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Abstract 
Nowadays, with the recent evolution of sensor technologies, wireless 

communications, powerful mobile devices and other real-time 

sources, the way to process the high-speed and real-time data stream 

brings new challenges. 

These challenges of big data systems are to detect, anticipate and 

predict information with the finest granularity possible. The problem 

is that the system relies on batch processing, which can give great 

insight into what has happened in the past; however, they do not have 

the capacity to deal with what is happening at the moment, and of 

course it is crucial to process events as they happen to a real-time 

preview.  Many applications like fraud detection, data analytics, and 

production inspection need a fast response and processing time since 

big data system is based on the MapReduce framework that can only 

process a finite set of data, is not suitable for the processing of data 

stream and is inappropriate to satisfy the constraints in real time. 

Hence the need for a real-time data stream processing system, since it 

is fast and processes the data in a minimal time with low latency. 

This paper gives a clear comparison among the different systems that 

exist for real time data stream processing as well as a model that was 

based on the comparison that was conducted before.  

Keywords: Real-time processing, MapReduce, Spark, Storm, 

Lambda architecture, kappa architecture. 

1. Introduction

Nowadays,  the world we live in generates a large volume of 

information and data from different sources, namely search 

engines, social networks, computer logs, e-mail clients, sensor 

networks...etc All of these data are called masses of data or 

Big Data. For instance, a minute generates 347,222 new 

tweets on Twitter, about 701,389 Facebook logins, more than 

2.78 million videos views on YouTube, and 20.8 million 

messages on WhatsApp… etc[1]. All these data are generated 

continuously and in the form of streams. 

The recent evolution of sensor technologies, wireless 
communications, as well as powerful mobile devices are all 
under the umbrella of applications of internet of things, and  
the way to process the high-speed and real-time data stream 
brings new challenges. The new challenges of big data 
systems today are to detect, anticipate and predict information 
with the finest granularity possible. The problem is that the 
system relies on batch processing [2] which can give great 
insight into what has happened in the past; however, they do 
not have the capacity to deal with what is happening at the 
moment, and of course it is crucial to treat events as they 
happen to a real-time preview. Big data is based on the 
MapReduce framework that can only process a finite set of 
data, is not suitable for the processing of data stream and is 
inappropriate to satisfy the constraints in real time[3]. Hence 
the need for a real time data stream processing system, since it 
is fast and processes the data in a minimal time with low 
latency. 

Fig. 1  Mapreduce Jobs 
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Mapreduce is fundamentally suitable for parallelize processing 
on a large amount of data, but it’s not the best tool for 
processing the latest version of data. This framework is based 
on disk approach and each iteration output is written to disk 
making it slow. Figure 1 represents MapReduce jobs; 
MapReduce reads data from the disk and writes them again in 
the disk four times which means that the complete flow 
becomes very slow which degrades the performance.  

The rest of this paper is organized as follows: in section II, we 

define the basics of big data, ecosystem and stream 

processing. In section III, we present a survey of data 

processing tools. In section IV, we focus on a comparative 

study of the different systems of processing of data stream. In 

section V, we present an overview of two real time processing 

architectures. And last but not least, in section VI we suggest a 

model that was based on the previous comparisons. 

2. Big data: Theoretical Foundation

This section is devoted to some of the main concepts used in 

big data including an introduction of big data, its architecture, 

technologies used and concepts on big data stream. 

Big data is a new concept which has been introduced due to 

the large volume and complex data that become difficult to 

process using traditional data base methods and tools. 

According to Gartner [4] “Big data is high volume, high-

velocity and high-variety information assets that demand cost-

effective, innovative forms of information processing for 

enhanced insight and decision making.” In 2010, [5] Chen et 

al. defined big data as “datasets which could not be captured, 

managed, and processed by general computers within an 

acceptable scope.” [6]NIST says that “Big data shall mean the 

data of which the data volume, acquisition speed, or data 

representation limits the capacity of using traditional relational 

methods to conduct effective analysis or the data which may 

be effectively processed with important horizontal zoom 

technologies”. The characteristics of big data are summarized 

in the five Vs: Volume, Velocity, Variety, Veracity and Value.  

Volume represents the size or the quantity of the data from 

terabyte to yotabyte. It is a massive evolution we are talking 

about, since 2005 the data were limited to 0.1 ZB, and they 

may reach 40 ZB and more in 2020[7]. Velocity means that 

the data must be processed and analyzed quickly in terms of 

the speed of their capture. Variety indicates that the data are 

not of the same type, which allows us to harness different 

types of data structured, semi-structured and non-structured.  

Veracity targets the confidence in the data on which decisions 

are based. Last but not least, Value which means that systems 

must not only be designed to process massive data efficiently 

but also be able to filter the most important data from all 

collected data. 

According to previously stated definitions, we can say that big 

data is an abstract concept, which makes it possible to extract 

the following problems: how to store, analyze, process and 

extract the right information from a varied datasets quickly 

generated and in the form of a data stream. 

Stream processing is a technology that enables the data to be 

collected, integrated, analyzed and visualized in real time 

while the data is being produced[8]. Stream processing 

solutions are designed to handle big data in real time with a 

highly scalable, highly available, and highly fault tolerant 

architecture. This empowers to analyze the data in motion[9]. 

The goal of real time processing is to provide solutions that 

can process continuous infinite stream of data integrated from 

both live and historical sources in very fast and interactive 

way.  

3. Data stream processing tools

Ancient methods used to process data, including Hadoop 

precisely MapReduce jobs, are not adequate for real time 

processing. Real time data stream processing keeps you up to 

date with what is happening at the moment whatever is the 

speed or the volume of data needless of the storage system. In 

order to understand well the system at hand, we are going to 

present a brief overview of the other platforms namely 

Hadoop, Spark, as well as Storm. 

3.1 Apache Hadoop 

The Apache Hadoop [10] is a software that is open source 

used to process big data across clusters of machines and 

operate these sets of data in batches. The heart of Hadoop is 

divided in two main parts namely MapReduce for processing 

data, and HDFS for storing data. It is known for its reliability, 

scalability and its processing model.  

MapReduce was first introduced by Jeffrey Dean and Sanjay 

Ghemawat at Google in 2004[11], it is a programming model 

and an associated implementation for processing and 

generating large data sets on large clusters of commodity of 

machines. It is highly scalable, it can process petabytes of data 

stored in HDFS on one cluster, and it is highly fault tolerant 

which lets you run programs on a cluster of commodity server.  

This framework is based on two servers, a master Job Tracker 

that is unique on the cluster, it receives MapReduce tasks to 

run and organize their execution on the cluster. It is also 

responsible for scheduling the jobs' component tasks on the 

slaves as well as monitoring them and re-executing the failed 

tasks. The other server is the Task Tracker, there are several 

per cluster, it performs the job MapReduce itself. Each one of 

the Task Trackers is a unit of calculation of the cluster. 

Users specify a map function that processes a key/value pairs 

to generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with 

the same intermediate key. As figure 2 shows, first the 

MapReduce library in the user program splits the input files 

into M pieces of typically 16-64MB per piece, the master 

picks idle workers and assigns each one a map task or a reduce 

task. A worker who is assigned a map task reads the contents 

of the corresponding input split. The intermediate key/value 

pairs produced by the map function are buffered in memory. 

Periodically, the buffered pairs are written to local disk. When 

a reduce worker has read all intermediate data for its partition, 

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.20943/01201705.612 7

2017 International Journal of Computer Science Issues



it sorts it by the intermediate keys so that all occurrences of 

the same key are grouped together. The sorting is needed 

because typically many different keys map to the same reduce 

task. If the amount of the intermediate data is too large to fit in 

memory, an external sort is used. The reduce worker iterates 

over the sorted intermediate data and for each unique 

intermediate key encountered, it passes the key and the 

corresponding set of intermediate values to the user’s reduce 

function[11]. 

Fig. 2  Map Reduce Execution Overview 

 MapReduce has some limitations[12]: 

 Developed for batch processing

 Based on disk approach

 Extremely rigid data flow

 Disk seek for every access

 Inefficient for iterative algorithms and interactive

data mining

3.2 Apache Spark 

Apache Spark[13]is an open source framework of big data 

processing built at the base of Hadoop MapReduce to perform 

sophisticated analysis and designed for speed and ease of use. 

This was originally developed by UC Berkeley University in 

2009 and passed open source as an Apache project in 2010. 

Spark has lightning fast performance and speed up processing 

times because it runs in-memory on clusters. It is also 

designed to operate on batches like apache Hadoop, but the 

size of batch window is very small. The core of apache spark 

is RDD (Resilient Distributed Dataset), it is fault tolerant 

collection of elements distributed across many servers on 

which we can perform parallel operations. [14] The elements 

of an RDD need not exist in physical storage; instead, a handle 

to an RDD contains enough information to compute the RDD 

starting from data in reliable storage. This means that RDDs 

can always be reconstructed if nodes fail. Alongside Spark's 

main APIs, the ecosystem contains additional libraries that 

enable work in the field of big data analysis and machine 

learning. These libraries include spark streaming for 

processing a continuous data stream, Spark SQL for working 

with structured data, MLlib is a machine learning library, and 

GraphX for graph computation, as shown in figure 3. 

Fig. 3  Spark framework 

Spark streaming [13]is an extension of the core Spark API that 

enables scalable, high-throughput, and fault-tolerant stream 

processing of live data streams. Data can be ingested from 

many sources like Kafka, Flume, Kinesis, or TCP sockets, and 

can be processed using complex algorithms expressed with 

high-level functions like map, reduce, join and window. [15]In 

Figure 4, we can see that spark streaming is based on a mode 

of processing in micro-batch It receives live input data streams 

and divides the data into batches, which are then processed by 

the Spark engine in a very fixed amount of time to generate 

the final stream of results in batches. All input streams are 

dealt with in the same way. The same recurrent timer allocates 

batches for all streams on every batch duration.  

Spark has several advantages over Hadoop MapReduce. First, 

Spark offers a comprehensive and unified framework to meet 

the needs of big data processing. Then, Spark allows 

applications on Hadoop clusters to be run up to 100 times 

faster in memory and 10 times faster on disk. In addition, it is 

possible to use it interactively to query the data from a shell 

command window. Despite all the advantages of spark 

compared to Hadoop MapReduce, it remains confronted with 

several limitations; among them is the real time stream 

processing that is not ensured. This is due to the fact that spark 

implements the concept of micro-batches in its operation and 

does not process the data as they arrive because they are 

accumulated for a period of time before being processed. The 

major difference between Spark and Storm shall be discussed 

in upcoming sections.

Fig. 4  Spark streaming 

3.3 Apache Storm 

Storm, which [16] is a technology that was realized by Nathan 

Marz for real-time analysis in December 2010, is a free and 

open source distributed real time computation, and makes it 

easy to reliably process unbounded streams of data. Storm 

does for real time processing what Hadoop does for batch 
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processing; it’s simple and can be used with any programming 

language. 

A storm cluster has three sets of nodes, the first one is a 

daemon process called “Nimbus” similar to the Hadoop Job 

Tracker. It is running on main node in order to upload 

computations for execution, distribute codes across the cluster, 

arrange tasks and detect errors. The second node is called 

“Supervisor”, it is responsible for starting and stopping the 

working process according to signals from Nimbus. And 

finally, the “Zookeeper” node which is a distributed 

coordination service that coordinates the storm cluster as 

shown in figure 5. A Storm cluster is superficially similar to a 

Hadoop cluster. Whereas on Hadoop you run "MapReduce 

jobs" on Storm you run "topologies". "Jobs" and "topologies" 

themselves are very different -- one key difference is that a 

MapReduce job eventually finishes, whereas a topology 

processes messages forever (or until you kill it). 

Fig. 5  Structure of Storm Cluster 

A topology consists of spouts and bolts and the links between 

them show how streams are passing around. This topology is 

represented like a data processing Directed Acyclic Graph 

(DAG) which represents the whole stream processing 

procedure. A topology representation is shown below in figure 

6. 

A spout is a source of streams that reads tuples from external 

input source and emits them to the bolts as a stream. A bolt is 

a data processing unit of a storm topology which consumes 

any number of input streams, conducts some specific 

processing, and emits new streams out to other bolts. The core 

abstraction in Storm is the "stream". A stream is an unbounded 

sequence of tuples. A tuple is a named list of values, and a 

field in a tuple can be an object of any type. Storm provides 

the primitives for transforming a stream into a new stream in a 

distributed and reliable way. 

Fig. 6  Example of Topology 

4. A Comparison of real time processing

systems

In this section we compare the different tools used for the real 

time stream processing and according to this comparison we 

will choose the most suitable tool. 

Table 1: Comparison of Big data processing tools 

Hadoop Spark Storm 

Source Model Open source Open source Open source 

Architecture Master/slaves Master/slaves Peer 

Processing 

Model 

Batch Micro-batch Real-

time(one-at-a 

time) 

Big data 

processing 

Batch Batch and 

Stream 

Stream 

achievable 

latency 

High A few seconds 

(< 1s) 

Less than a 

second 

(< 100ms) 

API 

Programmati

on 

Java-Python 

and Scala 

Java-Python and 

Scala 

Any PL 

Guaranteed 

Data 

Processing 

exactly-once exactly-once At least once 

processing 

Storage data yes yes No 

In memory No Yes Yes 

Fault tolerance Yes Yes Yes 

Ordering 

guarantees 

Yes Yes No 

Coordination 

tool 

Zookeeper Zookeeper Zookeeper 
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The comparison above shows that storm is the best tool for 

real time stream processing, Hadoop does batch processing, 

and spark is capable of doing micro-batching. Storm uses the 

spouts and bolts to do one-at-a-time processing to avoid the 

inherent latency overhead imposed by batching and micro-

batching. 

5. Real time processing architectures

In this paper, we present a short overview of some of the Real 

time processing architectures namely Lambda and Kappa. 

5.1 Lambda Architecture 

The lambda architecture has been proposed by Nathan Marz. 

This architecture mixes the benefit of processing models, 

batch processing and real time processing to provide better 

results in low latency. 

Fig. 7  Lambda architecture[17] 

Figure 7 shows the basic architecture of lambda [18]. It is 

divided into three layers: 

 Batch layer - manages historical data and re-

computing results.

 Speed layer - receives the arriving data and performs

incremental updates to the batch layer results.

 Service layer - enables various queries of the results

sent from the batch and speed layers.

All new data are sent to both the batch and the speed layer.

The batch layer is responsible for storing the master data set 

and contiguously computes views of these data with the use of 

the MapReduce algorithm. The results of the batch layer are 

called "batch views". 

The serving layer indexes the pre-computed views produced 

by the batch layer. It is a scalable database that swaps in new 

batch views as they are made available. Due to the latency of 

the batch layer, the results available from the serving layer are 

always out of date by a few hours. The serving layer can be 

implemented using NoSQL technologies such as HBase, 

Apache Druid… etc. 

The speed layer compensates for the high latency of updates to 

the serving layer. The role of this layer is to compute in real 

time the data that have not been taking into account in the last 

batch of the batch layer. It produces the real-time views that 

are always up to date and stores them in a fast store. The speed 

layer can be realized with data streaming technologies such as 

Apache Storm or Spark Streaming. 

Yet, the lambda architecture has some limitations; the first 

thing is the business logic which is implemented twice in the 

real time and batch layers. The developers need to write the 

same code on both layers. The second remark consists of the 

need of more frameworks to master. And finally, there are 

simpler solutions when the need is less complex. 

5.2 Kappa Architecture 

Kappa architecture [19] as described by Jay kreps at Linkedin 

in 2014, is a software architecture pattern. Kappa is a 

simplification of lambda architecture which means it’s like a 

Lambda Architecture system with the batch processing system 

removed. [19] The canonical data store in a Kappa 

Architecture system is an append-only immutable log. From 

the log, data is streamed through a computational system and 

fed into auxiliary stores for serving. 

In fact, and even more than the lambda architecture, the Kappa 

architecture does not allow for the permanent storage of data. 

It is more dedicated to their processing. Although more 

restricted, the Kappa architecture leaves some freedom in the 

choice of components implemented. 

In contrast to lambda architecture, which utilized two different 

code paths for the batch and the speed layer, Kappa uses only 

a single code path for the two layers which reduces system 

complexity[20]. The benefit of Kappa architecture is 

permitting users to develop, test, debug and operate their 

systems on top of a single processing framework. The figure 

below represents the Kappa architecture: 

Fig. 8  Kappa architecture [21] 
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The chart below represents a short comparison of the two 

architectures as has been discussed before, namely Lambda 

and Kappa, following specific criteria. 

Table 2: A comparison of real time processing architectures 

Lambda 

architecture 

Kappa 

architecture 

Architecture immutable immutable 

Fault tolerance yes yes 

Scalability yes yes 

permanent 

storage 

yes no 

Layers Batch, real-time 

and service layer 

Real-time and 

service layer 

Processing data Batch and 

streaming 

streaming 

Processing 

guarantees 

Yes in batch but 

approximate in 

streaming 

Exactly once 

Re-processing 

pradigm 

In every batch 

cycle 

Just when code 

change 

Real time Isn’t accurate accurate 

6. Proposed Architecture

According to the architectures and platforms presented in the 

previous paragraphs, we have presented the different benefits 

and disadvantages of each of these architectures, and 

according to its information, we designed a new architecture 

that is open source, and takes into account several criteria, 

among which the real-time processing of large data from high 

speed. It also allows an unlimited number of users to create 

many new and innovative features and make several 

improvements. 

This architecture must ingest-filter-analyze and process 

incoming data streams with low latency, so the system must 

respond fairly quickly and it depends on the processing 

architecture used (spark, storm, etc.) or the size of the data and 

the complexity of the calculations performed. On the other 

hand, one must consider how to choose the most efficient tool; 

it should be easy to use not to pose to users, be it analysts or 

developers, infrastructure problems. 

Perfectly, we want an architecture that allows making a 

transition to scale fairly easy and visually changing resource 

allocation. Furthermore, the newly configured resources have 

to join the cluster seamlessly and can handle changes in load 

or traffic without interrupting the streaming data processing 

globally. 

And finally, a real-time architecture must provide a live 

streaming data visualization. It must allow the dynamic 

creation of dashboards, custom graphics, and UI extensions. 

Figure 8 represents the new architecture, subdivided as a 

result: 

Fig. 9  Proposed architecture 

Figure 8 represents both the traditional architecture of big data 

as well as the proposed architecture. The traditional 

architecture contains three layers namely storage, processing, 

and analysis, whereas our proposed architecture is represented 

as follows. The data come from different devices and 

equipments such as sensors, networks, cyber infrastructure, 

web, email, social media and many more. These Data, which 

come as a stream from different sources with a high speed, are 

acquired by the Integration Layer using a set of tools and 

functionalities (e.g. Apache Kafka).  After being ingested, the 

data are going to be filtered through (ELT) extract-transform-

load operations (e.g. PIG). In other words, the data are going 

to be cleaned, and their qualities are going to be analyzed 

…etc.  This Filtering Layer serves the data to be prepared for 

the Real Time Processing Layer, this latter aims to process 

the data in real time and with very low latency. As shown in 

figure 9, two technologies are to be used in this layer namely 

Storm, which is a tool for real time processing, and Machine 

Learning. The use of Machine Learning in this layer allows 

the archiving of data. Its goal is to visualize previous trends 

using a request/response method on similar inputs. ML learns 

continuously from new coming data which facilitates 

processing. Storm, on the other hand, is also used in this layer 

in order to process data in real time. It uses the notion of 

topology which is a network of Spout and Bolt. As has been 

noted before, the streams come from Spout that broadcasts 

data coming from external sources in Storm topology. 
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Concerning Bolts, we can implement some functionalities 

such as functions, filters, joins, aggregations…etc. So, Map 

function can be implemented in Bolt so as to mark the words 

of the stream. The resulting stream coming from Bolt ‘Map’ 

flows into the following Bolt that implements the ‘Reduce’ 

function in order to aggregate words into numbers. 

Fig. 10  Real Time Processing Layer 

After the end of the processing, data are going to be stored 

either in a NoSQL base, or directly in the Distributed File 

system like HDFS, and finally the visualization layer will 

present to the user the result of the final data in streaming 

mode. 

7. Conclusion

In this paper, we tried to present a state of the art concerning 

different concepts which led to conducting a thorough 

comparison of data stream processing tools. The main 

objective behind this comparison is to show that big data 

architecture is based on Batch processing which cannot 

process data in real time. Through this thorough comparison, 

storm was chosen as a tool for data processing because it is an 

open source that allows a real time processing with a very low 

latency.  

Another comparison for real time processing architectures was 

also conducted so as to suggest a new architecture in which 

Storm and Machine Learning were used in order to facilitate 

the processing in real time.    

Our next target is to implement and test this proposed 

architecture in the upcoming research. 
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