclu-
sions that fully captures the physical essence of process of de-
formation of the bodies subject to external influences.The con-
structive elements considered above having cavities or inclu-
sions can be components of the areas representing construc-
tional composite materials, conglomerates of disperse particles 
in material, deposits of rocks, etc.
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