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Abstract 
Random Probabilistic neural networks are more approximate to 

humans than determinist neural network. Therefore, it is trivial in 

our study to use random criterion. There exist several random 

tools, but the most popular is the Probabilistic Self Organizing 

Maps. For that reason we chose this latter as a classification tool 

in this research paper, where we describe, in a first time, our 

PRSOM model as a MINLP model with linear constraints. And 

we use the dynamic center method to resolve this model. Then in 

a second time, we describe our PRSOM model as a MINLP 

model with nonlinear constraints, that we resolve with the 

genetic algorithm. In order to validate the theoretical approach, 

we apply our methods to the domain of classification. Moreover, 

the results obtained are compared with other classification 

methods. 
Keywords: Neural Random Network, self-organization map, 

classification, unsupervised learning, MINLP model. 

1. Introduction

Neural models are digital systems that allow general 

process modeling by establishing functional models. 

Graphically, a neural network is a set of interconnected 

neurons. 

The Artificial Neural Networks (ANN) are a very 

powerful tool to deal with many applications, and they 

have proved their effectiveness in several research areas 

such as analysis and image compression, handwriting 

recognition, speech recognition [8,11], speech 
compression [10], video compression, signal analysis, 

facial recognition [23], process control, robotics and Web 

searching. 

There exist two kinds of Artificial Neural Networks 

(ANN): Determinist NN [10][11][17], and probabilistic 

NN [9][19]. In this paper, we focus especially on the 

Probabilistic Neural Networks.    

The probabilistic self-organizing map (PRSOM) [2] uses a 

probabilistic formalism. This algorithm approximates the  

maximum density distribution of the data thanks to the 

learning phase of the PRSOM. Thus, we deduce that the 

learning stage is very important in the probabilistic Self-

Organizing Maps (PRSOM) performance.  

The neural models are now part of the optimization 

domain and are applied in retro propagation [12], in 

Kohonen maps models [17][18][20], etc.  

The optimization is a branch of mathematics. In practice, 

we start from a concrete problem, we model it, and then 

we resolve it. An optimization problem consists on finding 

the optimal value associated to an optimal solution in a 

domain D, given the function f. The optimization area 

includes various types, like: linear optimization and 

nonlinear optimization… 

In the present work, in the first step we present a new 

PRSOM algorithm based on a MINLP model with linear 

constraints [14], resolved by the Cluster center method 

(assignment-minimization). In the second, we propose a 

new model for architecture optimization based on a 

MINLP with linear and nonlinear constraints (quadratic). 

This latter is resolved by the genetic algorithm [16].  

We recall some definitions and theoretical results on 

which this paper is based. We begin by describing the 

general formulation of Mathematical Optimization 

Problem (MOP): 

  (1) 

Where f is the objective function and g : 1,...,i i m are 

the m constraints, : ( ) , 1,...,n

i iS x D g x b i m

is the feasible region. 

( )

. . g ( ) 1,...,i i

n

Min f x

s t x b i m

x D
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We will focus on the Mixed Integer Non Linear 

Programming; this latter represents a powerful framework 

for mathematical modeling of many optimization problems 

that involve discrete and continuous variables. MINLP is a 

NP-complete problem which has been considered as a very 

complicated problem until now.  

 

The MINLP formulation is stated as:         

    

 

 

                                 

     (2) 

 

 

      

f, 
ig   are respectively nonlinear objective function and 

constraints, x is a n vector of continuous variables and y is 

a p-vector of integer variables. 

 

The organization of this paper is as following: the section 

2 presents the formalism of Probabilistic Self-Organizing 

Map.  In section 3 we introduce the proposed 

mathematical model to Probabilistic Self-Organizing Maps 

based on MINLP with linear constraints. In section 4, we 

propose the model of architecture optimization based on a 

MINLP with linear and nonlinear constraints and the 

resolution of this model. And before concluding, 

experimental results are given in the section 5. 

2. Probabilistic Self-Organizing Map 

In this section, we will introduce the formal PRSOM 

model.  In the probabilistic formalism, the classical map C 

of SOM [3][22] is duplicated into two similar maps 
1C  and 

2C  provided with the same topology as C, for every input 

data 
dx D and every pair of neurons 

1 2 1 2( , )i jc c C C ,which associates to each neuron 
kc a 

Gaussian density function 
kf  [7,13], which is defined by 

its mean 
d

kw  and its covariance matrix
k
.  

Compute the probability of any pattern x  with the joint 

probability 2

2

1

( ) ( ) ( )
j

K

j c
j

p x p c p x . 

Where K is the number of neurons for the two maps 
1C and

2C ,   

 

 

 

        

         (3) 

 

 

 

And                     

 

 (4) 

               

Where 1
ic

f  is the 
thi  Gaussian density with mean vector 

1
ic

w and covariance matrix 1 1

2

i ic c
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Then                                  

 

 

(5) 

 

 

 

The curve of this likelihood has a very complicated shape, 

which often has very numerous local maxima. Practically, 

it is impossible to maximize directly this likelihood, even 

to reach a local maximum [7]. The algorithm presented in 

[7] ensures the convergence into a local maximum of data 

probability. 

3. Proposed Mathematical Model of PRSOM 

3.1 Modeling of PRSOM via MINLP 

We propose a new model of probabilistic self-organizing 

maps as an optimization problem in terms of a mixed-

integer nonlinear problem with linear constraints. To 

formulate this model we need to define some parameters 

as follows: 

 

Parameters: 

 

n : number of data set observation; 

N: Number of neurons in the topology map of PRSOM; 

d : Dimension vector of data set observation; 

 

Variables: 

 

1
1

( )ij i n
j d

X x  : Matrix of Training base elements. 

1
1

(u )ij i n
j N

U : Matrix of the binary variables.   

1
1

(w )ij i N
j d

W : Matrix of referent vectors.  

1( )i i N
: Matrix of covariance.  

2

2 1 2 1

1

2 1

2 1 2 1

2 1

1

( ) ( / ) ( / ) ( / ),

( ( , ))
( / , ) ( / )

( ( , ))

j

K

j i j ic
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T j i

j i j i K

T j i

i
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K d c c
p c x c p c c
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( , )

. . g ( , ) 0 1,...,i

n p

Min f x y

s t x y i m

x D y E

1 1 1

1 2 1( / , ) ( / ) ( , , )
i i i

i j i c c c
p x c c p x c f x w

1 1 1

2 1

2

2 11 1

1

( ( , ))
( ) ( ) ( , , )

( ( , ))
i i i

K K
T j i

j K c c c
j i

T j k

k

K d c c
p x p c f x w

K d c c

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 1, January 2016 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 2

doi:10.20943/IJCSI-201602-19 2016 International Journal of Computer Science Issues



 

 

With ,

1

0

th th

i j

if thei data assigned to j neuron
u

else
  ,

,i ju is 

the assignment variable that define the relationship 

between data and neuron. 

 

Objective function: 

 

Basing on the work of Bishop [4], we will define the 

objective function of the PRSOM mathematical model as:     

 

 

 

(6) 

 

           

 

For reasons of convenience, the log level helps to reduce 

the volume of the digits representing a series. Moreover, 

the linear logarithm is a multiplicative relationship i.e. we 

transform a multiplicative series to an additive one. The 

log function is strictly increasing. It is then better to 

maximize log(p) than p. 

 

The objective function becomes: 

 

 

 

(7) 

 

 

                                                 
Constraints: 

 

Each data element must be allocated to one neuron 

(component). In consequence we obtain the following n 

constraints:   
1

1 1,....,
N

ij

j

u i n  

 

PRSOM model: 

 

A general formulation for the (MINLP) is given by 
Max( )P . 

 

 

 

 

 

 

 

 

 

 

 

(8) 

The research for a maximum can always be transformed to 

the research of a minimum, the mathematical model is thus 

as following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9) 

 

 

In the following section, we study the resolution of the last 

mathematical program Eq.(9). 

3.2 Resolution of the obtained mixed-integer 

nonlinear problem 

We use the dynamic clusters approach to solve this 

mathematical model. We will solve it basing on two steps:  

 Assignment  phase:  we  fix  the  weight  vectors 

and  we  solve  the  obtained  problem;  

 Minimization phase:  we fix the assignment 

vectors and we solve the obtained problem. 

Assignment phase: 

 

If we fix the variables W and  in ( )MinP , we find a 

linear model of binary variables under linear constraints.  

 

The obtained model 
,( )WP is defined by: 

 

 

 

 

 

 

 

 

 

 

 

(10) 

 

 

 

 

11 1
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( *( ( ( , )) (x , , ))) ij

n N N
uT
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ki j

U W

K j k w

1 1 1

ln( ( , , ))

[ln( ) ln( ( ( , )) (x , , ))]
n N N

T

ij j k i k k

i j k

Max p U W

u K j k w

1 1 1

1

ln( ( , , ))

[ln( ) ln( ( ( , )) (x , , ))]

:

( ) 1;...;1

{0,1}

n N N
T

ij j k i k k

i j k

N

Max ij

j

n N

N d

N

Max p U W

u K j k w

Subject to

P u i n

U

W

1 1 1

1

( , , )

[ [ln( ) ln( ( ( , )) (x , , ))]]

:

( ) 1;...;1

{0,1}

n N N
T

ij j k i k k

i j k

N

Min ij

j

n N

N d

N

Min E U W

u K j k w

Subject to

P u i n

U

W

,

ij

1 1 1

,

ij

1

( )

u ln[ ( ( , )) (x , , )]

( ) :

u 1;...;1

{0,1}

W

n N N
T

j k i k k

i j k

W

N

j

n N

Min E U
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U
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The matrix U can be transformed into a vector X of size m, 

with m n N  

 

 

 

 

 

 

Afterwards we can define the objective function as follows:            

(X) XtE C  

With: 

 

 

 

 

 

 

 

 

 

 

Linear constraints associated with this problem are defined 

by the following statement: 

 

Each element ; 1,...,ix i n is affected to a single neuron j. 

These constraints are given by: 

 

 

 

 

The matrix {0,1}n NA  and the vector 
mb  are 

defined by: 

 

                                 

 

 

 

 

 

 

Finally we obtain a linear program with variables 0-1, and 

with linear constraints.  

 

 

 

 

(11) 

 

 

 

U* is optimal solution of the model
,( )WP . 

 

Minimization phase: 

   

In this step, we fix the variables vector u, and we solve the 

following optimization problem with continuous variables: 

 

 

 

 

(12) 

 

 

 

 

The solution of the problem ( )UP  is given by the following 

system: 0 0U U

k k

E E
and

w
, since it is sufficient to 

ensure, that in every iteration, we use a simple gradient 

method. 
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3.3 Proposed New algorithm PRSOM based on the 

resolution of MINLP 

This algorithm is probabilistic self-organizing based on 

solving the optimization problem
Min( )P .  

 

Algorithm 1: 

 

Input:    

n, p, X, 
iterN , N , 

min max[ , ]T T  the interval of the parameter 

T;   

 

Output:          

 

Optimal probabilistic topological map 

 

Initialization:  

     

 
1(0),..., (0)Nw w  randomly initialized, 

1(0),..., (0)N
 

randomly initialized with the great values, 

max 0T T t      

 

While 
itert N  

 

Assignment-decision phase via resolution of the model

,( )WP . 

 

While k N  

 

Minimization phase via resolution of the model ( )UP ; 

update the kw  via the Eq.(13) and update the k  via the 

equation  Eq.(14). 

 

Done   1;t t  

Done   
1min

max

max

( ) ;iter

t

NT
T T

T
 

Return: 

 

Optimal parameters of PRSOM.   

 

 

Unfortunately, even after the mathematical modeling of 

the PRSOM in the previous section, the major problem of 

this latter is the choice of the architecture, i.e. the initial 

choice of the model’s parameters. For that reason we 

propose in the next section a mathematical model to 

resolve this problem. 

4. Proposed model to optimization of the 

architecture of PRSOM 

4.1 Mathematical model 

Generally, if the size of the probabilistic self-organizing 

map is chosen randomly, the PRSOM learning algorithm 

gives two classes of neurons as showing in Fig. 1, the first 

class that doesn’t represent any observation (empty class), 

and the second class that represents the important 

information data. The mean purpose is to delete the useless 

components from the PRSOM. 

 

Basing on the previous mathematical model, we add the 

control variable jv  which allows controlling the size of 

the PRSOM map, with 
1

0

th

j

if the j neuronisused
v

else
 

 

Objective function: 

 

 

 

(15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Illustration of two classes’ neurons of PRSOM. 

 

As well the function becomes: 

                                        

 

 

(16) 

 

 

 

11 1

Max p(V, , , )

( *( ( ( , )) (x , , ))) ij j

n N N
u vT

j k i k k

ki j

U W

K j k w

1 1 1

ln( (V, , , ))

[ln( ) ln( ( ( , )) (x , , ))]
n N N

T

j ij j k i k k

i j k

Max p U W

v u K j k w

Unused neurons 
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Constraints: 

 

Besides assignment constraints, we add another one called 

transmission constraint.  

 

If the neuron j is not used 0jv , i.e., the summation on i 

of 
iju  takes 0; else 1jv , i.e. the summation on i of 

iju is 

strictly greater than 0 then the constraint is: 

,

1 1

(1 ) 0
N n

j i j

j i

v u

 
 

Mathematical model:                  

 

 

 

 

(17) 

 

 

 

 

 

4.2 Solving the Optimization Model Using Genetic 

Algorithm 

In this part, we use the genetic algorithm to solve the non-

linear optimization model obtained in the previous section. 

 

Genetic algorithm:  

 

The Genetic Algorithm (GA) is a revolutionary method 

introduced by J. HOLLAND since 1950. This method 

aims to solve a large number of complex optimization 

problems [16][6]. This latter has been applied in a large 

number of optimization problems in several domains, such 

as telecommunication, routing, scheduling, and it has 

proven great efficiency to obtain good solutions [8][11].  

 

Let’s give a little explanation for this method: the space of 

feasible solutions (individuals) is coded by chromosomes, 

i.e., each solution represents an individual who is coded in 

one or several chromosomes. These chromosomes 

represent the problem's variables. First, an initial 

population composed by a fix number of individuals is 

generated; this number is fixed randomly, or through a 

preprocessing of the problem to solve. Then, operators of 

reproduction are applied to a number of individuals 

selected according to their fitness. This procedure is 

repeated until the maximum number of iterations is 

reached. 

 

To make this resolution, we define an encoding, a crossing 

operator, a mutation operator and a function Fitness 

according to the particularities of this problem. This 

resolution allows, on the one hand, defining the optimal 

number of neurons in the map, and in the other hand, it 

allows finding the weighting matrix and the variances 

matrix. 

 

Genetic algorithm for mathematical model: 

 

In this section, we will describe the genetic algorithm to 

solve the proposed model for PRSOM architecture 

optimization (OAPRSOM). For this purpose, we have 

coded an individual by four chromosomes; moreover, the 

fitness of each individual depends on the objective 

function value. 

 

Encoding: In our model, we have encoded an individual 

by four  chromosomes ,  the  first  one represents control 

vector V , the second one represents  the  matrix of  

decision variables  U,  the  third one represents  the  matrix 

of weights W and the last one represents the vector of 

variances  . 

 
Initial population: The first step in the functioning of a 

GA is, then, the generation of an initial population. Each 

member of this population encodes a possible solution to a 

problem. 

 

The individuals of the initial population are randomly 

generated, 
iju and 

jv  take the value 0 or 1, and the weights 

matrix takes random values, in addition, vector of 

variances is initialized with the great values. 

 

Evaluating individuals: After creating the initial 

population, each individual is evaluated and assigned a 

fitness value according to the fitness function. 

 

In this step, to each individual is assigned a numerical 

value called fitness which corresponds to its performance; 

it depends essentially on the value of objective function in 

this individual. An individual who has a great fitness is the 

one who is the most adapted to the problem.  

 

 

 

1 1 1

1

,

1 1

1

( ,V, , )

[ [ln( ) ln( ( ( , )) (x , , ))]]

:

1;...;1

( ) (1 ) 0

{0,1}

{0,1}

n N N
T

j ij j k i k k

i j k

N

ij

j

N n

Min j i j

j i

n N

N

N d

N

Min E U W

v u K j k w
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P v u
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The fitness suggested in our work is the following function:      

 

(18) 

 

 

Minimizing the value of the objective function is 

equivalent to maximizing the value of the fitness function. 

 

Selection: The application of the fitness criterion helps to 

choose which individuals from a population will go on to 

reproduce. 

Let’s define:

1

( )
( )

( )
nbid

i

f i
P i

f i

 the selection criterion; where 

nbid is the cardinal of the population.  

 

The individuals with greater fitness are thus more likely to 

be chosen. We can talk then about a proportional selection. 

 

Crossover: The crossover is a very important phase in the 

genetic algorithm, in this step, new individuals called 

children are created by individuals selected from the 

population called parents. Children are constructed as 

follows: 

 

- We fix a point of crossover, the parent are cut switch this 

point, the first part of parent 1 and the second of parent 2 

go to child 1 and the rest go to child 2. 

 

- In the crossover that we adopted, we choose 4 different 

crossover points, the first for the matrix of weights and the 

second is for vector U. 

 

Mutation: The mutation’s principle is to modify the 

values of each individual, chosen randomly. The mutation 

ensures the diversity of research to reduce the risk of 

finding local optima. Indeed, the genes of children are 

limited by the genes of the parents, and if a gene is not 

present in the initial population (or it disappears because of 

reproductions), it will never develop in the progeny. The 

aim of the mutation operator is to bypass this problem. 

Each gene has a low probability to mutate, i.e. to be 

randomly replaced by another incarnation of that gene. 

The purpose of this precaution is to maintain genetic 

diversity. For the matrix U and the vector V, we used a 

binary encoding. The mutation is to change the values of 

one or more genes (0 → 1; 1 → 0). Concerning the matrix 

of weights W, we change one or more components of the 

matrix by a randomly generated value.  

4.3 Training algorithm 2 

The Fig. 2 presents the successive steps of the OAPRSOM 

algorithm. Firstly, we will build the mathematical model 

MINLP 
min( )P . Afterwards, we will resolve it through the 

stochastic method of resolution: Genetic Algorithm. Then, 

as result, we obtain both the usable optimal number of the 

two PRSOM maps and the optimal initial parameters of 

the algorithm. Finally, we make the training of the 

OAPRSOM so as to obtain the optimal topology. 

 

 

 
 

 
Fig.  1  Training Model OAPRSOM. 

5. Experiments and discussion 

To illustrate the advantages of the proposed method in this 

section, we apply our algorithm to the data base “Data Iris” 

to accomplish the classification task [25]. 

 

This data base is divided into three groups: Iris Setosa, Iris 

Verginica and Iris Versicolor. Each group contains 50 

elements. Each element is characterized by four values: 

width of the petal, length of the petal, width of the sepal 

and length of the sepal. 

 

Both the learning and the test are performed with 75 

elements.  

 

#Nmax: Maximal neurons number of the initial map. 

#N: Optimal number of map’s neurons. 

 

Concerning the optimization algorithm, we have 

performed many tests so as to estimate the adequate 

number of neurons with the different data bases. Starting 

Solving via genetic 

algorithm 

Optimal neurons number 

+ initialization of weights 

matrix and vectors 

variances in the 

Probabilistic self-

organizing map 

 

 

Optimal 

Codebook 

Training set 
Optimal 

probabilistic 

Kohonen Model 

1
( )

1 ( )
f i

E i
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with the numbers 20, 30, 40 and 50; the results are shown 

in Table 1.  

 
Table 1: The optimal neurons of the map using OAPRSOM 

#Nmax 20 30 40 50 

#N 7 7 8 7 

 

We notice that the number of neurons retained, each time, 

converges to 7 in a decreasingly. 

 

After determining the empirical number of neurons needed 

to project data, we are now interested in the quality of the 

training and the test of the proposed algorithm; the results 

are reported in Table 2 and Table 3. 

  
Table 2: Numerical results for clustering the Training Data 

Type Nr. Tr. D. C.C M.C 

Setosa 25 25 0 

Virginica 25 24 1 

Versicolor 25 23 2 

Overall 75 72 3 

 

The Table 2 presents the obtained clustering results of 

training data. We remark that this architecture permits to 

classify all the training data only three data; one from 

Virginica and two from Versicolor. 

 

 
Table 3: Numerical results for clustering the Testing Data 

Type Nr. Tr. D. C.C M.C 

Setosa 25 25 0 

Virginica 25 24 1 

Versicolor 25 25 0 

Overall 75 74 1 

 

 

The Table 3 presents the obtained clustering results of 

testing data. This table shows that our architecture gives 

good results, because all the testing data were correctly 

classified except one. In fact; this element (misclassified) 

is from the Virginica class. 

 

 

 

 

 

 

Table 4: Comparison for Iris Data classification 

Méthode N.Cl.

App 

N.Cl. 

Test 

Pr.Cl.App. 

(%) 

Pr.Cl.Te

s. (%) 

EBP 3 2 96.0 97.3 

RBF 4 4 94.6 94.6 

RBF 4 2 96.0 97.3 

SVM 3 5 94.6 93.3 

AO PRSOM 3 1 96.0 98.6 

 

Table 4 gives results of our AOPRSOM in comparison 

with other existing classification methods in the literature. 

We can tell that our model gives satisfactory results. 

6. Conclusions and outlook to future work 

In this paper, we have presented an approach to determine 

the optimal codebook and covariance matrix by the new 

Probabilistic Self Organizing Maps. As a first step we 

build a mathematical model in the form of MINLP with 

linear constraints, afterwards we solve it through dynamic 

clusters methods. After, we have introduced the 

optimization architecture model to PRSOM; this 

mathematical model is MINLP with linear constraints and 

nonlinear constraint resolved via genetic algorithm. 

 

Using the data set Iris which is widely used in the 

clustering area, we have shown that our model outperform 

the other methods. 

 

In the future works, we will use exact approaches or others 

heuristic methods to resolve this problem and determine 

the optimal solution for the MINLP. The proposed method 

can be applied to solve the pattern recognition problems 

and speech recognition problems. 
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