
Real-time Data Stream Processing

Challenges and Perspectives

OUNACER Soumaya 1, TALHAOUI Mohamed Amine 2, ARDCHIR Soufiane 3, DAIF Abderrahmane4 and AZOUAZI Mohamed5

1 Hassan II University, Faculty Of Sciences Ben m'Sik,

Laboratoire Mathématiques Informatique et Traitement de

 l’Information MITI, Casablanca, Morocco

2 Hassan II University, Faculty Of Sciences Ben m'Sik,

Laboratoire Mathématiques Informatique et Traitement de

 l’Information MITI, Casablanca, Morocco

3 Hassan II University, Faculty Of Sciences Ben m'Sik,

Laboratoire Mathématiques Informatique et Traitement de

 l’Information MITI, Casablanca, Morocco

4 Hassan II University, Faculty Of Sciences Ben m'Sik,

Laboratoire Mathématiques Informatique et Traitement de

 l’Information MITI, Casablanca, Morocco

5 Hassan II University, Faculty Of Sciences Ben m'Sik,

Laboratoire Mathématiques Informatique et Traitement de

 l’Information MITI, Casablanca, Morocco

Abstract
Nowadays, with the recent evolution of sensor technologies, wireless

communications, powerful mobile devices and other real-time

sources, the way to process the high-speed and real-time data stream

brings new challenges.

These challenges of big data systems are to detect, anticipate and

predict information with the finest granularity possible. The problem

is that the system relies on batch processing, which can give great

insight into what has happened in the past; however, they do not have

the capacity to deal with what is happening at the moment, and of

course it is crucial to process events as they happen to a real-time

preview. Many applications like fraud detection, data analytics, and

production inspection need a fast response and processing time since

big data system is based on the MapReduce framework that can only

process a finite set of data, is not suitable for the processing of data

stream and is inappropriate to satisfy the constraints in real time.

Hence the need for a real-time data stream processing system, since it

is fast and processes the data in a minimal time with low latency.

This paper gives a clear comparison among the different systems that

exist for real time data stream processing as well as a model that was

based on the comparison that was conducted before.

Keywords: Real-time processing, MapReduce, Spark, Storm,

Lambda architecture, kappa architecture.

1. Introduction

Nowadays, the world we live in generates a large volume of

information and data from different sources, namely search

engines, social networks, computer logs, e-mail clients, sensor

networks...etc All of these data are called masses of data or

Big Data. For instance, a minute generates 347,222 new

tweets on Twitter, about 701,389 Facebook logins, more than

2.78 million videos views on YouTube, and 20.8 million

messages on WhatsApp… etc[1]. All these data are generated

continuously and in the form of streams.

The recent evolution of sensor technologies, wireless
communications, as well as powerful mobile devices are all
under the umbrella of applications of internet of things, and
the way to process the high-speed and real-time data stream
brings new challenges. The new challenges of big data
systems today are to detect, anticipate and predict information
with the finest granularity possible. The problem is that the
system relies on batch processing [2] which can give great
insight into what has happened in the past; however, they do
not have the capacity to deal with what is happening at the
moment, and of course it is crucial to treat events as they
happen to a real-time preview. Big data is based on the
MapReduce framework that can only process a finite set of
data, is not suitable for the processing of data stream and is
inappropriate to satisfy the constraints in real time[3]. Hence
the need for a real time data stream processing system, since it
is fast and processes the data in a minimal time with low
latency.

Fig. 1 Mapreduce Jobs

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 6

2017 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201705.612&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.20943/01201705.612&domain=pdf

Mapreduce is fundamentally suitable for parallelize processing
on a large amount of data, but it’s not the best tool for
processing the latest version of data. This framework is based
on disk approach and each iteration output is written to disk
making it slow. Figure 1 represents MapReduce jobs;
MapReduce reads data from the disk and writes them again in
the disk four times which means that the complete flow
becomes very slow which degrades the performance.

The rest of this paper is organized as follows: in section II, we

define the basics of big data, ecosystem and stream

processing. In section III, we present a survey of data

processing tools. In section IV, we focus on a comparative

study of the different systems of processing of data stream. In

section V, we present an overview of two real time processing

architectures. And last but not least, in section VI we suggest a

model that was based on the previous comparisons.

2. Big data: Theoretical Foundation

This section is devoted to some of the main concepts used in

big data including an introduction of big data, its architecture,

technologies used and concepts on big data stream.

Big data is a new concept which has been introduced due to

the large volume and complex data that become difficult to

process using traditional data base methods and tools.

According to Gartner [4] “Big data is high volume, high-

velocity and high-variety information assets that demand cost-

effective, innovative forms of information processing for

enhanced insight and decision making.” In 2010, [5] Chen et

al. defined big data as “datasets which could not be captured,

managed, and processed by general computers within an

acceptable scope.” [6]NIST says that “Big data shall mean the

data of which the data volume, acquisition speed, or data

representation limits the capacity of using traditional relational

methods to conduct effective analysis or the data which may

be effectively processed with important horizontal zoom

technologies”. The characteristics of big data are summarized

in the five Vs: Volume, Velocity, Variety, Veracity and Value.

Volume represents the size or the quantity of the data from

terabyte to yotabyte. It is a massive evolution we are talking

about, since 2005 the data were limited to 0.1 ZB, and they

may reach 40 ZB and more in 2020[7]. Velocity means that

the data must be processed and analyzed quickly in terms of

the speed of their capture. Variety indicates that the data are

not of the same type, which allows us to harness different

types of data structured, semi-structured and non-structured.

Veracity targets the confidence in the data on which decisions

are based. Last but not least, Value which means that systems

must not only be designed to process massive data efficiently

but also be able to filter the most important data from all

collected data.

According to previously stated definitions, we can say that big

data is an abstract concept, which makes it possible to extract

the following problems: how to store, analyze, process and

extract the right information from a varied datasets quickly

generated and in the form of a data stream.

Stream processing is a technology that enables the data to be

collected, integrated, analyzed and visualized in real time

while the data is being produced[8]. Stream processing

solutions are designed to handle big data in real time with a

highly scalable, highly available, and highly fault tolerant

architecture. This empowers to analyze the data in motion[9].

The goal of real time processing is to provide solutions that

can process continuous infinite stream of data integrated from

both live and historical sources in very fast and interactive

way.

3. Data stream processing tools

Ancient methods used to process data, including Hadoop

precisely MapReduce jobs, are not adequate for real time

processing. Real time data stream processing keeps you up to

date with what is happening at the moment whatever is the

speed or the volume of data needless of the storage system. In

order to understand well the system at hand, we are going to

present a brief overview of the other platforms namely

Hadoop, Spark, as well as Storm.

3.1 Apache Hadoop

The Apache Hadoop [10] is a software that is open source

used to process big data across clusters of machines and

operate these sets of data in batches. The heart of Hadoop is

divided in two main parts namely MapReduce for processing

data, and HDFS for storing data. It is known for its reliability,

scalability and its processing model.

MapReduce was first introduced by Jeffrey Dean and Sanjay

Ghemawat at Google in 2004[11], it is a programming model

and an associated implementation for processing and

generating large data sets on large clusters of commodity of

machines. It is highly scalable, it can process petabytes of data

stored in HDFS on one cluster, and it is highly fault tolerant

which lets you run programs on a cluster of commodity server.

This framework is based on two servers, a master Job Tracker

that is unique on the cluster, it receives MapReduce tasks to

run and organize their execution on the cluster. It is also

responsible for scheduling the jobs' component tasks on the

slaves as well as monitoring them and re-executing the failed

tasks. The other server is the Task Tracker, there are several

per cluster, it performs the job MapReduce itself. Each one of

the Task Trackers is a unit of calculation of the cluster.

Users specify a map function that processes a key/value pairs

to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with

the same intermediate key. As figure 2 shows, first the

MapReduce library in the user program splits the input files

into M pieces of typically 16-64MB per piece, the master

picks idle workers and assigns each one a map task or a reduce

task. A worker who is assigned a map task reads the contents

of the corresponding input split. The intermediate key/value

pairs produced by the map function are buffered in memory.

Periodically, the buffered pairs are written to local disk. When

a reduce worker has read all intermediate data for its partition,

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 7

2017 International Journal of Computer Science Issues

it sorts it by the intermediate keys so that all occurrences of

the same key are grouped together. The sorting is needed

because typically many different keys map to the same reduce

task. If the amount of the intermediate data is too large to fit in

memory, an external sort is used. The reduce worker iterates

over the sorted intermediate data and for each unique

intermediate key encountered, it passes the key and the

corresponding set of intermediate values to the user’s reduce

function[11].

Fig. 2 Map Reduce Execution Overview

 MapReduce has some limitations[12]:

 Developed for batch processing

 Based on disk approach

 Extremely rigid data flow

 Disk seek for every access

 Inefficient for iterative algorithms and interactive

data mining

3.2 Apache Spark

Apache Spark[13]is an open source framework of big data

processing built at the base of Hadoop MapReduce to perform

sophisticated analysis and designed for speed and ease of use.

This was originally developed by UC Berkeley University in

2009 and passed open source as an Apache project in 2010.

Spark has lightning fast performance and speed up processing

times because it runs in-memory on clusters. It is also

designed to operate on batches like apache Hadoop, but the

size of batch window is very small. The core of apache spark

is RDD (Resilient Distributed Dataset), it is fault tolerant

collection of elements distributed across many servers on

which we can perform parallel operations. [14] The elements

of an RDD need not exist in physical storage; instead, a handle

to an RDD contains enough information to compute the RDD

starting from data in reliable storage. This means that RDDs

can always be reconstructed if nodes fail. Alongside Spark's

main APIs, the ecosystem contains additional libraries that

enable work in the field of big data analysis and machine

learning. These libraries include spark streaming for

processing a continuous data stream, Spark SQL for working

with structured data, MLlib is a machine learning library, and

GraphX for graph computation, as shown in figure 3.

Fig. 3 Spark framework

Spark streaming [13]is an extension of the core Spark API that

enables scalable, high-throughput, and fault-tolerant stream

processing of live data streams. Data can be ingested from

many sources like Kafka, Flume, Kinesis, or TCP sockets, and

can be processed using complex algorithms expressed with

high-level functions like map, reduce, join and window. [15]In

Figure 4, we can see that spark streaming is based on a mode

of processing in micro-batch It receives live input data streams

and divides the data into batches, which are then processed by

the Spark engine in a very fixed amount of time to generate

the final stream of results in batches. All input streams are

dealt with in the same way. The same recurrent timer allocates

batches for all streams on every batch duration.

Spark has several advantages over Hadoop MapReduce. First,

Spark offers a comprehensive and unified framework to meet

the needs of big data processing. Then, Spark allows

applications on Hadoop clusters to be run up to 100 times

faster in memory and 10 times faster on disk. In addition, it is

possible to use it interactively to query the data from a shell

command window. Despite all the advantages of spark

compared to Hadoop MapReduce, it remains confronted with

several limitations; among them is the real time stream

processing that is not ensured. This is due to the fact that spark

implements the concept of micro-batches in its operation and

does not process the data as they arrive because they are

accumulated for a period of time before being processed. The

major difference between Spark and Storm shall be discussed

in upcoming sections.

Fig. 4 Spark streaming

3.3 Apache Storm

Storm, which [16] is a technology that was realized by Nathan

Marz for real-time analysis in December 2010, is a free and

open source distributed real time computation, and makes it

easy to reliably process unbounded streams of data. Storm

does for real time processing what Hadoop does for batch

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 8

2017 International Journal of Computer Science Issues

processing; it’s simple and can be used with any programming

language.

A storm cluster has three sets of nodes, the first one is a

daemon process called “Nimbus” similar to the Hadoop Job

Tracker. It is running on main node in order to upload

computations for execution, distribute codes across the cluster,

arrange tasks and detect errors. The second node is called

“Supervisor”, it is responsible for starting and stopping the

working process according to signals from Nimbus. And

finally, the “Zookeeper” node which is a distributed

coordination service that coordinates the storm cluster as

shown in figure 5. A Storm cluster is superficially similar to a

Hadoop cluster. Whereas on Hadoop you run "MapReduce

jobs" on Storm you run "topologies". "Jobs" and "topologies"

themselves are very different -- one key difference is that a

MapReduce job eventually finishes, whereas a topology

processes messages forever (or until you kill it).

Fig. 5 Structure of Storm Cluster

A topology consists of spouts and bolts and the links between

them show how streams are passing around. This topology is

represented like a data processing Directed Acyclic Graph

(DAG) which represents the whole stream processing

procedure. A topology representation is shown below in figure

6.

A spout is a source of streams that reads tuples from external

input source and emits them to the bolts as a stream. A bolt is

a data processing unit of a storm topology which consumes

any number of input streams, conducts some specific

processing, and emits new streams out to other bolts. The core

abstraction in Storm is the "stream". A stream is an unbounded

sequence of tuples. A tuple is a named list of values, and a

field in a tuple can be an object of any type. Storm provides

the primitives for transforming a stream into a new stream in a

distributed and reliable way.

Fig. 6 Example of Topology

4. A Comparison of real time processing

systems

In this section we compare the different tools used for the real

time stream processing and according to this comparison we

will choose the most suitable tool.

Table 1: Comparison of Big data processing tools

Hadoop Spark Storm

Source Model Open source Open source Open source

Architecture Master/slaves Master/slaves Peer

Processing

Model

Batch Micro-batch Real-

time(one-at-a

time)

Big data

processing

Batch Batch and

Stream

Stream

achievable

latency

High A few seconds

(< 1s)

Less than a

second

(< 100ms)

API

Programmati

on

Java-Python

and Scala

Java-Python and

Scala

Any PL

Guaranteed

Data

Processing

exactly-once exactly-once At least once

processing

Storage data yes yes No

In memory No Yes Yes

Fault tolerance Yes Yes Yes

Ordering

guarantees

Yes Yes No

Coordination

tool

Zookeeper Zookeeper Zookeeper

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 9

2017 International Journal of Computer Science Issues

The comparison above shows that storm is the best tool for

real time stream processing, Hadoop does batch processing,

and spark is capable of doing micro-batching. Storm uses the

spouts and bolts to do one-at-a-time processing to avoid the

inherent latency overhead imposed by batching and micro-

batching.

5. Real time processing architectures

In this paper, we present a short overview of some of the Real

time processing architectures namely Lambda and Kappa.

5.1 Lambda Architecture

The lambda architecture has been proposed by Nathan Marz.

This architecture mixes the benefit of processing models,

batch processing and real time processing to provide better

results in low latency.

Fig. 7 Lambda architecture[17]

Figure 7 shows the basic architecture of lambda [18]. It is

divided into three layers:

 Batch layer - manages historical data and re-

computing results.

 Speed layer - receives the arriving data and performs

incremental updates to the batch layer results.

 Service layer - enables various queries of the results

sent from the batch and speed layers.

All new data are sent to both the batch and the speed layer.

The batch layer is responsible for storing the master data set

and contiguously computes views of these data with the use of

the MapReduce algorithm. The results of the batch layer are

called "batch views".

The serving layer indexes the pre-computed views produced

by the batch layer. It is a scalable database that swaps in new

batch views as they are made available. Due to the latency of

the batch layer, the results available from the serving layer are

always out of date by a few hours. The serving layer can be

implemented using NoSQL technologies such as HBase,

Apache Druid… etc.

The speed layer compensates for the high latency of updates to

the serving layer. The role of this layer is to compute in real

time the data that have not been taking into account in the last

batch of the batch layer. It produces the real-time views that

are always up to date and stores them in a fast store. The speed

layer can be realized with data streaming technologies such as

Apache Storm or Spark Streaming.

Yet, the lambda architecture has some limitations; the first

thing is the business logic which is implemented twice in the

real time and batch layers. The developers need to write the

same code on both layers. The second remark consists of the

need of more frameworks to master. And finally, there are

simpler solutions when the need is less complex.

5.2 Kappa Architecture

Kappa architecture [19] as described by Jay kreps at Linkedin

in 2014, is a software architecture pattern. Kappa is a

simplification of lambda architecture which means it’s like a

Lambda Architecture system with the batch processing system

removed. [19] The canonical data store in a Kappa

Architecture system is an append-only immutable log. From

the log, data is streamed through a computational system and

fed into auxiliary stores for serving.

In fact, and even more than the lambda architecture, the Kappa

architecture does not allow for the permanent storage of data.

It is more dedicated to their processing. Although more

restricted, the Kappa architecture leaves some freedom in the

choice of components implemented.

In contrast to lambda architecture, which utilized two different

code paths for the batch and the speed layer, Kappa uses only

a single code path for the two layers which reduces system

complexity[20]. The benefit of Kappa architecture is

permitting users to develop, test, debug and operate their

systems on top of a single processing framework. The figure

below represents the Kappa architecture:

Fig. 8 Kappa architecture [21]

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 10

2017 International Journal of Computer Science Issues

The chart below represents a short comparison of the two

architectures as has been discussed before, namely Lambda

and Kappa, following specific criteria.

Table 2: A comparison of real time processing architectures

Lambda

architecture

Kappa

architecture

Architecture immutable immutable

Fault tolerance yes yes

Scalability yes yes

permanent

storage

yes no

Layers Batch, real-time

and service layer

Real-time and

service layer

Processing data Batch and

streaming

streaming

Processing

guarantees

Yes in batch but

approximate in

streaming

Exactly once

Re-processing

pradigm

In every batch

cycle

Just when code

change

Real time Isn’t accurate accurate

6. Proposed Architecture

According to the architectures and platforms presented in the

previous paragraphs, we have presented the different benefits

and disadvantages of each of these architectures, and

according to its information, we designed a new architecture

that is open source, and takes into account several criteria,

among which the real-time processing of large data from high

speed. It also allows an unlimited number of users to create

many new and innovative features and make several

improvements.

This architecture must ingest-filter-analyze and process

incoming data streams with low latency, so the system must

respond fairly quickly and it depends on the processing

architecture used (spark, storm, etc.) or the size of the data and

the complexity of the calculations performed. On the other

hand, one must consider how to choose the most efficient tool;

it should be easy to use not to pose to users, be it analysts or

developers, infrastructure problems.

Perfectly, we want an architecture that allows making a

transition to scale fairly easy and visually changing resource

allocation. Furthermore, the newly configured resources have

to join the cluster seamlessly and can handle changes in load

or traffic without interrupting the streaming data processing

globally.

And finally, a real-time architecture must provide a live

streaming data visualization. It must allow the dynamic

creation of dashboards, custom graphics, and UI extensions.

Figure 8 represents the new architecture, subdivided as a

result:

Fig. 9 Proposed architecture

Figure 8 represents both the traditional architecture of big data

as well as the proposed architecture. The traditional

architecture contains three layers namely storage, processing,

and analysis, whereas our proposed architecture is represented

as follows. The data come from different devices and

equipments such as sensors, networks, cyber infrastructure,

web, email, social media and many more. These Data, which

come as a stream from different sources with a high speed, are

acquired by the Integration Layer using a set of tools and

functionalities (e.g. Apache Kafka). After being ingested, the

data are going to be filtered through (ELT) extract-transform-

load operations (e.g. PIG). In other words, the data are going

to be cleaned, and their qualities are going to be analyzed

…etc. This Filtering Layer serves the data to be prepared for

the Real Time Processing Layer, this latter aims to process

the data in real time and with very low latency. As shown in

figure 9, two technologies are to be used in this layer namely

Storm, which is a tool for real time processing, and Machine

Learning. The use of Machine Learning in this layer allows

the archiving of data. Its goal is to visualize previous trends

using a request/response method on similar inputs. ML learns

continuously from new coming data which facilitates

processing. Storm, on the other hand, is also used in this layer

in order to process data in real time. It uses the notion of

topology which is a network of Spout and Bolt. As has been

noted before, the streams come from Spout that broadcasts

data coming from external sources in Storm topology.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 11

2017 International Journal of Computer Science Issues

Concerning Bolts, we can implement some functionalities

such as functions, filters, joins, aggregations…etc. So, Map

function can be implemented in Bolt so as to mark the words

of the stream. The resulting stream coming from Bolt ‘Map’

flows into the following Bolt that implements the ‘Reduce’

function in order to aggregate words into numbers.

Fig. 10 Real Time Processing Layer

After the end of the processing, data are going to be stored

either in a NoSQL base, or directly in the Distributed File

system like HDFS, and finally the visualization layer will

present to the user the result of the final data in streaming

mode.

7. Conclusion

In this paper, we tried to present a state of the art concerning

different concepts which led to conducting a thorough

comparison of data stream processing tools. The main

objective behind this comparison is to show that big data

architecture is based on Batch processing which cannot

process data in real time. Through this thorough comparison,

storm was chosen as a tool for data processing because it is an

open source that allows a real time processing with a very low

latency.

Another comparison for real time processing architectures was

also conducted so as to suggest a new architecture in which

Storm and Machine Learning were used in order to facilitate

the processing in real time.

Our next target is to implement and test this proposed

architecture in the upcoming research.

References

[1] K. LEBOEUF, “2016 Update_ What Happens in One

Internet Minute_ - Excelacom, Inc.” [Online]. Available:

http://www.excelacom.com/resources/blog/2016-update-

what-happens-in-one-internet-minute.

[2] “MapReduce.” [Online]. Available:

https://fr.hortonworks.com/apache/mapreduce/.

[3] D. S. Terzi, U. Demirezen, and S. Sagiroglu, “Evaluations of

big data processing,” vol. 3, no. 1, 2016.

[4] Gartner Inc., “What Is Big Data? - Gartner IT Glossary - Big

Data,” Gartner IT Glossary. p. 1, 2013.

[5] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob.

Networks Appl., vol. 19, no. 2, pp. 171–209, 2014.

[6] G. Li, Big data related technologies, challenges and future

prospects, vol. 15, no. 3. 2015.

[7] G. Herber, “Innovation Session Unlocking the Massive

Potential of Sensor Data and the Internet of Things,” 2014.

[8] M. M. Maske and P. Prasad, “A real time processing and

streaming of wireless network data using Storm,” 2015 Int.

Conf. Comput. Power, Energy, Inf. Commun., pp. 0244–

0249, 2015.

[9] K. Wähner, “Real-Time Stream Processing as Game

Changer in a Big Data World with Hadoop and Data

Warehouse,” InfoQ. pp. 1–9, 2014.

[10] W. Is et al., “Welcome to ApacheTM HadoopTM!,”

Innovation, no. November 2008. pp. 2009–2012, 2012.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Proc. 6th Symp. Oper. Syst.

Des. Implement., pp. 137–149, 2004.

[12] G. C. Deka, “Handbook of Research on Cloud

Infrastructures for Big Data Analytics,” Handbook of

Research on Cloud Infrastructures for Big Data Analytics.

pp. 370–391, 2014.

[13] Apache Spark, “Apache SparkTM - Lightning-Fast Cluster

Computing,” Spark.Apache.Org. 2015.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, “Spark : Cluster Computing with Working Sets,”

HotCloud’10 Proc. 2nd USENIX Conf. Hot Top. cloud

Comput., p. 10, 2010.

[15] A. Ghaffar, S. & Tariq, R. Soomro, A. G. Shoro, and &

Tariq, “Big Data Analysis: Ap Spark Perspective,” Glob. J.

Comput. Sci. Technol. Glob. Journals Inc. Glob. J. Comput.

Sci. Technol., vol. 15, no. 1, pp. 7–14, 2015.

[16] N. Marz, “Tutorial.” [Online]. Available:

http://storm.apache.org/releases/1.1.0/Tutorial.html.

[17] “Lambda Architecture,” 2014. [Online]. Available:

http://lambda-architecture.net/.

[18] N. Marz, Big Data - Principles and best practices of

scalable realtime data systems. 2012.

[19] “Kappa Architecture - Where Every Thing Is A Stream.” .

[20] J. Kreps, “Questioning the Lambda Architecture,” O’Reilly.

pp. 1–10, 2014.

[21] J. Forgeat, “Data processing architectures – Lambda and

Kappa,” Ericsson Research Blog. 2015.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.612 12

2017 International Journal of Computer Science Issues

