

Particle Simulation with GPUs Shading Languages

Francisco A. Madera1, Francisco Moo-Mena2, Enrique Ayala3, Luis F. Curi4

 1,2,3,4 Facultad de Matemáticas, Universidad Autónoma de Yucatán

Mérida, Yucatán 97110, México

Abstract
The usage of GPUs (Graphics Processing Units) in graphics is

essential due to their parallel feature to perform operations. In

this work we implement a particle simulation program using

shading languages to improve the interaction among particles.

We implement a parallel algorithm to detect collisions among

animated particles. Particles are stored in a linear buffer with

several threads using the Compute Shader (CS). To parallelize

the process data are arranged in workgroups with specified size,

which represent the threads. We compare the performance of the

algorithm implemented in shading languages against the

sequential version. We also demonstrate how programmable

GPUs are a powerful tool to display large point datasets

(particles) at interactive frame rate. We research the possibilities

that GPUs and shading languages offer for rendering particles

and the improvements in speed and quality using instance

rendering.

Keywords: Particle Simulation, Parallel Programming, GPU

rendering.

1. Introduction

Particles are utilized in computer graphics to simulate

fluids, smoke, fire, etc. Scientists usually need huge

datasets of point data to understand the behavior of

phenomena. Nevertheless, the computational cost of

visualizing such huge datasets is high and scientists have to

work with samples or fragments of the datasets. There are

hundreds of implementations of particle systems for

interactive applications and kinematics visual effects

systems, but most implementation details are unpublished.

Particle-based datasets are usually generated by numeric

simulations, like molecular dynamics, and in everyday

scenarios they often consist of up to several million

particles and several thousand of time steps. Although such

datasets do not necessarily exceed the resources of single

PCs, many existing tools are hardly able to cope with data

of such size interactively.

In a particle system each point is given as a set of

properties, which influences the particles behavior in space

and time. In point-based systems however the points are

just a representation of characteristics of the data, without

carrying any specific information. Particle systems

iteratively execute two stages. First, it executes the

simulation stage, updating the particles properties. The

second stage is the rendering stage, which allows different

types of visualizations.

Point data’s main characteristic is usually its position in

space. In addition to this, point data can have more

additional attributes which can be shown in visual terms

such as size, color, direction or shape. Therefore, point

data needs to be represented visually by geometrical

shapes. The animation process (first stage) in computer

graphics involves motion, collision detection and collision

response among the objects. In our simulation the objects

are the particles and we implement the motion and

collision detection algorithms in GPUs.

The parallelization of algorithms is a common technique to

speed up procedures. There is a variety of techniques to

parallelize a sequential process, using CPUs, GPUs, or any

other architecture. In this work we implement a simulation

of particles using GPUs, focusing on the arrangements of

threads by varying the number of workgroups and the size

of the workgroups in the GPU.

Our system includes a GPU-accelerated Eulerian solver

that is suited for real-time use because it is unconditionally

stable, takes constant calculation time per frame, and

provides good visual fidelity. We develop an algorithmic

framework that will allow adapting as the throughput of

consumer parallel processors increases, in particular the

threads allowed. Specifically, we investigate the

performance of the program by using a linear arrangement

to store the particles in the memory of the GPU.

A particle is represented by a sphere and contains a

velocity and a position in the scene. By using the Euler

numerical method we can move thousands of spheres in

parallel. In the collision detection process, using a brute

force method, a sphere requires to be tested against all the

other particles, giving a square complexity time. By using

the parallelism we reduce the time in depth. Our approach

basically arranges the particles in different arrays of

threads using the CS. A linear arrangement requires a

double cycle for the overlapping test while a squared array

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 184

2015 International Journal of Computer Science Issues

requires a single cycle. The final goal of this paper is to

show how utilizing the GPU via shader programming can

improve performance over sequential techniques.

Our paper is structured as follows: First, we review

previous work that is related to ours. We then describe the

process of the proposed previewing system (Section 3).

Here we introduce the system’s functionality of the parallel

method and how this is achieved. In Section 4, the

collision detection shader is described, there are two types:

sphere-sphere and sphere-plane. The second shader is

explained in Section 5, the instance rendering technique.

Finally, we analyze the processing and rendering

performance of our system in Section 6.

2. Previous Work

Particle-based techniques are used in many applications,

from interactive simulation of fluids and smoke for games

to astrophysics simulations and molecular dynamics.

Recent research has also applied particle methods to soft

body and cloth simulation, and there is some hope that one

day these techniques will allow an efficient unification of

rigid, soft body and fluid simulations where everything can

interact with everything else seamlessly. There are two

basic types of simulation – Eulerian (grid-based) methods,

which calculate the properties of the simulation at a set of

fixed points in space, and Lagrangian (particle) methods,

which calculate the properties of a set of particles as they

move through space.

There has been increasing work towards unified simulation

models recently, and point-based methods are well suited

to the problem. Müller et al. [1] use a point based

representation to model elastic and plastic solids that can

topologically deform. Solenthaler et al. [2] described a

method for simulating fluids and solids based on smoothed

particle hydrodynamics (SPH). Becker et al. [3] improve

the rotational invariance of their method using a co-rotated

deformation model based on SPH. Martin et al. [4] address

issues with degenerate particle configurations using

elastons which provide a more accurate measure of local

deformation.

By moving all data-intensive computation onto the data-

parallel processor, the GPU, we achieve results that will

scale nearly linearly with the number of GPU processing

cores. The system presented in [5] includes a GPU

accelerated Eulerian fluid solver that is suited for real-time

use because it is unconditionally stable, takes constant

calculation time per frame, and provides good visual

fidelity. The Navier-Stokes solver, uses numerical methods

that have guaranteed stability and constant per-frame

computation time, but are accurate enough to capture

visually important flow features. Akinci et al. [6] propose a

momentum-conserving two-way coupling method of SPH

fluids and arbitrary rigid objects based on hydrodynamic

forces.

Granular materials exhibit a large range of interesting

macroscopic phenomena, including piling, flow or fracture.

Effects such as piling may be well described using large

amounts of small rigid bodies, with inter-body frictional

contact governing the geometry of piles. Flow, on the other

hand, may be well described by incompressible fluid

models [7]. The simulation of granular materials has a

large impact in the engineering field, for the analysis of

terrains and avalanches, and also in the animation industry

[8, 15].

Spatial hashing is utilized in [9]. For a used cell without

hash collisions, all particles are in the same spatial cell

and, hence, the potential neighbors are the same. Particle

System Interface is a piece of software designed to perform

common tasks related to particle systems for clients, while

providing them with a set of parameters whose values can

be adjusted to create different particle systems [10]. In [11]

authors describe how to efficiently implement a particle

system in CUDA, including interactions between particles

using a uniform grid data structure.

Multigrid methods are inherently more parallel, Macklin

[12] used a hash-grid for particle neighbor finding. A full

discussion of grid-based methods is, however, beyond the

scope of this paper. By moving all data-intensive

computation onto the data-parallel processor, the GPU, we

achieve results that will scale nearly linearly with the

number of GPU processing cores.

3. Algorithm Outline

Particles are attractive for their simplicity and ease of

implementation, while being flexible enough to represent

the range of objects we wish to simulate. This section

describes how to implement a simple particle system in

OpenGL, including particle collisions using a linear data

structure. There are three main steps to implement the first

stage of a particle system:

1. Integration (motion)

2. Building the data structure

3. Processing collisions

We assume having np particles which are placed above the

ground; then particles start falling down. The solver

calculates the new position and updates the velocity

according to equation (1). This new velocity causes the

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 185

2015 International Journal of Computer Science Issues

particle to continue traveling downwards and collides with

the ground. The collision response calculates the corrected

position to make the particle travel upwards. The first

collision occurs with the plane, so that a collision response

is performed. Particles can be represented with points, but

spheres are the most natural representation of atoms,

particles and other data sample, which means a greater

acceptance and understanding in scientific research. The

fact that it is rotationally invariant is most useful.

(a)

(b)

 Figure 1. The two collision detection cases, (a) sphere-sphere and (b)

sphere-plane.

3.1 Motion

Particle’s motion can be simulated by using Euler

numerical calculation. To animate the particles, we'll use

the standard kinematics equation for objects under constant

acceleration [13].

(1)

The above equation describes the position of a particle at

time t. P0 is the initial position, v0 is the initial velocity,

and a is the acceleration. The integration step is the

simplest step. It integrates the particle attributes (position

and velocity) to move the particles through space. We use

Euler integration for simplicity; the velocity is updated

based on applied forces and gravity, and then the position

is updated based on the velocity. We'll update the particle

positions incrementally, solving the equations of motion

based on the forces involved at the time each frame is

rendered. A common technique is to make use of the Euler

method, which approximates the position and velocity at

time t based on the position, velocity, and acceleration at

an earlier time.

The Euler method is actually numerically integrating the

Newtonian equation of motion. This is one of the simplest

techniques for doing so. However, it is a first-order

technique, which means that it can introduce a significant

amount of error. More accurate techniques include Verlet

integration, and Runge Kutta integration. As our particle

simulation is designed to look good and physical accuracy

is not of high importance, the Euler method should suffice.

3.2 Collision

Collisions considered in the simulation are sphere-plane

and sphere-sphere. A sphere i is represented as Si(Ci, ri),

where Ci is the center and ri the radius. The ground of the

scene is represented by a plane XZ with a normal vector

<0,1,0>, having y=h (value in the Y-axis). Thus, Si

collides with the plane, if Ci.x = h. A collision between

spheres Si and Sj occurs if equation (2) is true. This

inequality verifies the squared distance between two

spheres, using the 3-vector Euclidean norm, || . ||2, and

requires 11 basic operations.

(2)

This way, the sequential process is formed by the motion,

the sphere-plane collision detection, and the sphere-sphere

collision detection procedures. These procedures are called

in every frame, so that particles change their position very

often. We also include a collision response when a sphere-

plane collision happens, where spheres change their

velocity vector in a contrary direction to simulate the

bouncing. Thus, a particle requires two vectors for position

and velocity, 32-bit and 64-bit IEEE 754 binary floating-

point format per float (32x6=192 bits minimum, and

64x6=384 maximum). Code 1 shows the routine to move

particles in the scene with the sequential version.

Code 1. The loop cycle for the motion and the sphere-plane collision

detection particles simulation.

The loop cycle is performed for each sphere. In lines 3 and

4, the Euler motion integration is calculated according to

equation (1). Then, the sphere plane collision detection is

tested in line 5. If this condition is true, the collision

response is called with the function BouncePlane (line 6),

which change the velocity vector of the sphere to the

opposite direction. Sphere plane collision detection

(IsInPlane) and Sphere collision response (BouncePlane)

takes one operation so that they can be considered in the

loop cycle. Therefore, the loop cycle takes O(np) time.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 186

2015 International Journal of Computer Science Issues

Collision between spheres requires a double loop cycle to

test Si again Sj. The routine is called in line 2 of Code 2 by

using equation (2). This process takes O(np
2
) time. Figure

2 illustrates the diagram of the particle simulation

procedures.

Code 2. The sphere-sphere collision detection.

Figure 2. The simulation particle’s schematic overview.

4. The First Shader: The Parallel Version

In this section, the implementation in GPU is described.
By constructing all objects from particles, we significantly

reduce the number of collision types we need to process,

and avoid complex algorithms for generating contacts

between mesh based representations.

The compute processor (CS) is a programmable unit that

operates independently from the other shader processors. It

is not part of the graphics pipeline and its visible side

effects are through changes to images, storage buffers, and

atomic counters. A compute shader operates on a group of

work items called a work group. A work group is a

collection of shader invocations that execute the same code,

potentially in parallel. An invocation within a work group

may share data with other members of the same work

group through shared variables and issue memory and

control barriers to synchronize with other members of the

same work group.

Our particle system is optimized for GPU implementation

so that all particles may be processed in parallel, with no

global communication. Since particles are now

independent, the particle simulation loop can be performed

in parallel. The particle positions and velocities are both

stored in a float4 array data type as shown in Code 3. The

positions are actually allocated in an OpenGL vertex buffer

object (VBO) so that they can be rendered from GPU

directly. The use of shared memory means that this method

does not become bound by memory bandwidth. We

employed three buffers, position, velocity, and colors. We

use the CS to parallelize the algorithm due to its simplicity

to work with graphics in OpenGL. To implemented Code 1

in parallel, we required to arrange the particles in an array,

where a thread is responsible to compute the motion and

collision of each particle. Different kinds of arrays are

available in GLSL (1-array, 2-array, 3-array) to store the

data in the GPU memory.

Code 3. The particle data structure is formed by three attributes:

position, velocity, color vector.

There exist some global variables to inform about the

threads arrangement. Let be i the ith element of group k,

we have the following variables:

gl_GlobalInvocationID.x is the global index of the thread

nk+i

gl_LocalInvocationID.x is the local index of the thread i

gl_WorkGroupID.x is the local index of the thread k

A layout statement declares the work group size to be n ×

1 × 1. The code defines gravity (G) and the time step (DT).

G is a vec3 (3D vector) so that it can be used in a single

line of code to produce the particle’s next position. The

code runs once for each particle. The variable gid is the

global ID, that is, the particle’s number in the entire list of

particles. gid indexes into the array of structures. Our

approach begins with an unordered set of particle positions.

Additional attributes can be associated to each particle,

such as a color index, a velocity index, a size indicator, or

any other classifier resulting from the application that

generates the particles. The threads arrangement is shown

in Figure 3.

Figure 3. Spheres are arranged in m threads, and threads are joined in

workgroups of size n.

We employed m groups of size n each, having mn particles

distributed in a 1-array. A thread works on each particle,

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 187

2015 International Journal of Computer Science Issues

so that operations are performed in parallel for each

particle.

At the start, particles are placed on the top, above the

ground so that they are falling down. The problem arises

when particles collide with the ground, and a collision

response must be activated. Since the ground is

represented by a plane, it is outside of the threads

arrangement. The code equals to the lines 5-7 of Code 1 of

the sequential version. Interaction between particles is

required to detect collisions. The position of sphere i is

needed to compute the collision of a pair of spheres using

equation (2). Memory shared (Code 4) is allowed for the

elements of a group, so that collision among spheres can

be performed in the particles of the same group. A group

can be stored in an array in parallel, so that each group has

their own array called sphereGroup as illustrated in Figure

4.

sphereGroup[lid] = Positions[gid].xyz
memorybarrierShared()

Code 4. A temporal array, sphereGroup[], is utilized in the shared

memory to store the elements of the same workgroup.

Figure 4. Elements of a workgroup are stored in a temporal array with

shared memory.

Then, we can use a loop cycle to access each element of

sphereGroup[] to interact with each particle. The problem

with this case is that there is not interaction between

particles of different groups.

To calculate the collision between spheres of different

groups, a double loop is required (Code 5). The first loop

specifies the group which will be copied to the shared

memory. In the first iteration, particles of group i=0 will

be compared with the particles of all the groups. To make

this comparison, a nested loop is required. When j=0, the

first element of each group is compared with all the

elements of group i=0, in parallel. In the next iteration,

when j=1, the second element of each group is compared

with all the elements of group i=0, in parallel. And this

procedure continues until j=n-1, when the last element of

each group is compared with all the elements of group i=0,

in parallel. This process is illustrated in Figure 5.

Figure 5. Interaction among all the particles with the particles of the first

workgroup.

Thus, the same process is repeated for each group, that is,

for i=0 to m-1. The time complexity O((m-1)n) is

compared against the sequential version O(np np), reducing

dramatically due to m and n are much less than np. This is

supported with several trials in the Experiments Section.

Code 5. A double loop cycle is required for the particles interaction.

As we observed, we only have to store in shared memory

one group. The VBO colouring serves to specify the color

of each sphere. As this is a vector of 4 floats, the first 3

values serve to specify the color of the sphere and the

fourth value to indicate if a collision with another sphere

takes place.

5. The Second Shader: Instance Rendering

The direct use of GPU shaders for certain rendering

techniques allow programmers to maximize the size of the

datasets that their graphic applications can handle.

Rendering data at interactive speed requires a considerable

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 188

2015 International Journal of Computer Science Issues

amount of computational power. Consumer graphics

hardware nowadays delivers this power through modern

graphics processing units. Data can be bound to OpenGL

vertex buffer objects for rendering, which allows us to

keep all particle data on the GPU without any transfers

across the PCI-express bus. Having thousands of particles

can reduce the frame rate due to the operations performed.

There are different methods to render particles: single

points, quadratic shaped spheres, and polygonal shaped

spheres.

By using an uploaded buffer containing per-instance data,

each instance can then be transformed to its correct

location on the GPU. Typical applications that can benefit

from hardware instancing include rendering of crowds and

vegetation, which usually require a large number of

instances at the same time as there exists much repetition.

We can display particles as spheres using the

glutSolidSphere function from the glut library or

displaying the sphere mesh (Code 6), using CPU.

Code 6. Displaying spheres with glutSolidSphere.

Particle-based rendering is originally based on graphical

point primitives (i. e. GL_POINT in OpenGL). This

approach scales very well for very large numbers of

particles, but is usually restricted to simple particle types

like point sprites. For increased particle complexity or

arrays of mesh instances there are several instancing

techniques available [14]. They usually employ VBOs,

hardware-supported instancing, or programmable geometry

shaders.

For each particle type, the corresponding VBOs (vertices

and normal vectors) are activated. To instantiate the

particle the VBOs are drawn once (One call of

glDrawArrays per particle). The transformation from

particle-space into object space can be implemented either

by using the built-in model view matrix, or by using a

simple shading program, which results in better

performance due to fewer state changes. Because of the

high number of OpenGL function calls, this rendering

approach has the highest CPU load. Particles can be

represented with points as illustrated in Code 7.

The high number of function calls of the simple VBO-

based rendering, which result in high CPU load, can be

reduced using hardware-supported instancing. The

hardware instancing rendering method, which follows an

idea similar to the VBO-based rendering, trades the high

CPU load for the additional overhead of requiring the

upload of the particle data to the graphics memory as

textures.

Code 7. Displaying spheres with glDrawArrays, using points.

We can visualize polyhedral (or mesh) shaped particles

rather than quadratic surface based sphere. Rendering

arbitrary polyhedral shapes is traditionally achieved by

means of a polygon mesh. On the one hand, a data set of

1 000 000 particles easily requires up to (NumPolygons x

1 000 000) triangles to be rendered. Code 8 demonstrates

the instructions to display the polygons of the sphere mesh.

This fact can be exploited to optimize the rendering

performance, allowing for interactive visualization of data

sets with up to several millions of particles.

Code 8. Displaying spheres with GL_TRIANGLES.

To overcome this drawback, we proceed to construct a

shader with instance rendering. This consists on declaring

an object, and display in GPU several instances of the

same object varying some of its properties: color, position,

etc. So we have a scene where we are drawing a lot of

models where most of these models contain the same set of

vertex data, but with different world transformations.

When drawing many instances of a model like this we

quickly reach a performance bottleneck because of the

many drawing calls. Compared to rendering the actual

vertices, telling the GPU to render the vertex data with

functions like glDrawArrays or glDrawElements eats up

quite some performance since OpenGL must make

necessary preparations before it can draw your vertex data

(like telling the GPU which buffer to read data from, where

to find vertex attributes and all this over the relatively slow

CPU to GPU bus). So even though rendering your vertices

is fast, giving your GPU the commands to render them isn't.

It would be much more convenient if we could send some

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 189

2015 International Journal of Computer Science Issues

data over to the GPU once and then tell OpenGL to draw

multiple objects with a single drawing call using this data.

Instancing is a technique where we draw many objects at

once with a single render call, saving us all the CPU 

GPU communications each time we need to render an

object; this only has to be done once. To render using

instancing all we need to do is change the render calls

glDrawArrays and glDrawElements to

glDrawArraysInstanced and

glDrawElementsInstanced respectively.

These instanced versions of the classic rendering functions

take an extra parameter called the instance count that sets

the number of instances we want to render. We thus sent

all the required data to the GPU only once, and then tell

the GPU how it should draw all these instances with a

single call. The GPU then renders all these instances

without having to continually communicate with the CPU.

We use a built-in shader variable called gl_InstanceID

which, not suprisingly, tells us the current instance index.

We can use this index to locate instance specific data in

uniform variable arrays. When object is loaded, vertex[]

and polygons[] are stored. For instance rendering we

declare three VBOs, the offset, the color, and the normal

vectors for each instance. A shader is created, values for

each instance is sent from CPU to GPU. Additionally, we

utilize some matrices for the affine transformations: Model,

View, projection matrices, as shown in Code 9.

Code 9. The shader program with instance rendering.

Having an object represented with a polygonal mesh, we

can define its position as the center of all the polygons: .

The instances to be rendered, 0, 1, … have several

values: position, color, normal vector, etc. i.pos , i.color,

i.normal. The position is calculated with a displacement

of the ’s position, color and normal vectors are calculated

for each object. The number of instances must be defined.

In the case we employ another object different than a

sphere, we should change the collision detection routine.

Line 15 of Code 9 shows the instruction to particle

position while line 26 calculates the color to be sent to the

fragment shader. The other instructions are related to the

lighting process.

6. Experiments

To evaluate our algorithm we implement it on an NVidia

GeForce 590 GTX using GLSL and CUDA. We tested the

code varying the number of particles (depending on the

type of particle: point, quadratic surface, mesh object),

using different work group sizes. The GeForce GTX

400/500 family of GPUs is based on NVIDIA’s Fermi

architecture. It has 1024 CUDA cores and 1.5 GB per

GPU (it has two of them), with 327.7 GB/sec of memory

bandwidth. We tested the time of the two shaders, the

Compute Shader (CS), and the instance rendering (IRS).

For the CS, we tested the number of colliding spheres, the

time required to test both the sphere-sphere collision

detection, and the sphere-plane collision detection. For the

IRS, we test the time required and its comparison with the

sequential version displaying routines.

We prepared two animations, according to their start

position and velocity. The first animation considers a

random start position and velocity, while the second

animation aligns the particles by workgroups. In the first

position we set the velocity to <0,random,0> for each

particle, indicating that they are moving vertically only;

this is to obtain more interaction among particles and

therefore more collisions. The number of spheres utilized

is increasing by 2
k
, starting with 2

6
 = 64, until 2

14
 = 16,384

spheres.

We begin with the first animation. Starting with the sphere-

sphere collision detection, the time obtained in the

sequential version is 0 ms for 64 to 256 spheres, obtaining

a varied number of colliding spheres 0-4, 7-15, and 20-40

for 64, 129, and 256 spheres respectively. The time in the

parallel version does not vary (16 ms), with 0-4, 6-20, and

15-48 colliding spheres. As we observed, the number of

colliding spheres is similar in both versions, but the

sequential version is faster due to the parallelism is not

well exploited with a few number of spheres.

With 512 spheres, the time utilized for both versions is the

same, 16 ms. The size of the interval of the number of

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 190

2015 International Journal of Computer Science Issues

colliding spheres is similar for both versions: the parallel

version [93 ms-139 ms] and the sequential version [100

ms-159 ms]. From 1,024 spheres, the sequential version

takes much more time than the parallel version (16 ms).

We require 23 ms, 87 ms, 340 ms, 1390 ms, and 5560 ms

for 1020, 2048, 4096, 8192, and 16,384 spheres

respectively. The parallelism starts making its job. The

other type of collision, sphere-plane, takes 0 ms in the

parallel version, while in the sequential version takes 0 ms

with less than 512 spheres, 2 ms with 1024 spheres, 3 ms

with 2048 spheres, 7 ms with 8,192 spheres and 13 ms

with 16,384 ms.

In the rendering process, we measure the number of frames

per second, and the type of object’s display (mesh triangles,

glutSolidSphere function). The fps in the parallel version

does not vary, 60 fps, using the second shader, IRS. In the

sequential version we have 60 fps for less than 512 spheres,

36 fps for 1024 spheres, 12 fps for 2018 spheres, and 4 fps

for more than 4,046 spheres. Objects can be rendered in

the CPU by using the mesh object or the glutSolidSphere

function, while in the GPU we use the IRS with 0 ms time.

The rendering pass in the CPU takes 1 ms for 128 spheres,

2 ms for 256 spheres, 3 ms for 512 spheres, 8 ms for 1024

spheres, 15 ms for 2048 spheres, 32 ms for 4096 spheres,

60 ms for 8192 spheres, and 120 ms for 16,384 spheres.

The rendering step is faster using the object mesh than

using the glutSolidSphere. It takes too much time to follow

the animation of the sequential version, however we can

continue the simulation of the parallel version up to

256x128=32,768 spheres: the time increases the double

(47 ms) and the number of collisions is 32,000.

In the second animation, spheres are aligned by workgroup,

the times are similar. We can have m workgroups of size n.

With 128 spheres we can have two arrangements: 8x16,

16x8. The following arrangements can be used for the

indicated number of spheres: 128 spheres (8x16, 16x8),

256 spheres (8x32, 16x16, 32x8), 512 spheres (8x64,

16x32, 64x 8). The number of collisions can vary in every

arrangement, but the difference is minimum.

In Table 1, the times of the simulation are shown. The

number of frames per second is described in the second

column, while the rendering time is shown in the third and

fourth columns. Column five shows the time taken of the

collision detection between the sphere and the plane in the

sequential version. The last two columns write the time of

the collision detection between the pairs of spheres of the

sequential and the parallel versions respectively.

Table 1. Times tested for the two versions of the sphere collision

detection.

Figure 5 illustrates the time in milliseconds of the two

operations: arithmetic and rendering.

(a) (b)

Figure 5. (a) Time in milliseconds of the sphere-sphere collision

detection and (b) the rendering process, for both, the sequential and the

parallel versions.

(a) (b)

Figure 6. The two particle simulations: (a) with a random starting

position, and (b) spheres group aligned.

7. Conclusion

We have implemented two GLSL shaders on an NVIDIA

GTX590 GPU. Arithmetic and rendering operations were

analyzed to improve in depth the time efficiency of their

correspondent sequential versions. In the arithmetic

operation, collision detection, we discover that the time

taken in the parallel implementation is the same for 16,000

particles or less, independently of the arrangement used.

On the other hand, the rendering animation time was

reduced by using the rendering instance, where we

obtained less than 1 ms for 16,000 particles or less. The

rendering process was performed for an object mesh

(sphere) of 240 vertices and 80 polygons. Our method can

be applied to other kind of mesh objects, by using the

correspondent collision detection operation.

As a further work, grid methods can be compared with the

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 191

2015 International Journal of Computer Science Issues

linear arrangement to pursuit an enhancement in the

efficiency. Also, the use of spatial partitioning could be

implemented in order to reduce the number of collision

tests. The CUDA implementation would be useful to

compare with our method.

Acknowledgments

We would like to thank to the Universidad Autónoma de

Yucatán and the CONACYT México for their financial

support.

References

[1] Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and

Alexa, M. 2004. Point based animation of elastic, plastic and

melting objects. In Proceedings of the 2004 ACM.

SIGGRAPH/Eurographics symposium on Computer

animation, Eurographics Association, 141–151.

[2] Solenthaler, B., Schafli, J., and Pajarola, R. 2007. A unified

particle model for fluid–solid interactions: Research

articles. Comput. Animat. Virtual Worlds vol. 18, No. 1

(Feb.), 69–82.

[3] Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated

sph for deformable solids. In Proceedings of the Fifth

Eurographics conference on Natural Phenomena,

Eurographics Association, 27–34.

[4] Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and

Gross, M. 2010. Unified simulation of elastic rods, shells,

and solids. In ACM SIGGRAPH 2010 Papers, ACM, New

York, NY, USA, SIGGRAPH ’10, 39:1–39:10.

[5] Jonathan Cohen, Sarah Tariq, Simon Green. Interactive

Fluid-particle Simulation Using Translating Eulerian Grids,

Proceedings of the 2010 ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, 2010, pp. 15-22.

[6] Nadir Akinci, Markus Ihmsen, Gizem Akinci, Gizem Barbara

Solenthaler, Matthias Teschner. Versatile Rigid-fluid

Coupling for Incompressible SPH. ACM Trans. Graph., 2012,

vol. 31, no. 4, pp 621-628.

[7] Iván Alduán, Miguel Otaduy. SPH Granular Flow with

Friction and Cohesion. Proceedings of the 2011 ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, 2011, pp. 25-32.

[8] Ammann C., Bloom D., Cohen J. M., Courte J., Flores L.,

Hasegawa S., Kalaitzidis N., Tornberg T., Treweek L.,

Winter B., Yang C.: The birth of sandman. In ACM

SIGGRAPH 2007 sketches (2007).

[9] Markus Ihmsen, Nadir Akinci, Markus Becker, Matthias

Teschner. A Parallel SPH Implementation on Multi-Core

CPUs, Computer Graphics Forum, 2011.

[10] Daniel Schroeder and Howard J. Hamilton. Desirable

Elements for a Particle System Interface. International

Journal of Computer Games Technology, Volume 2014

(2014).

[11] Simon Green, Particle Simulation using CUDA. Nvidia,

May 2010.

http://docs.nvidia.com/cuda/samples/5_Simulations/particles/

doc/particles.pdf

[12] Miles Macklin, Matthias Müller, Nuttapong Chentanez,

Tae-Yong. Unified Particle Physics for Real-time

Applications. ACM Trans. Graph, 2004, vol. 33, no. 4, pp.

1531-1542.

[13] Kenny Erleben, Jon Sporring, Knud Henriksen, Henrik

Dohlmann. Physics-Based Animation, Charles River Media.

[14] Instance Rendering with GLSL

http://www.learnopengl.com/#!Advanced-OpenGL/Instancing

 [15] Allen C., Bloom D., Cohen J. M., Treweek L.: Rendering

tons of sand. In ACM SIGGRAPH 2007 sketches (2007).

Francisco A. Madera received his B. Sc. Degree from the
Universidad Autónoma de Yucatán, México; his PhD from the
University of East Anglia, UK. Dr. Madera teaches subjects related
to computer graphics and videogames development; and his
research is focused on computer graphics and GPU programming.

Francisco Moo-Mena is a Professor in Computer Sciences at
Universidad Autónoma de Yucatán, in Mérida, Mexico. From the
Institute National Polytéchnique de Toulouse, in France, he
received a Master Degree in Computer Science and a PhD, in
2003 and 2007, respectively. He also received another Master
Degree in Distributed Systems from the Instituto Tecnológico y de
Estudios Superiores de Monterrey, Mexico, in 1997. He received a
BS in Computer Systems Engineering from the Instituto
Tecnológico de Mérida, Mexico, in 1995. His research interests
include Parallel and Distributed Computing, CUDA, Self-healing
systems, and Web services Architectures.

Enrique Ayala is a lecturer in Computer Sciences at Universidad
Autónoma de Yucatán, in Mérida, México. He received a Master
Degree in Distributed Systems and Networks from the Instituto
Tecnológico y de Estudios Superiores de Monterrey, México, in
2002. He received a BS in Computer Systems Engineering from
the Instituto Tecnológico de Morelia, México, in 1993. His research
interests include Computer Networks, Parallel and Distributed
Computing and GPU Programming.

Luis F. Curi is a lecturer in Computer Science in undergraduate
and postgraduate programs at the Universidad Autónoma de
Yucatán, México. He received a Ph.D. in Computer Science from
the University of Reading, U.K. and a Master in Computer Science
from ITESM-Monterrey, México. His research interest focuses on
Parallel and Distributed Computing, Theory of Computing and
Algorithms.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 5, September 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 192

2015 International Journal of Computer Science Issues

http://www.learnopengl.com/#!Advanced-OpenGL/Instancing

