
Abstract
Harboring bug may leads system crashes, file system bugs hence
corrupt file systems and cause data loss, regardless of the
existence of journals and similar defensive techniques. While
consistency checkers such as fsck can detect this corruption and
restore a damaged image to a usable state, they are generally
created as an afterthought, to be run only at rare intervals. But
issue is that the fsck is the utility for checking errors in Ext3 file
system. In our opinion file system must has its own checker for
silent killer known as harboring bug. So Sext3 has this ability
and does not need third party checking utility for harboring bug.
These modifications in system file allow Sext3 to check system
in real time scenario. If we use third party utility the system
needs to invoke that utility every time when system is writing
data to any field. But in our modification of Ext3 there is no need
to invoke the application because the checker is the part of file
system. In our proposed solution high memory consumption is
only drawback. In addition, we demonstrate the Sext3
performance and competitively with Ext3.

Keywords: Sext3, Ext3, fsck

1. Introduction

File system is the fundamental building block of any
Operating System. Such as NTFS is for Microsoft
Windows and EXT3 is for Linux. To make system intact it
is necessary to guaranty data integrity for personal or
enterprise computation. It will be challenging to restore
the data once it becomes corrupted. Before implementing
any file system engineers judge file system’s robustness
and reliability.

It is necessity to make your data dependable. Once your
data lost or corrupted (mistake made by human or by
machine) it is very difficult to restore data or make data
available in future [22]. In the war between errors and
developers must make sure that there developed file
system must be robust and reliable enough to prevent ad
hoc or permanent data corruption or data losses.

There are many factors that are involve to corrupt the data
such as unexpressed shutdown, bug in data of system file.
Conflicts between file system and device drivers are also a
fact that can easily crash the system [13]. Not only file
system data play an important role in data corruption,
hardware failure is also a critical issue in overall system

crash. Hardware may include primary memory (RAM) or
may be secondary memory (HDD) [1, 4, 5, 20]. So meta-
data and file system must be robust and fault tolerant and
can prevent the propagation of bug and errors that leads
system permanent data lost.

From many years scientists are working on file system to
make it reliable and robust enough to resist against
corruption. Such as journaling [8], copy-on-write [21] and
soft update [17] having the ability to prevent system
corruption and unexpressed crashes. Another value able
source that can prevent and remove errors form code of
system and prevent the corruption in it known as bug
finding tools [14, 19]. Hardware failures can be detected
by different checksums [6, 9].

Most of the solution can reduce the chance of error in
system and has the ability to repair it. But unfortunately
these solutions cannot protect system from all the faults,
errors and bugs. The error that comes silently when
copying or update the date in system file. These types of
error are silent killer of files system integrity. This type of
error is known as harboring error. It comes in the system
very silently and cannot be detected when it copy itself in
the system. System file seem correct and error free. It can
stay in system silently from days to month in system.
When system needs file or execute the file then only
administrator notice this error. There are my factors
involved that can corrupt the file system such as
undeclared shutdown, bug in file system or corruption in
device drivers can tear down meta-data integrity.

Dealing with this harboring bug and building a well-
organized checker for storage systems involves a new
approach that works for the file-system checker as more
than a postscript. Thus, we propose the Sext3 file system, a
modified version of Ext3 which sets harboring bug free
handling of inconsistency as a standard plan objective,
providing direct system support for the file-system checker
in its implementation. Our measurements show that Sext3
has the ability to stop harboring bug before copying itself
in system, scans the file system significantly accurate than
Ext3, nearing the sequential peak of disk bandwidth.
Moreover, its ability is robust to file system aging, making
it possible to estimate the error removal and recovery of

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167

Sext3: The Secure Ext3

Muhammad Raza1, Ke Zhou2 and Basheer Riskhan3

 1, 2, 3 School of Computer Science, Huazhong University of Science and Technology,
Wuhan, Hubei, P.R. China.

61

2016 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201606.6167&domain=pdf

system beforehand and thus helping the system
administrator make better decisions about running the
checker. We also hope that, surprisingly, Sext3 can
improve ordinary I/O performance in some cases.

2. Related Work

As all we know that without any file system machine
cannot work in papers researchers explained the
architecture and design of a new file system named as
XFSand it is designed for Silicon Graphics’ IRIX
operating system. It is an all-purpose file system that can
be used on workstations and servers. The center theme of
the paper is on the methods used by XFS to scale
capability and presentation for the support very large file
systems. So that large file system support having
mechanisms for managing large files, large numbers of
files, large directories, and very high performance of I/O
[2]. Many other researchers also explained the theme of
work-in-progress to plan and employ a transactional
metadata journal for the Linux ext2fs file system. They
reviewed the crisis of recovering file systems after the file
crash, and explain a plan intended to augment ext2fs’s
speed and dependability of crash revival by adding a
transactional journal to the file system [3].

EXPLODE is a system that creates it simple to
methodically make sure real storage systems for errors.
This system takes user-written, potentially system-specific
checkers and uses these values to drive a storage scheme
into difficult corner cases that include crash recovery
errors. EXPLODE uses a novel version of ideas from
model checking, a complete, long-lasting formal
verification method, that creates its checking more
systematic and more effective than a pure testing approach
while being just as lightweight [10]. Corner-case model
checking system is to find serious errors in file systems.
Model checking is a prescribed verification method tuned
for finding corner-case errors by expansively exploring the
state spaces defined by a system. File systems have two
self-motivations that make them attractive for such an
approach. So if their errors are some of the most serious,
since they can obliterate continual data and lead to
unrecoverable corruption [11]. To compare and contrast
the plan attitude and performance of two computer system
families one is the IBM S/360 and it has evolution to the
present zSeries line, and the HP (old name as Tandem)
NonStop1 Server. Both of the systems have a great and
long history. The obligation for the original S/360 line was
for very high ease of use; the obligation for the nonStop
platform was for single fault tolerance against unplanned
outages. There were and still are many resemblances in the
design attitudes of the two lines, that including the use of
superfluous components and wide error checking. The

primary dissimilarity is that the S/360 zSeries center of
focus has been on localized retry and restore to keep
processors performances as long as possible, on the other
hand NonStop developers have supported systems on a
loosely coupled multiprocessor blueprint that maintains a
“fail-fast” attitude that implemented from side to side a
mixture of hardware and software, with workload being
actively taken over by another resource when one be
unsuccessful [12]. Another study done by researcher
shows effects of disk and memory corruption on file
system data integrity. Their analysis focuses on Sun’s ZFS,
a contemporary commercial contribution with many
dependability instruments. From side to side cautious and
methodical fault inoculation they showed that ZFS is
strong to a wide range of disk faults. They further showed
that ZFS is less elastic to memory corruption that can leads
to corrupt data being came again to applications or system
crashes. Their analysis exposes the significance of
allowing for both memory and disk in the building of truly
robust and strong file and storage systems [15]. By rising
performance of CPUs and memories will be wasted if not
coordinated by a similar routine boost in HO. As the
ability of Single big Expensive Disk has full-grown
rapidly, the routine upgrading of system has been self-
effacing. Redundant Arrays of Inexpensive Disks (RAID),
that is based on the magnetic disk technology developed
and promoted for personal computers and that offered an
attractive alternative to SLED, that showed potential
improvements of an arrange of scale in performance,
dependability, power use, and scalability. In this research,
researchers introduced five levels of RAIDs, and gave
their relative cost, performance and compares RAID to an
IBM 3380 and a Fujitsu Super Eagle [16]. The paper [18]
showed methods that mechanically take out such checking
sequence from the source code it, before the programmer,
thus keep away need for a priori information of system
rules. The main beliefs are facts implied by code
dereference of a pointer, p, and implies a belief that p is
non-null, a callto "tmlock (1)" entail that 1 was locked and
so on.

3. Extended Motivation

Before we implicate a good and robust file system checker,
we have to see back what type of approaches are in
practice in the system. First we discuss the file system
overall check and its repair function with its abilities on
the system that is widely used as an open source known as
EXT3 file system.

Ext3 and Ext4 are the default Linux file system. Ext4 is
the new version of Ext3 and adds some field in Ext3
mechanism, but the basic structures are the same. The
metadata is accumulated throughout the file system, and

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167 62

2016 International Journal of Computer Science Issues

the metadata which is linked with a file are stored close to
it. The entire area is divided into numerous block groups,
and block groups holds several blocks. A block group is
used to store file metadata and file content.

3.1 Super Block

The super block in Ext3has 1024 bytes and it is located in
the start of boot of file system. It can store first two sectors
of the boot code if necessary to store. Typically backup
copies are stored in the first file of the block of every
block group. It has the most basic information about file
system, just like block size, number of block bitmap and
inode bitmap for the block group.

3.2 Block Group Descriptor Table

It includes a collection descriptor data structure for each
block group. The group descriptor stores the address of
block bitmap and inode bitmap for the block group.

3.3 Data Bitmaps

The data bitmap is also recognized as block bitmap. This
data/block bitmap directs the share status of the blocks in
the group. The inode bitmap controls the allotment status
of the inodes in the group.

3.4 Inode Tables

Inode table includes the inodes that illustrates the files in
the group.

3.5 Inodes

Each inode matches to one file and it stores file’s main
metadata, for example file’s size, rights, and temporal
information. It size is typically 128 bytes and it is
allocated to each file and directory.

3.6 Inode Allocation

If a fresh inode is for a directory, Ext3 attempts to put it in
a collection that has not been used much. Using some
amount of free inodes and blocks in the superblock, Ext3
computes the standard free inodes and blocks per group.
Ext3 searches every of the group and uses the primary one
whose free inodes and blocks are fewer than the standard.
The default size of blocks is 4KB, and the size is known in
the superblock. When a block s owed to an inode, Ext3
will try to assign in the same group as the inode and use
first available plan.

3.7 Indexing and Directories

An Ext3 is regular file except it has a special type value.

The content that located to the directories is a list of
directory entry data structure, which explains file name
and inode address. The directory and its length entry vary
from 1 to 255 bytes. There are two fields in the directory
entry

 Name length the length of the file name.
 Record length the length of this directory entry

Directory entry allocation.

4. Design and Implementation of Sext3

In this section we will discuss the design and
implementation of our proposed model Sext3 (secure
Ext3). While our system of Sext3 is based on Ext3, Sext3
improves meta-data’s density for checking meta-data
before writing it on the drive. In other words we can say
that this Sext3 has the ability to remove the chance of
occurrence of harboring bug in meta-data of data bitmap
field in Sext3. The Harboring Bug in data bitmap causes
silent Metadata corruption leads Ext3 to miss indirect
block and revert the behavior of FSCK to traditional error
checking utility. Sext3 significantly reduce the harboring
bug in Sext3 and insure harboring bug free system to data
bitmap filed writing of meta-data.

4.1 Goals

We expect Sext3 to meet the following criteria

4.1.1 Backups

The Sext3 will make the backup of last state of the data
bitmap filed. Through this backup system it can easily roll
back the erroneous meta-data. So this ability of scan and
repair of meta-data through backup should be supreme
concern for file designer because no one wants erroneous
meta-data when he needs it.

4.1.2 Ability of communication

It has the additional ability of commutation. In other word
we can say that it is the indirect communication bridge
between system and data bitmap filed. No data can be
written on to the data bitmap field until unless system
sends permanents list to data bitmap checker. It will send
report if it found any mismatch between the parameter list
and the data of update.

4.1.3 Real time checking for harboring bug

Thanks to its real time checking ability of meta-data and
getting permanents list before updating the field of data
bitmap it should remove the chance of occurring of
harboring bug in meta-data while system is writing it in
the field of data bitmap of Sext3. If it found any harboring

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167 63

2016 International Journal of Computer Science Issues

bug in update it will immediately block and roll back the
update and resume the last state of data bitmap and
through the ability of commutation it will communicate
the presence of harboring bug in its update.

4.2 Competitive file system performance

Repairability can come at the expense of responsiveness
and through put, as these are not critical in environment of
scientific research. As we know that security never comes
for free, this is the tradeoff between repairability and
responsiveness and through put.

4.3 Sext3 File System

Sext3 is developed atop Ext3, the upcoming default file
system for many popular Linux distributions.
inherits most of the mechanisms used in
the data bitmap checker block structure. This section
details these new features and gives a basic overview of
our implementation.

4.4 Sext3 layout

To reduce the chance of Harboring bug in phase one of file
update, Sext3 introduced a new filed that is known
bitmap checker. Through this checker the system cannot
update the system directly. As we early mention the
system must send critical parameters to data bitmap
checker and by the help of this parameters this data bitmap
checker checks the upcoming update in real time scenario.
The difference between Sext3 and Ext3
harboring bug from system at the time of update in other
words we can say Ext3 has the ability to secure the data
bitmap field in real time update coming from system.

Figure 1 Ext3 and Sext3 Disk Layout Comparison.

5. Methodology of Data Bitmap Checker

Suppose system wants to update Metadata to the data
bitmap. In normal Ext3, system can access directly the
data bitmap field. But in our proposed solution the data
cannot be updated by direct access of data bitmap field.

bug in update it will immediately block and roll back the
update and resume the last state of data bitmap and
through the ability of commutation it will communicate
the presence of harboring bug in its update.

e system performance

Repairability can come at the expense of responsiveness
and through put, as these are not critical in environment of

t security never comes
between repairability and

the upcoming default file
system for many popular Linux distributions. Sext3
inherits most of the mechanisms used in Ext3, except one

data bitmap checker block structure. This section
details these new features and gives a basic overview of

To reduce the chance of Harboring bug in phase one of file
introduced a new filed that is known as data

bitmap checker. Through this checker the system cannot
update the system directly. As we early mention the
system must send critical parameters to data bitmap
checker and by the help of this parameters this data bitmap

update in real time scenario.
Ext3 is the removal of

harboring bug from system at the time of update in other
has the ability to secure the data

bitmap field in real time update coming from system.

Ext3 and Sext3 Disk Layout Comparison.

Methodology of Data Bitmap Checker

Suppose system wants to update Metadata to the data
bitmap. In normal Ext3, system can access directly the

sed solution the data
cannot be updated by direct access of data bitmap field.

First it must send some parameters to data bitmap checker.
Parameters include all checksums, date and update mode.
When data bitmap checker gets all information about
update process from system and parameters, than it will
allow system to update the data bitmap field in Ext3.
When system is updating Metadata in the field of data
bitmap, in this mean time the data bitmap checker will
monitor the updating parameters whether this u
contain any harboring bug.

If data bitmap checker found any harboring bug in the
process of update, immediately data bitmap checker will
stop the process.

It will do two things

 First roll back every update done by system.
 Second it will alert system.

In this alert the data bitmap checker will give two options;
in first option data bitmap checker will ask to system to
update parameters and resend if system wants to make no
change in upcoming update. In second option data bitmap
checker will ask system to remove harboring bug from
upcoming update and make changes as per parameter sent
in last communication.

We can take examples of system update without and with
bitmap checker in Ext3 file system of Linux operating
system. Suppose system is upda
bitmap in Ext3 file system and there is nothing that can
check the harboring bug. If system sending data that
contain harboring bug, normal checksums cannot check
the data for this type of bug. This bug can only be noticed
when system needs to execute
So our proposed solution has the ability to prevent this bug
before get penetrate in system file. Suppose we have three
things

 System it is the source of data.

 Data bitmap this is the field of
get the update from system.

 Data bitmap checker
that has the ability to check the upcoming data for
harboring bug.

In first stage, system will send parameters to data bitmap
checker and after this sending the system will send
towards data bitmap field. In this process of updating data
bitmap field the data bitmap checker continually monitor
for any mismatch between data and parameters. If no
mismatch found the data bitmap allow system to finalize
the update. And also update date itself for backup.
There is another condition if system sends parameters to
checker and data to data bitmap. In the process of update if
data bitmap checker found any harboring bug in data or in
parameters it will immediately stop that updating proc

First it must send some parameters to data bitmap checker.
Parameters include all checksums, date and update mode.
When data bitmap checker gets all information about

ocess from system and parameters, than it will
allow system to update the data bitmap field in Ext3.
When system is updating Metadata in the field of data
bitmap, in this mean time the data bitmap checker will
monitor the updating parameters whether this update

If data bitmap checker found any harboring bug in the
process of update, immediately data bitmap checker will

First roll back every update done by system.
system.

In this alert the data bitmap checker will give two options;
in first option data bitmap checker will ask to system to
update parameters and resend if system wants to make no
change in upcoming update. In second option data bitmap

system to remove harboring bug from
upcoming update and make changes as per parameter sent

We can take examples of system update without and with
file system of Linux operating

Suppose system is updating the field of data
file system and there is nothing that can

check the harboring bug. If system sending data that
contain harboring bug, normal checksums cannot check
the data for this type of bug. This bug can only be noticed

m needs to execute file for any critical work.
So our proposed solution has the ability to prevent this bug
before get penetrate in system file. Suppose we have three

is the source of data.

is the field of Sext3 that will
get the update from system.

checker it is the field of Sext3
that has the ability to check the upcoming data for

In first stage, system will send parameters to data bitmap
checker and after this sending the system will send data
towards data bitmap field. In this process of updating data
bitmap field the data bitmap checker continually monitor

mismatch between data and parameters. If no
mismatch found the data bitmap allow system to finalize

e date itself for backup.
There is another condition if system sends parameters to
checker and data to data bitmap. In the process of update if
data bitmap checker found any harboring bug in data or in
parameters it will immediately stop that updating process

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167 64

2016 International Journal of Computer Science Issues

and alert system about it. In this alert checker will say to
modify parameters as per data or changer data as per
parameters. When system is taking any action on the

checker alert, in this mean the data bitmap checker roll
back all the update occurred.

Figure 2 This graph shows sext3 and fsck execution time
for different size of file systems

Figure 3 This graph shows the time to access each inode in block
while scanning

6. Sext3 performance Analysis

First we observed how Sext3 and fsck executes as the file
system increases in size. So we initialize the file system
image through creating single directory on one block
group, each of which holds a number of files with sizes
chosen consistently from 1 to 512 block (4 KB 2 MB);
and then we creates files until it contains 25.6 MB or 20%
of the block group size. To boost the size of the file system
to the preferred amount, then randomly create new files (4
KB 2 MB) or add one to 256 blocks of data to existing
files. We show our results in Figure 3.

To verify check controls the scan time, Figure 3 further
defined by the total time and by the amount spent in each
phase. During this phase, fsck and Sext3 scans all inodes
and their corresponding indirect blocks, which include the
largest portion of the file-system’s metadata. In addition,
since fsck has to execute this scan again if it detects
multiply-claimed blocks created by harboring bug, the
actual total time may be even longer in the presence of
errors.

To better recognize the I/O performance during this phase,
we calculate the time fsck spends reading each character
block during the 150 GB experiment. We show our results
in Figure 3, which displays the collective time spent
reading indirect and inode blocks. Accesses of indirect
blocks overpoweringly dominate I/O time.

Figure 4 This graph shows postmark performance of the
system

Finally, we use Postmark to compare Sext3 and fsck. We
use the default settings for Filebench and invoke Postmark
with 32000 files between 4 KB and 4 MB in size. A figure
4 shows our results. In most cases, Sext3 performs nearly
identically to ext3. In this case, Sext3 performs 5% better
than ext3. Given these performance measurements, we can
conclude that Sext3 performs competitively with fsck in
most cases, exceeding Sext3 in its ability to handle random
checking of harboring bug, and performing slightly worse
in terms of memory cost.

6. Limitation

It is still prototype and has some limitations as it is very
simple. It has new field so it must take some space on disk.
Our proposed solution works on physical data rather than
logical data. It has two abilities first is backup and second
is rollback so these abilities also consume physical space.
It also put some delay in updating process from system to
data bitmap field. In conclusion, memory consumption is
the potential drawback of our checker. In future work,
these can likely be addressed by using more sophisticated
checksum for each file. In figure 5 we can observe that
little bit more memory is consumed by the Sext3 system as
compared with fsck file checker.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167 65

2016 International Journal of Computer Science Issues

Figure 5 This graph shows cost of memory in system per file
in different sizes

7. Conclusion

While the file system checker in Ext3 is the ultimate
solution to check file system for errors in the system. But
most of the time it fails to checks the harboring bug in the
file system just like data bitmap field in Ext3 file system.
Our proposed file system is powerful enough to check and
remove this type of silent killer of data bitmap in Ext3 but
it is still academic model needs sufficient testing in lab
before implemented in real environment. It has the ability
to remove the bug in real time scanning system. We
believe that it has the ability to remove the harboring bug
before bug destroys the entire file system of data bitmap
on execution. Why we wait until the execution of the data
we have to take measure against this bug before it create
unchallengeable progress. In other words we can say that
this data bitmap checker is proactive in nature that will not
allow this bug to take place on disk.

References
[1]H.Reiser. ReiserFS. www.namesys.com, 2004.
[2]Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,

and G. Peck. Scalability in the XFS File System. In
Proceedings of the USENIX Annual Technical Conference
(USENIX ’96), San Diego,California, January 1996.

[3]S. C. Tweedie. Journaling the Linux ext2fs File System. In
The Fourth Annual Linux Expo, Durham, North Carolina, May
1998.

[4]D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. In Proceedings of the USENIX
Winter Technical Conference (USENIX Winter ’94), San
Francisco, California, January 1994.

[5]M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10(1) 26–52, February
1992.

[6]Sun Microsystems. ZFS The last word in file systems.
www.sun. com/2004-0914/feature/, 2006.

[7]Wikipedia. Btrfs. en.wikipedia.org/wiki/Btrfs, 2009.
[8]R. Ganger and Y. N. Patt. Metadata Update Performance in

File Systems. In Proceedings of the 1st Symposium on

Operating Systems Design and Implementation (OSDI ’94),
pages 49–60, Monterey, California, November 1994.

[9]D. Engler and M. Musuvathi. Static Analysis versus Software
Model Checking for Bug Finding. In 5th International
Conference Verification, Model Checking and Abstract
Interpretation (VMCAI ’04), Venice, Italy, January 2004.

[10]J. Yang, C. Sar, and D. Engler. EXPLODE A Lightweight,
General System for Finding Serious Storage System Errors. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), Seattle, Washington,
November 2006.

[11]Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
Model Checking to Find Serious File System Errors. In
Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI ’04), San Francisco,
California, December 2004.

[12]W. Bartlett and L. Spainhower. Commercial Fault Tolerance
A Tale of Two Systems. IEEE Transactions on Dependable
and Secure Computing, 1(1) 87–96, January 2004.

[13]Bonwick and B.Moore. ZFS The Last Word in File Systems.
http //opensolaris.org/os/ community/zfs/docs/zfs last.pdf.

[14]C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying File
System Protection. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’01), Boston, Massachusetts,
June 2001.

[15] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, End-to-end Data
Integrity for File Systems A ZFS Case Study Proceedings of
the 8th Conference on File and Storage Technologies (FAST
'10), San Jose, CA, February 2010.

[16]D. Patterson, G. Gibson, and R. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proceedings of the
1988 ACM SIGMOD Conference on the Management of
Data (SIGMOD ’88), pages 109–116, Chicago, Illinois, June
1988.

[17]K. Keeton and J. Wilkes. Automating data dependability. In
Proceedings of the 10th ACM-SIGOPS European Workshop,
pages 93–100, Saint-Emilion, France, September 2002.

[18]D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior A General Approach to Inferring
Errors in Systems Code. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01),
pages 57–72, Banff, Canada, October 2001.

[19]M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, New York, October
2003.

[20]D. Anderson, J. Dykes, and E. Riedel. More Than an
Interface SCSI vs. ATA. In Proceedings of the 2nd USENIX
Symposium on File and Storage Technologies (FAST ’03),
San Francisco, California, April 2003.

[21]L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J.
Schindler. An Analysis of Latent Sector Errors in Disk
Drives. In Proceedings of the 2007 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’07), San Diego, California, June
2007.

[22]L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. In Proceedings of the

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167 66

2016 International Journal of Computer Science Issues

6th USENIX Symposium on File and Storage Technologies
(FAST ’08), pages 223–238, San Jose, California, February
2008.

Raza Muhammad: He completed his Bachelor Degree BS(CS)
for Shah Abdul Latif University Kharipur Pakistan in computer
science in 2004 and move to Karachi for higher studies. In 2007
he completed his Master Degree MS(CS) in computer science
from Pakistan Air Force-Karachi Institute of Economics and
Technology Karachi Pakistan. Now he is pursuing his PhD in
computer science from Huazhong University of Science and
Technology Wuhan P.R. China. In his academic career he worked
as lecturer and visiting lecturer in various universities and
government institutes. He also contributed in research papers as
main author and as second author. His area of interests are Big
Data, Linux Kernel programming, Wireless network and security
System of Computation.

Zhou Ke: He completed Bachelor in Computer Peripheral from
HUST Wuhan China in 1992 and Master in Computer Architecture
HUST Wuhan China in 1996 and perused his Doctor in Computer
Architecture HUST Wuhan China and completed in 2000.
Nowadays he is serving HUST as Professor in Wuhan National
Laboratory for Optoelectronics (WNLO). He also served as Visiting
Scholar Cranfield University U.K. 2005-03-31-2006-03-31. He got
honor and award in A Heterogeneous Unified Storage System for
GIS Grid Super Computing 2006 storage challenge finalist
Award,2006.

Basheer Riskhan: He received primary and secondary education
at St. John’s College, Jaffna and Zahira National College,
Puttalam. He earned his Bachelor degree in Computer Science
from Bharathidasan University, India in 2002 and Master degree in
Education from National Institute of Education, Sri Lanka in 2012.
At present he completed his PhD in Computer Science from
Huazhong University of Science and Technology Wuhan, P.R.
China. Basheer Riskhan joined National College of Education in
Sri Lanka as a Lecture in 2005 and working as a Sri Lanka
Teacher Educator Service (SLTES) officer in Sri Lanka. Before
that he served as Software Engineer in several private companies.
His research interests are in the field of Virtualization, Cloud
Computing, Kernel Programming and Big Data.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 6, November 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201606.6167 67

2016 International Journal of Computer Science Issues

