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Abstract 
The usage of GPUs (Graphics Processing Units) in graphics is 

essential due to their parallel feature to perform operations. In 

this work we implement a particle simulation program using 

shading languages to improve the interaction among particles. 

We implement a parallel algorithm to detect collisions among 

animated particles. Particles are stored in a linear buffer with 

several threads using the Compute Shader (CS). To parallelize 

the process data are arranged in workgroups with specified size, 

which represent the threads. We compare the performance of the 

algorithm implemented in shading languages against the 

sequential version. We also demonstrate how programmable 

GPUs are a powerful tool to display large point datasets 

(particles) at interactive frame rate. We research the possibilities 

that GPUs and shading languages offer for rendering particles 

and the improvements in speed and quality using instance 

rendering. 
 

Keywords: Particle Simulation, Parallel Programming, GPU 

rendering. 

1. Introduction 

Particles are utilized in computer graphics to simulate 

fluids, smoke, fire, etc. Scientists usually need huge 

datasets of point data to understand the behavior of 

phenomena. Nevertheless, the computational cost of 

visualizing such huge datasets is high and scientists have to 

work with samples or fragments of the datasets. There are 

hundreds of implementations of particle systems for 

interactive applications and kinematics visual effects 

systems, but most implementation details are unpublished. 

 

Particle-based datasets are usually generated by numeric 

simulations, like molecular dynamics, and in everyday 

scenarios they often consist of up to several million 

particles and several thousand of time steps. Although such 

datasets do not necessarily exceed the resources of single 

PCs, many existing tools are hardly able to cope with data 

of such size interactively. 

 

In a particle system each point is given as a set of 

properties, which influences the particles behavior in space 

and time. In point-based systems however the points are 

just a representation of characteristics of the data, without 

carrying any specific information. Particle systems 

iteratively execute two stages. First, it executes the 

simulation stage, updating the particles properties. The 

second stage is the rendering stage, which allows different 

types of visualizations. 

 

Point data’s main characteristic is usually its position in 

space. In addition to this, point data can have more 

additional attributes which can be shown in visual terms 

such as size, color, direction or shape. Therefore, point 

data needs to be represented visually by geometrical 

shapes. The animation process (first stage) in computer 

graphics involves motion, collision detection and collision 

response among the objects. In our simulation the objects 

are the particles and we implement the motion and 

collision detection algorithms in GPUs. 

 

The parallelization of algorithms is a common technique to 

speed up procedures. There is a variety of techniques to 

parallelize a sequential process, using CPUs, GPUs, or any 

other architecture. In this work we implement a simulation 

of particles using GPUs, focusing on the arrangements of 

threads by varying the number of workgroups and the size 

of the workgroups in the GPU. 

 

Our system includes a GPU-accelerated Eulerian solver 

that is suited for real-time use because it is unconditionally 

stable, takes constant calculation time per frame, and 

provides good visual fidelity. We develop an algorithmic 

framework that will allow adapting as the throughput of 

consumer parallel processors increases, in particular the 

threads allowed. Specifically, we investigate the 

performance of the program by using a linear arrangement 

to store the particles in the memory of the GPU. 

 

A particle is represented by a sphere and contains a 

velocity and a position in the scene. By using the Euler 

numerical method we can move thousands of spheres in 

parallel. In the collision detection process, using a brute 

force method, a sphere requires to be tested against all the 

other particles, giving a square complexity time. By using 

the parallelism we reduce the time in depth. Our approach 

basically arranges the particles in different arrays of 

threads using the CS. A linear arrangement requires a 

double cycle for the overlapping test while a squared array 
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requires a single cycle. The final goal of this paper is to 

show how utilizing the GPU via shader programming can 

improve performance over sequential techniques. 

 

Our paper is structured as follows: First, we review 

previous work that is related to ours. We then describe the 

process of the proposed previewing system (Section 3). 

Here we introduce the system’s functionality of the parallel 

method and how this is achieved. In Section 4, the 

collision detection shader is described, there are two types: 

sphere-sphere and sphere-plane. The second shader is 

explained in Section 5, the instance rendering technique. 

Finally, we analyze the processing and rendering 

performance of our system in Section 6. 

2. Previous Work 

Particle-based techniques are used in many applications, 

from interactive simulation of fluids and smoke for games 

to astrophysics simulations and molecular dynamics. 

Recent research has also applied particle methods to soft 

body and cloth simulation, and there is some hope that one 

day these techniques will allow an efficient unification of 

rigid, soft body and fluid simulations where everything can 

interact with everything else seamlessly. There are two 

basic types of simulation – Eulerian (grid-based) methods, 

which calculate the properties of the simulation at a set of 

fixed points in space, and Lagrangian (particle) methods, 

which calculate the properties of a set of particles as they 

move through space. 

 

There has been increasing work towards unified simulation 

models recently, and point-based methods are well suited 

to the problem. Müller et al. [1] use a point based 

representation to model elastic and plastic solids that can 

topologically deform. Solenthaler et al. [2] described a 

method for simulating fluids and solids based on smoothed 

particle hydrodynamics (SPH). Becker et al. [3] improve 

the rotational invariance of their method using a co-rotated 

deformation model based on SPH. Martin et al. [4] address 

issues with degenerate particle configurations using 

elastons which provide a more accurate measure of local 

deformation. 

 

By moving all data-intensive computation onto the data-

parallel processor, the GPU, we achieve results that will 

scale nearly linearly with the number of GPU processing 

cores.  The system presented in [5] includes a GPU 

accelerated Eulerian fluid solver that is suited for real-time 

use because it is unconditionally stable, takes constant 

calculation time per frame, and provides good visual 

fidelity. The Navier-Stokes solver, uses numerical methods 

that have guaranteed stability and constant per-frame 

computation time, but are accurate enough to capture 

visually important flow features. Akinci et al. [6] propose a 

momentum-conserving two-way coupling method of SPH 

fluids and arbitrary rigid objects based on hydrodynamic 

forces. 

 

Granular materials exhibit a large range of interesting 

macroscopic phenomena, including piling, flow or fracture. 

Effects such as piling may be well described using large 

amounts of small rigid bodies, with inter-body frictional 

contact governing the geometry of piles. Flow, on the other 

hand, may be well described by incompressible fluid 

models [7]. The simulation of granular materials has a 

large impact in the engineering field, for the analysis of 

terrains and avalanches, and also in the animation industry 

[8, 15]. 

 

Spatial hashing is utilized in [9]. For a used cell without 

hash collisions, all particles are in the same spatial cell 

and, hence, the potential neighbors are the same. Particle 

System Interface is a piece of software designed to perform 

common tasks related to particle systems for clients, while 

providing them with a set of parameters whose values can 

be adjusted to create different particle systems [10]. In [11] 

authors describe how to efficiently implement a particle 

system in CUDA, including interactions between particles 

using a uniform grid data structure. 

 

Multigrid methods are inherently more parallel, Macklin 

[12] used a hash-grid for particle neighbor finding. A full 

discussion of grid-based methods is, however, beyond the 

scope of this paper. By moving all data-intensive 

computation onto the data-parallel processor, the GPU, we 

achieve results that will scale nearly linearly with the 

number of GPU processing cores. 

3. Algorithm Outline 

Particles are attractive for their simplicity and ease of 

implementation, while being flexible enough to represent 

the range of objects we wish to simulate. This section 

describes how to implement a simple particle system in 

OpenGL, including particle collisions using a linear data 

structure. There are three main steps to implement the first 

stage of a particle system: 

1. Integration (motion) 

2. Building the data structure 

3. Processing collisions 

 

We assume having np particles which are placed above the 

ground; then particles start falling down. The solver 

calculates the new position and updates the velocity 

according to equation (1). This new velocity causes the 
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particle to continue traveling downwards and collides with 

the ground. The collision response calculates the corrected 

position to make the particle travel upwards. The first 

collision occurs with the plane, so that a collision response 

is performed. Particles can be represented with points, but 

spheres are the most natural representation of atoms, 

particles and other data sample, which means a greater 

acceptance and understanding in scientific research. The 

fact that it is rotationally invariant is most useful. 

 
(a) 

 

 

 
(b) 

 
 Figure 1.  The two collision detection cases, (a) sphere-sphere and (b) 

sphere-plane. 

3.1 Motion 

Particle’s motion can be simulated by using Euler 

numerical calculation. To animate the particles, we'll use 

the standard kinematics equation for objects under constant 

acceleration [13]. 
 

 

(1) 

 

The above equation describes the position of a particle at 

time t. P0 is the initial position, v0 is the initial velocity, 

and a is the acceleration. The integration step is the 

simplest step. It integrates the particle attributes (position 

and velocity) to move the particles through space. We use 

Euler integration for simplicity; the velocity is updated 

based on applied forces and gravity, and then the position 

is updated based on the velocity. We'll update the particle 

positions incrementally, solving the equations of motion 

based on the forces involved at the time each frame is 

rendered. A common technique is to make use of the Euler 

method, which approximates the position and velocity at 

time t based on the position, velocity, and acceleration at 

an earlier time. 

 

The Euler method is actually numerically integrating the 

Newtonian equation of motion. This is one of the simplest 

techniques for doing so. However, it is a first-order 

technique, which means that it can introduce a significant 

amount of error. More accurate techniques include Verlet 

integration, and Runge Kutta integration. As our particle 

simulation is designed to look good and physical accuracy 

is not of high importance, the Euler method should suffice. 

3.2 Collision 

Collisions considered in the simulation are sphere-plane 

and sphere-sphere. A sphere i is represented as Si(Ci, ri), 

where Ci is the center and ri the radius. The ground of the 

scene is represented by a plane XZ with a normal vector 

<0,1,0>, having y=h (value in the Y-axis). Thus, Si 

collides with the plane, if  Ci.x = h. A collision between 

spheres Si and Sj occurs if equation (2) is true. This 

inequality verifies the squared distance between two 

spheres, using the 3-vector Euclidean norm, || . ||2, and 

requires 11 basic operations. 

 

 
(2) 

 

This way, the sequential process is formed by the motion, 

the sphere-plane collision detection, and the sphere-sphere 

collision detection procedures. These procedures are called 

in every frame, so that particles change their position very 

often. We also include a collision response when a sphere-

plane collision happens, where spheres change their 

velocity vector in a contrary direction to simulate the 

bouncing. Thus, a particle requires two vectors for position 

and velocity, 32-bit and 64-bit IEEE 754 binary floating-

point format per float (32x6=192 bits minimum, and 

64x6=384 maximum). Code 1 shows the routine to move 

particles in the scene with the sequential version. 

 

 

Code 1.  The loop cycle for the motion and the sphere-plane collision 

detection particles simulation. 

The loop cycle is performed for each sphere. In lines 3 and 

4, the Euler motion integration is calculated according to 

equation (1). Then, the sphere plane collision detection is 

tested in line 5. If this condition is true, the collision 

response is called with the function BouncePlane (line 6), 

which change the velocity vector of the sphere to the 

opposite direction. Sphere plane collision detection 

(IsInPlane) and Sphere collision response (BouncePlane) 

takes one operation so that they can be considered in the 

loop cycle. Therefore, the loop cycle takes O(np) time. 
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Collision between spheres requires a double loop cycle to 

test Si again Sj. The routine is called in line 2 of Code 2 by 

using equation (2). This process takes O(np
2
) time. Figure 

2 illustrates the diagram of the particle simulation 

procedures. 

 

 

Code 2.  The sphere-sphere collision detection. 

  

Figure 2.  The simulation particle’s schematic overview. 

4. The First Shader: The Parallel Version 

In this section, the implementation in GPU is described. 
By constructing all objects from particles, we significantly 

reduce the number of collision types we need to process, 

and avoid complex algorithms for generating contacts 

between mesh based representations. 

The compute processor (CS) is a programmable unit that 

operates independently from the other shader processors. It 

is not part of the graphics pipeline and its visible side 

effects are through changes to images, storage buffers, and 

atomic counters. A compute shader operates on a group of 

work items called a work group. A work group is a 

collection of shader invocations that execute the same code, 

potentially in parallel. An invocation within a work group 

may share data with other members of the same work 

group through shared variables and issue memory and 

control barriers to synchronize with other members of the 

same work group. 

Our particle system is optimized for GPU implementation 

so that all particles may be processed in parallel, with no 

global communication. Since particles are now 

independent, the particle simulation loop can be performed 

in parallel. The particle positions and velocities are both 

stored in a float4 array data type as shown in Code 3. The 

positions are actually allocated in an OpenGL vertex buffer 

object (VBO) so that they can be rendered from GPU 

directly. The use of shared memory means that this method 

does not become bound by memory bandwidth. We 

employed three buffers, position, velocity, and colors. We 

use the CS to parallelize the algorithm due to its simplicity 

to work with graphics in OpenGL. To implemented Code 1 

in parallel, we required to arrange the particles in an array, 

where a thread is responsible to compute the motion and 

collision of each particle. Different kinds of arrays are 

available in GLSL (1-array, 2-array, 3-array) to store the 

data in the GPU memory.  

 

 

Code 3.  The particle data structure is formed by three attributes: 

position, velocity, color vector. 

There exist some global variables to inform about the 

threads arrangement. Let be i the ith element of group k, 

we have the following variables: 

gl_GlobalInvocationID.x is the global index of the thread 

nk+i 

gl_LocalInvocationID.x is the local index of the thread i 

gl_WorkGroupID.x is the local index of the thread k 

 

A layout statement declares the work group size to be n × 

1 × 1. The code defines gravity (G) and the time step (DT). 

G is a vec3 (3D vector) so that it can be used in a single 

line of code to produce the particle’s next position. The 

code runs once for each particle. The variable gid is the 

global ID, that is, the particle’s number in the entire list of 

particles. gid indexes into the array of structures. Our 

approach begins with an unordered set of particle positions. 

Additional attributes can be associated to each particle, 

such as a color index, a velocity index, a size indicator, or 

any other classifier resulting from the application that 

generates the particles. The threads arrangement is shown 

in Figure 3. 

 

Figure 3.  Spheres are arranged  in m threads, and threads are joined in 

workgroups of size n. 

We employed m groups of size n each, having mn particles 

distributed in a 1-array. A thread works on each particle, 
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so that operations are performed in parallel for each 

particle. 

 

At the start, particles are placed on the top, above the 

ground so that they are falling down. The problem arises 

when particles collide with the ground, and a collision 

response must be activated. Since the ground is 

represented by a plane, it is outside of the threads 

arrangement. The code equals to the lines 5-7 of Code 1 of 

the sequential version. Interaction between particles is 

required to detect collisions. The position of sphere i is 

needed to compute the collision of a pair of spheres using 

equation (2). Memory shared (Code 4) is allowed for the 

elements of a group, so that collision among spheres can 

be performed in the particles of the same group. A group 

can be stored in an array in parallel, so that each group has 

their own array called sphereGroup as illustrated in Figure 

4. 
  

sphereGroup[lid] = Positions[gid].xyz 
memorybarrierShared() 

Code 4.  A temporal array, sphereGroup[ ], is utilized in the shared 

memory to store the elements of the same workgroup. 

 

Figure 4. Elements of a workgroup are stored in a temporal array with 

shared memory. 

Then, we can use a loop cycle to access each element of 

sphereGroup[ ] to interact with each particle. The problem 

with this case is that there is not interaction between 

particles of different groups. 

 

To calculate the collision between spheres of different 

groups, a double loop is required (Code 5). The first loop 

specifies the group which will be copied to the shared 

memory. In the first iteration, particles of group i=0 will 

be compared with the particles of all the groups. To make 

this comparison, a nested loop is required. When j=0, the 

first element of each group is compared with all the 

elements of group i=0, in parallel. In the next iteration, 

when j=1, the second element of each group is compared 

with all the elements of group i=0, in parallel. And this 

procedure continues until j=n-1, when the last element of 

each group is compared with all the elements of group i=0, 

in parallel. This process is illustrated in Figure 5. 

 

 

Figure 5.  Interaction among all the particles with the particles of the first 

workgroup. 

Thus, the same process is repeated for each group, that is, 

for i=0 to m-1. The time complexity O((m-1)n) is 

compared against the sequential version O(np np), reducing 

dramatically due to m and n are much less than np. This is 

supported with several trials in the Experiments Section. 

 

 

Code 5.  A double loop cycle is required for the particles interaction. 

As we observed, we only have to store in shared memory 

one group. The VBO colouring serves to specify the color 

of each sphere. As this is a vector of 4 floats, the first 3 

values serve to specify the color of the sphere and the 

fourth value to indicate if a collision with another sphere 

takes place. 

5. The Second Shader: Instance Rendering 

The direct use of GPU shaders for certain rendering 

techniques allow programmers to maximize the size of the 

datasets that their graphic applications can handle. 

Rendering data at interactive speed requires a considerable 
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amount of computational power. Consumer graphics 

hardware nowadays delivers this power through modern 

graphics processing units. Data can be bound to OpenGL 

vertex buffer objects for rendering, which allows us to 

keep all particle data on the GPU without any transfers 

across the PCI-express bus. Having thousands of particles 

can reduce the frame rate due to the operations performed. 

There are different methods to render particles: single 

points, quadratic shaped spheres, and polygonal shaped 

spheres. 

 

By using an uploaded buffer containing per-instance data, 

each instance can then be transformed to its correct 

location on the GPU. Typical applications that can benefit 

from hardware instancing include rendering of crowds and 

vegetation, which usually require a large number of 

instances at the same time as there exists much repetition. 

 

We can display particles as spheres using the 

glutSolidSphere function from the glut library or 

displaying the sphere mesh (Code 6), using CPU. 

 

 

Code 6.  Displaying spheres with glutSolidSphere. 

Particle-based rendering is originally based on graphical 

point primitives (i. e. GL_POINT in OpenGL). This 

approach scales very well for very large numbers of 

particles, but is usually restricted to simple particle types 

like point sprites. For increased particle complexity or 

arrays of mesh instances there are several instancing 

techniques available [14]. They usually employ VBOs, 

hardware-supported instancing, or programmable geometry 

shaders. 

 

For each particle type, the corresponding VBOs (vertices 

and normal vectors) are activated. To instantiate the 

particle the VBOs are drawn once (One call of 

glDrawArrays per particle). The transformation from 

particle-space into object space can be implemented either 

by using the built-in model view matrix, or by using a 

simple shading program, which results in better 

performance due to fewer state changes. Because of the 

high number of OpenGL function calls, this rendering 

approach has the highest CPU load. Particles can be 

represented with points as illustrated in Code 7. 

 

The high number of function calls of the simple VBO-

based rendering, which result in high CPU load, can be 

reduced using hardware-supported instancing. The 

hardware instancing rendering method, which follows an 

idea similar to the VBO-based rendering, trades the high 

CPU load for the additional overhead of requiring the 

upload of the particle data to the graphics memory as 

textures. 

 

 

Code 7.  Displaying spheres with glDrawArrays, using points. 

We can visualize polyhedral (or mesh) shaped particles 

rather than quadratic surface based sphere. Rendering 

arbitrary polyhedral shapes is traditionally achieved by 

means of a polygon mesh. On the one hand, a data set of   

1 000 000 particles easily requires up to (NumPolygons x 

1 000 000) triangles to be rendered. Code 8 demonstrates 

the instructions to display the polygons of the sphere mesh. 

This fact can be exploited to optimize the rendering 

performance, allowing for interactive visualization of data 

sets with up to several millions of particles. 

 

 

Code 8.  Displaying spheres with GL_TRIANGLES. 

To overcome this drawback, we proceed to construct a 

shader with instance rendering. This consists on declaring 

an object, and display in GPU several instances of the 

same object varying some of its properties: color, position, 

etc. So we have a scene where we are drawing a lot of 

models where most of these models contain the same set of 

vertex data, but with different world transformations.  

 

When drawing many instances of a model like this we 

quickly reach a performance bottleneck because of the 

many drawing calls. Compared to rendering the actual 

vertices, telling the GPU to render the vertex data with 

functions like glDrawArrays or glDrawElements eats up 

quite some performance since OpenGL must make 

necessary preparations before it can draw your vertex data 

(like telling the GPU which buffer to read data from, where 

to find vertex attributes and all this over the relatively slow 

CPU to GPU bus). So even though rendering your vertices 

is fast, giving your GPU the commands to render them isn't. 

It would be much more convenient if we could send some 
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data over to the GPU once and then tell OpenGL to draw 

multiple objects with a single drawing call using this data.  

 

Instancing is a technique where we draw many objects at 

once with a single render call, saving us all the CPU  

GPU communications each time we need to render an 

object; this only has to be done once. To render using 

instancing all we need to do is change the render calls 

glDrawArrays and glDrawElements to 

glDrawArraysInstanced and 

glDrawElementsInstanced respectively.  

 

These instanced versions of the classic rendering functions 

take an extra parameter called the instance count that sets 

the number of instances we want to render. We thus sent 

all the required data to the GPU only once, and then tell 

the GPU how it should draw all these instances with a 

single call. The GPU then renders all these instances 

without having to continually communicate with the CPU. 

 

We use a built-in shader variable called gl_InstanceID 

which, not suprisingly, tells us the current instance index. 

We can use this index to locate instance specific data in 

uniform variable arrays. When object is loaded, vertex[ ] 

and polygons[ ] are stored. For instance rendering we 

declare three VBOs, the offset, the color, and the normal 

vectors for each instance. A shader is created, values for 

each instance is sent from CPU to GPU. Additionally, we 

utilize some matrices for the affine transformations: Model, 

View, projection matrices, as shown in Code 9. 

 

 

Code 9.  The shader program with instance rendering. 

Having an object represented with a polygonal mesh, we 

can define its position as the center of all the polygons: . 

The instances to be rendered, 0, 1, … have several 

values: position, color, normal vector, etc. i.pos , i.color, 

i.normal. The position is calculated with a displacement 

of the ’s position, color and normal vectors are calculated 

for each object. The number of instances must be defined. 

In the case we employ another object different than a 

sphere, we should change the collision detection routine. 

Line 15 of Code 9 shows the instruction to particle 

position while line 26 calculates the color to be sent to the 

fragment shader. The other instructions are related to the 

lighting process. 

6. Experiments 

To evaluate our algorithm we implement it on an NVidia 

GeForce 590 GTX using GLSL and CUDA. We tested the 

code varying the number of particles (depending on the 

type of particle: point, quadratic surface, mesh object), 

using different work group sizes. The GeForce GTX 

400/500 family of GPUs is based on NVIDIA’s Fermi 

architecture. It has 1024 CUDA cores and 1.5 GB per 

GPU (it has two of them), with 327.7 GB/sec of memory 

bandwidth. We tested the time of the two shaders, the 

Compute Shader (CS), and the instance rendering (IRS). 

For the CS, we tested the number of colliding spheres, the 

time required to test both the sphere-sphere collision 

detection, and the sphere-plane collision detection. For the 

IRS, we test the time required and its comparison with the 

sequential version displaying routines. 

 

We prepared two animations, according to their start 

position and velocity. The first animation considers a 

random start position and velocity, while the second 

animation aligns the particles by workgroups. In the first 

position we set the velocity to <0,random,0> for each 

particle, indicating that they are moving vertically only; 

this is to obtain more interaction among particles and 

therefore more collisions. The number of spheres utilized 

is increasing by 2
k
, starting with 2

6
 = 64, until 2

14
 = 16,384 

spheres.  

 

We begin with the first animation. Starting with the sphere-

sphere collision detection, the time obtained in the 

sequential version is 0 ms for 64 to 256 spheres, obtaining 

a varied number of colliding spheres 0-4, 7-15, and 20-40 

for 64, 129, and 256 spheres respectively. The time in the 

parallel version does not vary (16 ms), with 0-4, 6-20, and 

15-48 colliding spheres. As we observed, the number of 

colliding spheres is similar in both versions, but the 

sequential version is faster due to the parallelism is not 

well exploited with a few number of spheres. 

 

With 512 spheres, the time utilized for both versions is the 

same, 16 ms. The size of the interval of the number of 
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colliding spheres is similar for both versions: the parallel 

version [93 ms-139 ms] and the sequential version [100 

ms-159 ms]. From 1,024 spheres, the sequential version 

takes much more time than the parallel version (16 ms). 

We require 23 ms, 87 ms, 340 ms, 1390 ms, and 5560 ms 

for 1020, 2048, 4096, 8192, and 16,384 spheres 

respectively. The parallelism starts making its job. The 

other type of collision, sphere-plane, takes 0 ms in the 

parallel version, while in the sequential version takes 0 ms 

with less than 512 spheres, 2 ms with 1024 spheres, 3 ms 

with 2048 spheres, 7 ms with 8,192 spheres and 13 ms 

with 16,384 ms. 

 

In the rendering process, we measure the number of frames 

per second, and the type of object’s display (mesh triangles, 

glutSolidSphere function). The fps in the parallel version 

does not vary, 60 fps, using the second shader, IRS. In the 

sequential version we have 60 fps for less than 512 spheres, 

36 fps for 1024 spheres, 12 fps for 2018 spheres, and 4 fps 

for more than 4,046 spheres. Objects can be rendered in 

the CPU by using the mesh object or the glutSolidSphere 

function, while in the GPU we use the IRS with 0 ms time. 

The rendering pass in the CPU takes 1 ms for 128 spheres, 

2 ms for 256 spheres, 3 ms for 512 spheres, 8 ms for 1024 

spheres, 15 ms for 2048 spheres, 32 ms for 4096 spheres, 

60 ms for 8192 spheres, and 120 ms for 16,384 spheres. 

The rendering step is faster using the object mesh than 

using the glutSolidSphere. It takes too much time to follow 

the animation of the sequential version, however we can 

continue the simulation of the parallel version up to 

256x128=32,768 spheres: the time increases the double 

(47 ms) and the number of collisions is 32,000. 

 

In the second animation, spheres are aligned by workgroup, 

the times are similar. We can have m workgroups of size n. 

With 128 spheres we can have two arrangements: 8x16, 

16x8. The following arrangements can be used for the 

indicated number of spheres: 128 spheres (8x16, 16x8), 

256 spheres (8x32, 16x16, 32x8), 512 spheres (8x64, 

16x32, 64x 8). The number of collisions can vary in every 

arrangement, but the difference is minimum. 

 

In Table 1, the times of the simulation are shown.  The 

number of frames per second is described in the second 

column, while the rendering time is shown in the third and 

fourth columns. Column five shows the time taken of the 

collision detection between the sphere and the plane in the 

sequential version. The last two columns write the time of 

the collision detection between the pairs of spheres of the 

sequential and the parallel versions respectively. 

 
 

 

 

 

Table 1. Times tested for the two versions of the sphere collision 

detection. 

 

 
 

Figure 5 illustrates the time in milliseconds of the two 

operations: arithmetic and rendering. 

 

  
(a)                                             (b) 

Figure 5. (a) Time in milliseconds of the sphere-sphere collision 

detection and (b) the rendering process, for both, the sequential and the 

parallel versions. 

 

 
 

(a)                             (b) 

Figure 6. The two particle simulations: (a) with a random starting 

position, and (b) spheres group aligned. 

7. Conclusion 

We have implemented two GLSL shaders on an NVIDIA 

GTX590 GPU. Arithmetic and rendering operations were 

analyzed to improve in depth the time efficiency of their 

correspondent sequential versions. In the arithmetic 

operation, collision detection, we discover that the time 

taken in the parallel implementation is the same for 16,000 

particles or less, independently of the arrangement used. 

On the other hand, the rendering animation time was 

reduced by using the rendering instance, where we 

obtained less than 1 ms for 16,000 particles or less. The 

rendering process was performed for an object mesh 

(sphere) of 240 vertices and 80 polygons. Our method can 

be applied to other kind of mesh objects, by using the 

correspondent collision detection operation. 

 

As a further work, grid methods can be compared with the 
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linear arrangement to pursuit an enhancement in the 

efficiency. Also, the use of spatial partitioning could be 

implemented in order to reduce the number of collision 

tests. The CUDA implementation would be useful to 

compare with our method. 
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