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Abstract 
This study analyzes the ability of interestingness 
measures to capture the correct predictive model 
through a new simulation design. The simulation is 
designed to be general enough to allow fair 
conclusions to be drawn without depending on 
subjective opinions. We found that the relative 
success of interestingness measures in capturing 
the correct model depends on two major factors: 
(1) the characteristics of the model and (2) the 
weight of each of three components—confidence, 
support, and the probability of result or class—in 
the measure’s formula. No measure was found to 
perform best in all scenarios. However, we found 
that two groups of measures work well with 
different scenarios and that these groups of 
measures complement each other. That is, in any 
given scenario, the measures in one or the other of 
these two groups would perform the best. 
Therefore, in actual practice, when the 
characteristics of data are unknown, we propose 
using representatives of these two groups—
confidence and lift—to capture the predictive 
models as either of these will capture the predictive 
model that best fits the given scenario.  
Keywords: Classification rule mining, 
Interestingness measures, Predictive model  
 
1. Introduction 

A methodology for exploring relationships among 
items or variables in the form of rules, association 
rules analysis is a popular data mining technique 
introduced in the early 1990s [1]. A large number 
of studies have applied association rules analysis in 
a wide variety of research areas, including biology 
([2], [3]), business and marketing ([4], [5], [6]), 
geography ([7], [8]), agriculture ([9], [10]), 
education ([11], [12], [13]), photography ([14], 
[15], [16]), and economics ([17], [18]).   
 
 

 
The set of rules can be used for other purposes, 
including classification through a technique called 
classification rule mining (CRM), which is a subset 
of association rules analysis. The purpose of 
classification rule mining is straightforward: it is to 
find the rules—selected via interestingness 
measures—that are important to a given dataset. 
The selected rules will form the predictive model 
which is used to classify the response. 
The classification rule mining technique has 
improved over time. For example, alternative 
interestingness measures have been developed 
and/or applied ([19], [20], [21]). And, researchers 
have compared measures in order to establish 
relationships between them and to identify the 
properties of each. In this regard, Ohsaki et al. 
(2004) [22] and Tan et al. (2004) [19] compared 
rankings established by experts with those 
established by interestingness measures for specific 
datasets. Lenca et al. (2004) [23] used a 
multicriteria decision strategy to produce a 
measures selection method whereby the properties 
of each measure are provided and the measures are 
selected based on the properties desired by users. In 
this method, it falls to the practitioner to weigh the 
significance of each property of each 
interestingness measure. In Vaillant et al.’s (2004) 
[24] work, based on their properties and their 
rankings of rules in a specified rule set, 
interestingness measures are clustered into groups. 
Geng and Hamilton (2006) [20] surveyed 
interestingness measures and analyzed them in 
several ways including by summarizing their 
properties and objectives. Kannan and Bhaskaran 
(2009) [25] studied interestingness measures that 
can be used for pruning with clustering. The 
literature covers interestingness measures for 
specific kinds of data. For example, Merceron and 
Yacef (2008) [26] and Pandey and Pal (2011) [27] 
studied interestingness measures for educational 
data, whereas Anandhavalli et al. (2010) [28] 
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studied interestingness measures for spatial gene 
expression databases.  
In the present study, we analyze the behavior of 
respective interestingness measures—in terms of 
the ability of each to find the correct predictive 
model—through a new simulation design. Our 
objective is to identify the factors that affect the 
performance of each measure. We compare and 
analyze interestingness measures based on how 
they perform in a simulation designed to be general 
enough to allow fair conclusions to be drawn 
without depending on expert opinions. Based on 
our research in the literature, we regard our study 
as the most thorough endeavor to date to compare 
measures via a simulation protocol. We found that 
the success of interestingness measures in terms of 
capturing the correct model depends on two major 
factors: (1) the characteristics of the model and (2) 
the weight of each of three components—
confidence, support, and the probability of class—
in the measure’s formula. Measures are also 
grouped based on their components and the 
recommended measures are given for use in 
practice.  
This paper is organized as follows. Section 2 
presents a review of classification rule mining and 
of the interestingness measures. Section 3 presents 
the simulation process and comparison procedure. 
Section 4 demonstrates the simulation results and 
provides an analysis. Section 5 offers a discussion 
and concluding remarks.  
 

2. Classification Rule Mining and 
Interestingness Measures  
 
Association rules analysis is a methodology 
designed to explore relationships among items in 
the form of rules. Each rule has two parts: the first 
comprises left-hand side item(s), or condition(s), 
and the second is a right-hand side item, or a result. 
The rule is always represented as a statement: If 
condition, then result [29]. When association rules 
analysis was introduced, the two measurements 
used were support (s), computed by s = Prob 
(condition and result), and confidence (c), 
computed by c = Prob (condition and result)/Prob 
(condition). Association rules analysis finds all the 
rules that meet two key thresholds: minimum 
support and minimum confidence [1].  
A set of rules that meets these two thresholds can 
be used for other purposes, including classification. 

In fact, a technique called classification rule mining 
(CRM)—a subset of association rules analysis—
was developed to find a set of rules in a database 
that would constitute an accurate classifier ([30], 
[31]). This technique uses an item to represent a 
pair consisting of a main effect and its 
corresponding integer value. More specific than 
association rules analysis, CRM has only one 
target, which must be specified in advance. The 
target is generally the response, which means the 
result of the rule (the right-hand-side item) can 
only be the response and its class. Therefore, the 
left-hand-side item (the condition) consists of the 
explanatory variable and its level. For example, 
assume there are k binary factors, X1, X2, …, Xk, 
and a binary response, Y. All variables have two 
levels, one denoted by 0 and the other by 1. Many 
rules can be generated by CRM, including If X1 = 
1, then Y = 1 where X1 = 1 is the condition and Y = 
1 is the result.  
The literature on association rules analysis 
specifies numerous interestingness measures. And, 
based on a thorough search of the data mining 
papers and journals in the recent literature, we 
identified 27 measures (summarized with detailed 
notations in Table 1).  
The 27 measures in Table 1 can be rewritten using 
three components: confidence (c), support (s), and 
the probability of class or result P(B). Some 
measures have only confidence (c) in their formula, 
e.g., confidence, example, and counter-example. 
Some measures have both confidence (c) and P(B), 
e.g., lift and added value. Some measures have all 
three components, e.g., cosine and implication 
index. Therefore, we categorize measures based on 
the component(s) in the formula of each, as shown 
in Table 2. These three groups appear to have the 
same components in their formulae.  
Note that a limitation of our study is the lack of 
noise. We traded this limitation with the fair 
comparison and analysis among measures without 
the factor of noise involved. As a consequence, 
several measures yielded invalid values (from a 
zero denominator) or fixed values without noised 
added. These measures, which we have omitted, 
include the certainty factor, conviction, Loevinger, 
the odds multiplier, the odds ratio, Sebag-
Schoenauer, Yule’s Q, Yule’s Y, Goodman and 
Kruskal and Zhang. In the following sections, we 
analyze the performance of each of these 27 
measures via our proposed simulation framework.  
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Table 1: Interestingness measures (in alphabetical order) 

 
For the rule If A, then B, P(A) is the probability of condition (A); P(B) is the probability of result (B) 
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Note: The Formula column states the original formula. The Rewritten formula states the rewritten formula as the 
form of support (s), confidence (c), and the probability of result or class (P(B)).  
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Table 2 Groups of interestingness measures based on components in their formulae. 

Group  Component Measures 

1 c Confidence, example and counter-example, Ganascia index, and 

Laplace  

2 c and P(B) Added value, information gain, lift, one-way support 

3 c, s, and P(B) 

 
Accuracy, collective strength, cosine, dice index, directed 

contribution to chi-squared, Gini index, implication index, 

Jaccard, J-measure, kappa, Klosgen, Kulczynski index, least 

contradiction, Piatetsky-Shapiro, relative risk, Roger-Tanimoto 

index, specificity, tau-b, two-way support, and two-way support 

variation 

 

 

3. Simulation Process and Comparison 
Procedure 
 
We used simulations to compare the interestingness 
measures in terms of performance. Our objective 
was to analyze the properties of the measures and 
the factors that affect the ability of each to find the 
correct predictive model or the correct response for 
four scenarios. We also observed the performance 
of each when the number of variables was larger. 
Therefore, we compared the performance of each 
measure when 6 binary variables were used with 
the performance of each when 10 binary variables 
were used. By using simulations, we were able to 
observe the ability of each measure to find the 
correct predictive model, which is the same as 
finding the correct response. The simulation was 
designed to be general enough to allow fair 
conclusions to be drawn. Section 3.1 presents 
detailed information about the design matrix, and 
Section 3.2 describes the simulation procedures. 
 
3.1 Design Matrix 
 
Two design matrices were used for this study: (1) a 
full factorial design for 6 binary variables, X1–X6, 
referred to as design matrix 2(6) with a total of 64 
observations, and (2) a full factorial design for 10 
binary variables, X1–X10, referred to as design 
matrix 2(10) with a total of 1,024 observations. We 
used these two design matrices mainly to study 
changes in each measure’s performance as the 
number of variables increased. We used the full 
factorial design for our study, as this design covers 
all possible combinations among the independent 
variables and is fair in terms of sampling. This 
design does not produce any bias that would affect 
comparisons among the measures. Moreover, the 

design can easily be modified by adding and/or 
eliminating variables. 
  
3.2 Simulation Process 
 
For each design matrix, the simulation is separated 
into two parts: Part I generates the datasets, and 
Part II tests the performance of the interestingness 
measures with the generated datasets. An overview 
of the entire simulation process is shown in Figure 
1.  

                                          
  Fig. 1 Flowchart of overall simulation process. 
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The simulation process can be briefly summarized 
as follows. For each design matrix, a dataset is 
generated for each of the four scenarios of interest. 
Then, the generated datasets are used to test the 
ability of each of 27 measures to find the correct 
predictive model, which in our simulation is the 
same as finding the correct response. Next, the 
results from the performance testing are 
summarized. (Part I: data generation and Part II: 
performance testing are explained in more detail 
next.) Then, for the two design matrices, the 
measures are compared in regard to the respective 
ability of each to find the correct response. The 
Part I data-generating procedure is shown in Figure 
2.  

 
Part I: Data-generation Procedure  
 
This is the first part of the simulation procedure. 
For our study, there are four scenarios of interest. 
To represent each scenario, we developed a data set 
in order to compare the 27 measures in terms of 
performance. The four datasets representing the 
four scenarios are shown in Table 3.  
Given the input matrix, we generate response (y) 
for each scenario in Table 3. By combining the 
response with the input matrix, we produce the 
dataset. As there are four scenarios, we generate 
four datasets to use in Part II: performance testing.  
However, before giving the details of the procedure 
for Part II, we will give detailed descriptions of the 
scenarios of interest, as explained next.  
There are two models for each scenario, as shown 
in Table 3. The first model has class 1 as a result 
(model class 1), whereas the second model has 
class 0 as a result (model class 0). These two 
models are equivalent, which means that they 
generate the same response; i.e., Model 1 and 
Model 1c are equivalent, Model 2 and Model 2c are 
equivalent, Model 3 and Model 3c are equivalent, 
and Model 4 and Model 4c are equivalent. In other 
words, both Model 1 and Model 1c are correct 
predictive models for scenario 1, both Model 2 and 
Model 2c are correct predictive models for scenario 
2, both Model 3 and Model 3c are correct predictive 
models for scenario 3, and both Model 4 and 
Model 4c are correct predictive models for scenario 
4. 
We noted earlier that the simulation is designed to 
be general enough to produce results from which 
reasonable conclusions can be drawn. This 
generalizability arises from our design in which all 
the models used cover cases of balanced and 
unbalanced models between model class 1 and 
model class 0, which is the key to analyzing each 
measure’s performance.  

 
Definition: A model is considered balanced when 
all its rules are the same size. In other words, the 

number of variables in the condition is the same for 
all the rules in the model.  
The scenarios in Table 3 show all the cases when 
(i) both model class 1 and model class 0 are 
balanced, (ii) only one of the model classes is 
balanced, and (iii) neither model class is balanced.  
For scenario 1, Model 1 is unbalanced (the rule size 
for Rule 1a is one and the rule size for Rule 1b is 
two), whereas Model 1c is balanced (the rule size 
for both Rule 1′a and 1′b is two). For scenario 2, 
Model 2 is unbalanced, whereas Model 2c is 
balanced. However, for scenario 1, the probability 
of class 1 (the class for the unbalanced Model 1) is 
higher than the probability of class 0 (the class for 
the balanced Model 1c). For scenario 2, the 
probability of class 0 (the class for the balanced 
Model 2c) is higher than the probability of class 1 
(the class for the unbalanced Model 2). For 
scenario 3, Model 3 and Model 3c are both 
balanced. For scenario 4, neither Model 4 nor 
Model 4c is balanced.  
 
Part II: Performance-testing Procedure  
 
The second part of the simulation process is 
designed to test the performance of each rules 
selection measure. The main goal is to observe 
each measure’s ability to find the correct predictive 
model. As noted earlier, there is more than one 
correct predictive model in each scenario; 
therefore, we designed the procedure to capture the 
correct response, which covers all the correct 
predictive models for each dataset. The procedure 
for Part II is shown in Figure 3. 
The performance-testing procedure for each 
measure is described in detail next.  
 
Step 1: Generate all rules with the main effect, 

two-way interactions, three-way 
interactions, and four-way interactions for 
each dataset.  

Note that the rule with the main effect contains 
only one variable in the condition. The rule with 
the two-way interactions has two variables in the 
condition. The rule with the three-way interactions 
has three variables in the condition. The rule with 
the four-way interactions has four variables in the 
condition. 
Step 2: Rank the rules in the following order: 
 i) Value of the measure  
 ii) Value of support (s) 

iii) Rule size (the number of variables in 
the condition)—the smaller the rule size, 
the lower-ranked (better) the rule is.  

Step 3: Search for the correct response from rule 1 
to the higher-ranked (worse) rules. The 
rules that are unnecessary to or contradict 
the dataset are discarded.  
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Fig. 2 Data-generation procedure for each design matrix. 

  

Table 3: Scenarios of interest 

Scenario Model 
class 1  

Rules in model class 1 Model  
class 0  

Rules in model class 0 

1 Model 1 1a: X1 = 0  Y = 1 Model 1c 1′a: X1 = 1, X2 = 1  Y = 0 
  1b: X2 = 0, X3 = 0  Y = 1  1′b: X1 = 1, X3 = 1  Y = 0 
2 Model 2 2a: X1 = 0, X2 = 0  Y = 1 Model 2c 2′a: X1 = 1, X3 = 1  Y = 0 

2′b: X1 = 1, X4 = 1  Y = 0 
  2b: X3 = 0, X4 = 0, X5 = 0  Y = 1  2′c: X1 = 1, X5 = 1  Y = 0 

2′d: X2 = 1, X3 = 1  Y = 0 
2′e: X2 = 1, X4 = 1  Y = 0 
2′f: X2 = 1, X5 = 1  Y = 0 

3 Model 3 3a: X1 = 0, X2 = 0  Y = 1 Model 3c 3′a: X1 = 1, X3 = 1  Y = 0 
3′b: X1 = 1, X4 = 1  Y = 0 

  3b: X3 = 0, X4 = 0  Y = 1  3′c: X2 = 1, X3 = 1  Y = 0 
3′d: X2 = 1, X4 = 1  Y = 0 

4 Model 4 4a: X1 = 0, X2 = 0  Y = 1 Model 4c 4′a: X1 = 1  Y = 0 
  4b: X1 = 0, X3 = 0, X4 = 0  Y = 1  4′b: X2 = 1, X3 = 1  Y = 0 

4′c: X2 = 1, X4 = 1  Y = 0 
  
Step 4: Record the number of rules needed to 

obtain the correct response. For example, 
we search for the correct response from 
rule 1 to rule k. (This means that rule k 
combined with some other lower-ranked 
(better) rule(s) generates the correct 
response.) The number k is recorded as the 
number of rules needed. If there are ties, 
the highest number of rules with all ties 
combined will be recorded.  

Step 5: Summarize the number of rules needed to 
obtain the correct responses for each of 
the four datasets.  

Note that we repeat this process for all the 
interestingness measures.  
 
In summary, the datasets for the four scenarios in 
Table 3 are generated. Each measure is then tested 
with all four datasets, and the number of rules 
needed to find the correct response for each dataset 
is recorded.  
 

  

Design matrix 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Generate the 
response 

Dataset 1 

Generate the 
response 

Generate the 
response 

Generate the 
response 

Dataset 2 Dataset 3 Dataset 4 
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Fig. 3 Performance-testing procedure for each measure. 

  

4. Simulation results and analysis 

In this section, we analyze the factors that affect 
the ability of the measures to find the correct 
response. Note that to capture the correct response 
is the same as to capture all possible correct 
predictive models, as there is more than one correct 
model for each dataset. The performance of each of 
the measures for both design matrices is shown in 
Table 4.  

From Table 4, it can be seen that the number of 
rules needed to capture the correct response for 
each of the four measures in group 1 is the same for 
all scenarios. Similarly, the number of rules needed 
to capture the correct response for each of the four 
measures in group 2 is the same for all scenarios.   
In this section, we give some definitions and 
properties in order to provide the basis of our 
analysis for this comparison.  
  

Record the number of 
rules needed to find 
the correct response 

Dataset 1 

Generate rules from 
the main effect to 
4-way interactions   

Rank all generated 
rules 

Search for the correct 
response from rule 1 to 
higher-ranked (worse) 

rules 

Record the number of 
rules needed to find 
the correct response 

Dataset 2 

Generate rules from 
the main effect to 
4-way interactions   

Rank all generated 
rules 

Search for the correct 
response from rule 1 to 
higher-ranked (worse) 

rules 

Record the number of 
rules needed to find 
the correct response 

Dataset 3 

Generate rules from 
the main effect to 
4-way interactions   

Rank all generated 
rules 

Search for the correct 
response from rule 1 to 
higher-ranked (worse) 

rules 

Record the number of 
rules needed to find 
the correct response 

Dataset 4 

Generate rules from 
the main effect to 
4-way interactions   

Rank all generated 
rules 

Search for the correct 
response from rule 1 to 
higher-ranked (worse) 

rules 

Summarize the numbers to obtain the correct 
responses 

 

 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 83

2015 International Journal of Computer Science Issues



Table 4: Number of rules needed to find the correct response for each measure 

Measure 
Design matrix 2(6) Design matrix 2(10) 

Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Conf 14 7 6 14 22 7 6 22 

Examp 14 7 6 14 22 7 6 22 

Ganas 14 7 6 14 22 7 6 22 

Lapla 14 7 6 14 22 7 6 22 

Added 2 10 2 10 2 18 2 18 

Infor 2 10 2 10 2 18 2 18 

Lift 2 10 2 10 2 18 2 18 

Onesu 2 10 2 10 2 18 2 18 

Accur 4 10 2 14 4 18 2 22 

Coole 4 14 2 14 4 22 2 22 

Cosin 4 14 2 18 4 14 2 26 

Dice 4 16 2 22 4 24 2 38 

Direc 2 10 2 10 2 18 2 18 

Ginii 5 10 2 13 5 18 2 21 

Impli 3 7 2 11 3 7 2 19 

Jacca 4 16 2 22 4 24 2 38 

Jmeas 2 10 2 11 2 18 2 19 

Kappa 4 14 2 14 4 22 2 22 

Klosq 2 10 2 10 2 18 2 18 

Kulcz 4 9 2 13 4 9 2 21 

Least 4 12 2 15 4 12 2 23 

PS 4 11 2 16 4 11 2 24 

Relat 3 12 2 11 3 20 2 19 

Roger 4 10 2 14 4 18 2 22 

Taub 4 10 2 12 4 18 2 20 

Twosu 3 12 2 14 3 20 2 22 

Twova 5 10 2 13 5 18 2 21 
Note: Refer to Table 2, interestingness measures in group 1 are the first four measures (Conf–Lapla). 
Interestingness measures in group 2 are the next four measures (Added–Onesu). The rest are measures from 
group 3.  
 

  

 

 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 4, July 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 84

2015 International Journal of Computer Science Issues



Definition: A child rule is a rule whose condition is 
the subset of its parent rule when the result is the 
same as its parent rule. As an example, If X1 = 0 
and X2 = 0, then Y = 1 is the child rule of the rule 
If X1 = 0, then Y = 1. 
For scenario 1, the measures in group 2 perform the 
best whereas the measures in scenario 1 perform 
the worst. Note that most measures in group 3 
perform worse than group 2’s measures do (except 
the directed contribution to chi-square, J-measure, 
and Klosgen) but perform better than group 1’s 
measures do.  
This is the scenario in which the probability of 
result P(B) for the class of the unbalanced model is 
higher than for the balanced model (Model 1 and 
Model 1c from scenario 1). Note that for Rule 1a, 
support (s) is higher than for Rule 1ac and that this 
also holds for Rule 1b and Rule 1bc. This means 
that support (s) for rules on the unbalanced side is 
higher than support (s) for rules on the balanced 
side. The affected measures contain only 
confidence (c) in their respective formulae. 
Measures in group 1 prefer the unbalanced model 
over the balanced model; e.g., these measures 
prefer Model 1 over Model 1c. Note that these 
measures do not contain either support (s) or P(B) 
in their formulae. However, as we used support (s) 
as the second-ordered criterion to rank rules, these 
measures prefer the unbalanced side with higher 
support (s) over the balanced side with less support 
(s). Consider that when the number of variables 
increases, the additional child rule of the smaller-
sized rule is added to the number of rules needed to 
find the correct model for the affected measures, 
i.e. measures in group 1. On the other hand, the 
other measures are not affected.  
For scenario 2, the measures in group 1 perform the 
best whereas the performance of the measures in 
group 2 worsens when the number of variables 
increases, i.e., from design matrix 2(6) to design 
matrix 2(10). Some measures in group 3, such as 
the implication index and the Kulczynski index, 
perform well, but some, such as Jaccard and the 
dice index, perform poorly.  
This is the scenario in which the probability of 
result P(B) for the class of the balanced model is 
higher than for the class of the unbalanced model 
(Model 2c  and Model 2 from scenario 2). 
Moreover, the unbalanced model has a larger rule 
size than does the balanced model. As the larger 
rule size implies smaller support (s), the 
unbalanced model has the rule with the least 
support (s) among all the rules for scenario 2. That 
is, rule 2a has less support (s) than either rule 2′a, 
2′b, 2′c, 2′d, 2′e, or 2′f.   
Note that this scenario does not affect the measures 
in group 1, as these measures prefer the balanced 
side with higher support (s) over the unbalanced 
side with smaller support (s). The measures in 
group 2 are clearly negatively affected by this 

scenario, as they prefer the unbalanced model over 
the balanced model based on the smaller P(B).  
This scenario causes difficulty for some of the 
measures in group 3, as the lower P(B) and the 
smallest support (s) are both on the unbalanced 
model. Therefore, some of the measures in this 
category prefer the unbalanced model over the 
balanced model. The measures in group 3 that 
prefer the balanced model over the unbalanced 
model include cosine, the implication index, least 
contradiction, the Kulczynski index, and PS. The 
key factor is the difference in the weight of support 
(s) and P(B) in those measures and the difference in 
the values of support (s) and P(B) between the 
balanced and the unbalanced side.  
For scenario 3, the performance of the measures in 
group 1 is the worst whereas all the other measures 
can capture the correct response within two rules. 
For this scenario 3, both model class 1 and model 
class 0 are balanced and no measures are affected 
when the number of variables increases.  
For scenario 4, the measures in group 2 perform the 
best. Some measures in group 3 such as directed 
contribution to chi-square, and Klosgen, perform 
better than the measures in group 1. However, 
some measures in group 3, such as Jaccard and the 
Dice index, perform worse than measures in group 
1. Consider that when the number of variables 
increases, all the measures are affected as both 
model class 1 and model class 0 are unbalanced, as 
with Model 4 and Model 4c in scenario 4. The 
number of child rules of the lower-sized rules (Rule 
4a and Rule 4ca) increases. This higher number of 
child rules is included in the number of rules 
needed to find the correct response. Therefore, the 
number of rules needed to find the correct response 
increases if the number of variables increases.   
 
5. Conclusions  
 
This study analyzes the behavior of interestingness 
measures through a new framework designed for 
the study of the behavior of interesting measures 
with different scenarios. The results show that 
interestingness measures perform differently 
depending on the scenario. According to our 
findings, two factors that actually explain how each 
measure reacts to the data are (1) the weight of 
each of three components for each measure, i.e., 
confidence (c), support (s), and the probability of 
result P(B); and (2) the characteristics of the data, 
which we explained by the designed models, 
balanced vs unbalanced. 
Even though we did not find one measure that 
always performs the best, we learned that measures 
in group 1 and measures in group 2 perform well 
with different scenarios. Measures in group 1 
perform the best with scenario 2, whereas measures 
in group 2 perform the best with scenarios 1, 3, and 
4. In practice, when the characteristics of the 
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datasets are unknown, we recommend using two 
measures: confidence (as the representative of 
measures from group 1) and lift (as the 
representative of measures from group 2) to find 
the prediction models, as either one will capture the 
predictive model the best in any scenario.  
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